Abstract

The realization of half wave phase retarders based on sub-wavelength periodic gratings typically requires small periods with large aspect ratio features. The required aspect ratio of the grating features can be considerably decreased when high refractive index materials are employed. Because the nano-structuring and processing of such dielectrics is quite difficult, we have designed and developed a half-wave retarder relying on (low index) fused silica (SiO2) gratings that are over-coated by titanium dioxide (TiO2) using atomic layer deposition. The period and depth of the fabricated structures are 400nm and 1700nm, respectively. Half-wave retardation is achieved at 628nm and the total transmission lies above 90%.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of duty cycles of metal grating masks formed on dielectric substrates

Hongchao Cao, Changhe Zhou, Jijun Feng, and Jianyong Ma
Appl. Opt. 50(17) 2732-2737 (2011)

Fabrication and characterization of a deep ultraviolet wire grid polarizer with a chromium-oxide subwavelength grating

Kosuke Asano, Satoshi Yokoyama, Atsushi Kemmochi, and Toyohiko Yatagai
Appl. Opt. 53(13) 2942-2948 (2014)

Optical measurement of depth and duty cycle for binary diffraction gratings with subwavelength features

John R. Marciante, Nestor O. Farmiga, Jeffrey I. Hirsh, Michelle S. Evans, and Hieu T. Ta
Appl. Opt. 42(16) 3234-3240 (2003)

References

  • View by:
  • |
  • |
  • |

  1. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
    [Crossref] [PubMed]
  2. C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures,” Nano Lett. 11, 4400–4404 (2011).
    [Crossref] [PubMed]
  3. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref] [PubMed]
  4. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [Crossref] [PubMed]
  5. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16, 1143–1156 (1999).
    [Crossref]
  6. C. Ribot, P. Lalanne, M. S. Lee, B. Loiseaux, and J. P. Huignard, “Analysis of blazed diffractive optical elements formed with artificial dielectrics,” J. Opt. Soc. Am. A 24, 3819–3826 (2007).
    [Crossref]
  7. C. Sauvan, P. Lalanne, and M. Lee, “Broadband blazing with artificial dielectrics,” Opt. Lett. 29, 1593–1595 (2004).
    [Crossref] [PubMed]
  8. W. Yu, K. Takahara, T. Konishi, T. Yotsuya, and Y. Ichioka, “Fabrication of multilevel phase computer-generated hologram elements based on effective medium theory,” Appl. Opt. 39, 3531–3536 (2000).
    [Crossref]
  9. W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design of binary subwavelength multiphase level computer generated holograms,” Opt. Lett. 35, 676–678 (2010).
    [Crossref] [PubMed]
  10. W. Freese, T. Kämpfe, W. Rockstroh, E.-B. Kley, and A. Tünnermann, “Optimized electron beam writing strategy for fabricating computer-generated holograms based on an effective medium approach,” Opt. Express 19, 8684–8692 (2011).
    [Crossref] [PubMed]
  11. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
    [Crossref] [PubMed]
  12. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Comm. 281, 732–738, (2008).
    [Crossref]
  13. G. Lerman and U. Levy, “Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33, 2782–2784 (2008).
    [Crossref] [PubMed]
  14. T. Kämpfe and O. Parriaux, “Depth-minimized, large period half-wave corrugation for linear to radial and azimuthal polarization transformation by grating-mode phase management,” J. Opt. Soc. Am. A 28, 2235–2242 (2011).
    [Crossref]
  15. T. Kämpfe, S. Tonchev, G. Gomard, C. Seassal, and O. Parriaux, “Hydrogenated Amorphous Silicon Microstructuring for 0th-Order Polarization Elements at 1.0–1.1μm Wavelength”, IEEE Photonics Journal,  3, 1142–1148 (2011).
    [Crossref]
  16. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997).
    [Crossref] [PubMed]
  17. P. Deguzman and G. Nordin, “Stacked subwavelength gratings as circular polarization filters,” Appl. Opt. 40, 5731–5737 (2001).
    [Crossref]
  18. De-Er Yi, Ying-Bai Yan, Hai-Tao Liu, Si-Lu, and Guo-Fan Jin, “Broadband achromatic phase retarder by sub-wavelength grating,” Opt. Comm. 227, 49–55 (2003).
    [Crossref]
  19. B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Expr. 16, 16334–16342 (2008).
    [Crossref]
  20. T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of Half-Wave Plates with Subwavelength Structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
    [Crossref]
  21. K. Ventola, J. Tervo, S. Siitonen, H. Tuovinen, and M. Kuittinen, “High efficiency half-wave retardation in diffracted light by coupled waves,” Opt. Expr. 20, 4681–4689 (2012).
    [Crossref]
  22. N. Passilly, K. Ventola, P. Karvinen, J. Turunen, and J. Tervo, “Achromatic phase retardation by subwavelength gratings in total internal reflection,” J. Opt. A: Pure Appl. Opt. 10, 015001 (2008).
    [Crossref]
  23. J. Wang, X. Deng, R. Varghese, A. Nikolov, P. Sciortino, F. Liu, and L. Chen, “High-performance optical retarders based on all-dielectric immersion nanogratings,” Opt. Lett. 30, 1864–1866 (2005).
    [Crossref] [PubMed]
  24. E. Noponen and J. Turunen, “Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles,” J. Opt. Soc. Am. A 11, 2494–2502 (1994).
    [Crossref]
  25. N. P. K. Cotter, T. W. Preist, and J. R. Sambles, “Scattering-matrix approach to multilayer diffraction,” J. Opt. Soc. Am. A 12, 1097–1103 (1995).
    [Crossref]
  26. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2766 (1997).
    [Crossref]
  27. The refractive index of TiO2 was measured by ellipsometry of a thin homogeneous film deposited on an unstructured substrate. The so determined material dispersion was taken into account during the numerical calculations.
  28. The exact geometrical parameters as provided by Fig. 2(c) were determined by numerical minimization of the differences between the measured ellipsometric data and the calculated one. Cross-section REM images were only used to produce an educated guess for the minimization problem. A direct usage of the cross-section images was not possible due to insufficient precision.
  29. For wavelengths smaller than 585nm the first diffraction orders begin to propagate within the substrate. The sharp resonance peaks between 605nm and 625nm are caused by guided modes excited inside the grating layer. They are more pronounced for the numerical calculation results, although they can also be identified for the measured data at least in case of sample #2 and #3.
  30. Essentially, there appears to be a slight offset between the measured and the calculated values which we attribute to some systematic deviation, keeping in mind that the geometrical profile used for numerical calculations is still an approximation.

2012 (1)

K. Ventola, J. Tervo, S. Siitonen, H. Tuovinen, and M. Kuittinen, “High efficiency half-wave retardation in diffracted light by coupled waves,” Opt. Expr. 20, 4681–4689 (2012).
[Crossref]

2011 (5)

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures,” Nano Lett. 11, 4400–4404 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

W. Freese, T. Kämpfe, W. Rockstroh, E.-B. Kley, and A. Tünnermann, “Optimized electron beam writing strategy for fabricating computer-generated holograms based on an effective medium approach,” Opt. Express 19, 8684–8692 (2011).
[Crossref] [PubMed]

T. Kämpfe and O. Parriaux, “Depth-minimized, large period half-wave corrugation for linear to radial and azimuthal polarization transformation by grating-mode phase management,” J. Opt. Soc. Am. A 28, 2235–2242 (2011).
[Crossref]

T. Kämpfe, S. Tonchev, G. Gomard, C. Seassal, and O. Parriaux, “Hydrogenated Amorphous Silicon Microstructuring for 0th-Order Polarization Elements at 1.0–1.1μm Wavelength”, IEEE Photonics Journal,  3, 1142–1148 (2011).
[Crossref]

2010 (2)

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref] [PubMed]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design of binary subwavelength multiphase level computer generated holograms,” Opt. Lett. 35, 676–678 (2010).
[Crossref] [PubMed]

2008 (5)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Comm. 281, 732–738, (2008).
[Crossref]

G. Lerman and U. Levy, “Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33, 2782–2784 (2008).
[Crossref] [PubMed]

N. Passilly, K. Ventola, P. Karvinen, J. Turunen, and J. Tervo, “Achromatic phase retardation by subwavelength gratings in total internal reflection,” J. Opt. A: Pure Appl. Opt. 10, 015001 (2008).
[Crossref]

B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Expr. 16, 16334–16342 (2008).
[Crossref]

2007 (2)

2005 (1)

2004 (2)

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of Half-Wave Plates with Subwavelength Structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[Crossref]

C. Sauvan, P. Lalanne, and M. Lee, “Broadband blazing with artificial dielectrics,” Opt. Lett. 29, 1593–1595 (2004).
[Crossref] [PubMed]

2003 (1)

De-Er Yi, Ying-Bai Yan, Hai-Tao Liu, Si-Lu, and Guo-Fan Jin, “Broadband achromatic phase retarder by sub-wavelength grating,” Opt. Comm. 227, 49–55 (2003).
[Crossref]

2001 (1)

2000 (1)

1999 (1)

1997 (2)

1995 (1)

1994 (1)

Astilean, S.

Cambril, E.

Chavel, P.

Chen, L.

Cotter, N. P. K.

Deguzman, P.

Deng, X.

Falkner, M.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures,” Nano Lett. 11, 4400–4404 (2011).
[Crossref] [PubMed]

Freese, W.

Gomard, G.

T. Kämpfe, S. Tonchev, G. Gomard, C. Seassal, and O. Parriaux, “Hydrogenated Amorphous Silicon Microstructuring for 0th-Order Polarization Elements at 1.0–1.1μm Wavelength”, IEEE Photonics Journal,  3, 1142–1148 (2011).
[Crossref]

Helgert, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures,” Nano Lett. 11, 4400–4404 (2011).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref] [PubMed]

Huignard, J. P.

Ichioka, Y.

Isano, T.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of Half-Wave Plates with Subwavelength Structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[Crossref]

Ishizuka, K.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of Half-Wave Plates with Subwavelength Structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[Crossref]

Iwakami, N.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of Half-Wave Plates with Subwavelength Structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[Crossref]

Iwata, K.

Jackel, S.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Comm. 281, 732–738, (2008).
[Crossref]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
[Crossref] [PubMed]

Jin, Guo-Fan

De-Er Yi, Ying-Bai Yan, Hai-Tao Liu, Si-Lu, and Guo-Fan Jin, “Broadband achromatic phase retarder by sub-wavelength grating,” Opt. Comm. 227, 49–55 (2003).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Kämpfe, T.

Kaneda, Y.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of Half-Wave Plates with Subwavelength Structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[Crossref]

Karvinen, P.

N. Passilly, K. Ventola, P. Karvinen, J. Turunen, and J. Tervo, “Achromatic phase retardation by subwavelength gratings in total internal reflection,” J. Opt. A: Pure Appl. Opt. 10, 015001 (2008).
[Crossref]

Kikuta, H.

Kley, E.-B.

W. Freese, T. Kämpfe, W. Rockstroh, E.-B. Kley, and A. Tünnermann, “Optimized electron beam writing strategy for fabricating computer-generated holograms based on an effective medium approach,” Opt. Express 19, 8684–8692 (2011).
[Crossref] [PubMed]

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures,” Nano Lett. 11, 4400–4404 (2011).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref] [PubMed]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design of binary subwavelength multiphase level computer generated holograms,” Opt. Lett. 35, 676–678 (2010).
[Crossref] [PubMed]

Konishi, T.

Kuittinen, M.

K. Ventola, J. Tervo, S. Siitonen, H. Tuovinen, and M. Kuittinen, “High efficiency half-wave retardation in diffracted light by coupled waves,” Opt. Expr. 20, 4681–4689 (2012).
[Crossref]

B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Expr. 16, 16334–16342 (2008).
[Crossref]

Laakkonen, P.

B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Expr. 16, 16334–16342 (2008).
[Crossref]

Lalanne, P.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Launois, H.

Lederer, F.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures,” Nano Lett. 11, 4400–4404 (2011).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref] [PubMed]

Lee, M.

Lee, M. S.

Lerman, G.

Levy, U.

Li, L.

Liu, F.

Liu, Hai-Tao

De-Er Yi, Ying-Bai Yan, Hai-Tao Liu, Si-Lu, and Guo-Fan Jin, “Broadband achromatic phase retarder by sub-wavelength grating,” Opt. Comm. 227, 49–55 (2003).
[Crossref]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Loiseaux, B.

Lumer, Y.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Comm. 281, 732–738, (2008).
[Crossref]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
[Crossref] [PubMed]

Machavariani, G.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Comm. 281, 732–738, (2008).
[Crossref]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
[Crossref] [PubMed]

Meir, A.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Comm. 281, 732–738, (2008).
[Crossref]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
[Crossref] [PubMed]

Menzel, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures,” Nano Lett. 11, 4400–4404 (2011).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Moshe, I.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Comm. 281, 732–738, (2008).
[Crossref]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007).
[Crossref] [PubMed]

Nikolov, A.

Noponen, E.

Nordin, G.

Ohira, Y.

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Päivänranta, B.

B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Expr. 16, 16334–16342 (2008).
[Crossref]

Parriaux, O.

T. Kämpfe, S. Tonchev, G. Gomard, C. Seassal, and O. Parriaux, “Hydrogenated Amorphous Silicon Microstructuring for 0th-Order Polarization Elements at 1.0–1.1μm Wavelength”, IEEE Photonics Journal,  3, 1142–1148 (2011).
[Crossref]

T. Kämpfe and O. Parriaux, “Depth-minimized, large period half-wave corrugation for linear to radial and azimuthal polarization transformation by grating-mode phase management,” J. Opt. Soc. Am. A 28, 2235–2242 (2011).
[Crossref]

Passilly, N.

N. Passilly, K. Ventola, P. Karvinen, J. Turunen, and J. Tervo, “Achromatic phase retardation by subwavelength gratings in total internal reflection,” J. Opt. A: Pure Appl. Opt. 10, 015001 (2008).
[Crossref]

B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Expr. 16, 16334–16342 (2008).
[Crossref]

Pertsch, T.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures,” Nano Lett. 11, 4400–4404 (2011).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref] [PubMed]

Pietarinen, J.

B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Expr. 16, 16334–16342 (2008).
[Crossref]

Preist, T. W.

Pshenay-Severin, E.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures,” Nano Lett. 11, 4400–4404 (2011).
[Crossref] [PubMed]

Ribot, C.

Rockstroh, W.

Rockstuhl, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures,” Nano Lett. 11, 4400–4404 (2011).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Sambles, J. R.

Sauvan, C.

Sciortino, P.

Seassal, C.

T. Kämpfe, S. Tonchev, G. Gomard, C. Seassal, and O. Parriaux, “Hydrogenated Amorphous Silicon Microstructuring for 0th-Order Polarization Elements at 1.0–1.1μm Wavelength”, IEEE Photonics Journal,  3, 1142–1148 (2011).
[Crossref]

Siitonen, S.

K. Ventola, J. Tervo, S. Siitonen, H. Tuovinen, and M. Kuittinen, “High efficiency half-wave retardation in diffracted light by coupled waves,” Opt. Expr. 20, 4681–4689 (2012).
[Crossref]

Si-Lu,

De-Er Yi, Ying-Bai Yan, Hai-Tao Liu, Si-Lu, and Guo-Fan Jin, “Broadband achromatic phase retarder by sub-wavelength grating,” Opt. Comm. 227, 49–55 (2003).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Suzuki, N.

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of Half-Wave Plates with Subwavelength Structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[Crossref]

Takahara, K.

Tervo, J.

K. Ventola, J. Tervo, S. Siitonen, H. Tuovinen, and M. Kuittinen, “High efficiency half-wave retardation in diffracted light by coupled waves,” Opt. Expr. 20, 4681–4689 (2012).
[Crossref]

B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Expr. 16, 16334–16342 (2008).
[Crossref]

N. Passilly, K. Ventola, P. Karvinen, J. Turunen, and J. Tervo, “Achromatic phase retardation by subwavelength gratings in total internal reflection,” J. Opt. A: Pure Appl. Opt. 10, 015001 (2008).
[Crossref]

Tonchev, S.

T. Kämpfe, S. Tonchev, G. Gomard, C. Seassal, and O. Parriaux, “Hydrogenated Amorphous Silicon Microstructuring for 0th-Order Polarization Elements at 1.0–1.1μm Wavelength”, IEEE Photonics Journal,  3, 1142–1148 (2011).
[Crossref]

Tünnermann, A.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures,” Nano Lett. 11, 4400–4404 (2011).
[Crossref] [PubMed]

W. Freese, T. Kämpfe, W. Rockstroh, E.-B. Kley, and A. Tünnermann, “Optimized electron beam writing strategy for fabricating computer-generated holograms based on an effective medium approach,” Opt. Express 19, 8684–8692 (2011).
[Crossref] [PubMed]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design of binary subwavelength multiphase level computer generated holograms,” Opt. Lett. 35, 676–678 (2010).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref] [PubMed]

Tuovinen, H.

K. Ventola, J. Tervo, S. Siitonen, H. Tuovinen, and M. Kuittinen, “High efficiency half-wave retardation in diffracted light by coupled waves,” Opt. Expr. 20, 4681–4689 (2012).
[Crossref]

Turunen, J.

N. Passilly, K. Ventola, P. Karvinen, J. Turunen, and J. Tervo, “Achromatic phase retardation by subwavelength gratings in total internal reflection,” J. Opt. A: Pure Appl. Opt. 10, 015001 (2008).
[Crossref]

E. Noponen and J. Turunen, “Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles,” J. Opt. Soc. Am. A 11, 2494–2502 (1994).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Varghese, R.

Ventola, K.

K. Ventola, J. Tervo, S. Siitonen, H. Tuovinen, and M. Kuittinen, “High efficiency half-wave retardation in diffracted light by coupled waves,” Opt. Expr. 20, 4681–4689 (2012).
[Crossref]

N. Passilly, K. Ventola, P. Karvinen, J. Turunen, and J. Tervo, “Achromatic phase retardation by subwavelength gratings in total internal reflection,” J. Opt. A: Pure Appl. Opt. 10, 015001 (2008).
[Crossref]

Wang, J.

Yan, Ying-Bai

De-Er Yi, Ying-Bai Yan, Hai-Tao Liu, Si-Lu, and Guo-Fan Jin, “Broadband achromatic phase retarder by sub-wavelength grating,” Opt. Comm. 227, 49–55 (2003).
[Crossref]

Yi, De-Er

De-Er Yi, Ying-Bai Yan, Hai-Tao Liu, Si-Lu, and Guo-Fan Jin, “Broadband achromatic phase retarder by sub-wavelength grating,” Opt. Comm. 227, 49–55 (2003).
[Crossref]

Yotsuya, T.

Yu, W.

Appl. Opt. (3)

IEEE Photonics Journal (1)

T. Kämpfe, S. Tonchev, G. Gomard, C. Seassal, and O. Parriaux, “Hydrogenated Amorphous Silicon Microstructuring for 0th-Order Polarization Elements at 1.0–1.1μm Wavelength”, IEEE Photonics Journal,  3, 1142–1148 (2011).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

N. Passilly, K. Ventola, P. Karvinen, J. Turunen, and J. Tervo, “Achromatic phase retardation by subwavelength gratings in total internal reflection,” J. Opt. A: Pure Appl. Opt. 10, 015001 (2008).
[Crossref]

J. Opt. Soc. Am. A (6)

Jpn. J. Appl. Phys. (1)

T. Isano, Y. Kaneda, N. Iwakami, K. Ishizuka, and N. Suzuki, “Fabrication of Half-Wave Plates with Subwavelength Structures,” Jpn. J. Appl. Phys. 43, 5294–5296 (2004).
[Crossref]

Nano Lett. (1)

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, “Chiral Metamaterial Composed of Three-Dimensional Plasmonic Nanostructures,” Nano Lett. 11, 4400–4404 (2011).
[Crossref] [PubMed]

Opt. Comm. (2)

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams,” Opt. Comm. 281, 732–738, (2008).
[Crossref]

De-Er Yi, Ying-Bai Yan, Hai-Tao Liu, Si-Lu, and Guo-Fan Jin, “Broadband achromatic phase retarder by sub-wavelength grating,” Opt. Comm. 227, 49–55 (2003).
[Crossref]

Opt. Expr. (2)

B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Expr. 16, 16334–16342 (2008).
[Crossref]

K. Ventola, J. Tervo, S. Siitonen, H. Tuovinen, and M. Kuittinen, “High efficiency half-wave retardation in diffracted light by coupled waves,” Opt. Expr. 20, 4681–4689 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. Lett. (3)

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104, 253902 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Other (4)

The refractive index of TiO2 was measured by ellipsometry of a thin homogeneous film deposited on an unstructured substrate. The so determined material dispersion was taken into account during the numerical calculations.

The exact geometrical parameters as provided by Fig. 2(c) were determined by numerical minimization of the differences between the measured ellipsometric data and the calculated one. Cross-section REM images were only used to produce an educated guess for the minimization problem. A direct usage of the cross-section images was not possible due to insufficient precision.

For wavelengths smaller than 585nm the first diffraction orders begin to propagate within the substrate. The sharp resonance peaks between 605nm and 625nm are caused by guided modes excited inside the grating layer. They are more pronounced for the numerical calculation results, although they can also be identified for the measured data at least in case of sample #2 and #3.

Essentially, there appears to be a slight offset between the measured and the calculated values which we attribute to some systematic deviation, keeping in mind that the geometrical profile used for numerical calculations is still an approximation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the birefringent grating structure used to achieve high phase retardation in transmission between the two orthogonal polarization states TE and TM. (b) Iso-phase surface corresponding to a phase retardation of Δ = −arg(TTM/TTE) = 180° depending on the grating’s duty cycle, the grating’s depth and the TiO2 layer thickness. The color of the iso-phase surface indicates the intensity ratio |TTE/TTM|2. The contour lines in the bottom plane denote the phase differences (in degree) from the perfect retardation condition for the lowest considered grating depth of 1μm. The semi-transparent red plane indicates a grating depth level of 1.720μm.
Fig. 2
Fig. 2 Cross section of fabricated sample #2. (a) A section ranging throughout the complete depth of the grating structure and (b) shows a zoomed view where only the crowns of the grating lines are visible. The textured shape represents the thin layer of TiO2. All other accumulations of materials were only locally deposited in favor of the cutting process. (c) Schematic view of the more realistic fused silica grating together with the precise geometrical quantities used for numerical simulations of the fabricated samples [28]. The four different values of the trench width W in the box correspond to the four fabricated samples. The lower, trapezoidal section of the trench profile was segmented into 30 individual layers for calculation. The TiO2 layer is not depicted, but it is taken into account during the calculations.
Fig. 3
Fig. 3 Ellipsometric measurement results of the fabricated grating structures. Ψ and Δ are the standard ellipsometric angles (see text). The retardation Δ takes values in the interval |0°, 360°] where a value of 360° corresponds to zero retardation. The different colors (symbols) correspond to four different fabricated samples with varying duty cycle (see text). The solid lines are the results of the numerical simulations. The colored vertical lines indicate the perfect retardation point, i.e. Δ = 180°, of the associated samples.
Fig. 4
Fig. 4 Transmission of the fabricated samples #2 and #3. The symbols (solid lines) correspond to measurement (simulations) results. The colored vertical lines indicate the perfect retardation point, i.e. Δ = 180°, of the associated samples. The magenta (grey) curves indicate the measured (calculated) transmission functions of the unstructured substrate with (without) the deposited TiO2 layer on the top side of the substrate.

Metrics