Abstract

We perform numerical modelling of nonlinear optical (NLO) microscopy of complex anisotropic three-dimensional (3D) media using the uncoupled dipole approximation. The modelling is applied to 3D biological microstructures resembling collagen fibers and multilamellar vesicles. The results elucidate how nonlinear optical activity effects, such as second-harmonic generation circular dichroism, can arise from 3D morphological chirality, in addition to molecular level chirality. We also show how third-harmonic generation circular dichroism could act as a contrast mechanism for visualizing local structural ordering in 3D anisotropic materials.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Third-harmonic generation Stokes-Mueller polarimetric microscopy

Lukas Kontenis, Masood Samim, Serguei Krouglov, and Virginijus Barzda
Opt. Express 25(12) 13174-13189 (2017)

Chiral imaging of collagen by second-harmonic generation circular dichroism

H. Lee, M. J. Huttunen, K.-J. Hsu, M. Partanen, G.-Y. Zhuo, M. Kauranen, and S.-W. Chu
Biomed. Opt. Express 4(6) 909-916 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  2. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
    [Crossref]
  3. J. A. Squier, M. Muller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
    [Crossref] [PubMed]
  4. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photon. 3(3), 205–271 (2011).
    [Crossref]
  5. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
    [Crossref] [PubMed]
  6. L. D. Barron, “Molecular light scattering and optical activity,” Cambridge University Press (1982).
  7. T. Petralli-Mallow, T. Wong, J. Byers, H. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation stude,” J. Phys. Chem. 97(7), 1383–1388 (1993).
    [Crossref]
  8. H. Lee, M. J. Huttunen, K.-J. Hsu, M. Partanen, G.-Y. Zhuo, M. Kauranen, and S.-W. Chu, “Chiral imaging of collagen by second-harmonic generation circular dichroism,” Biomed. Opt. Express 4(6), 909–916 (2013).
    [Crossref] [PubMed]
  9. M. Kauranen, T. Verbiest, and A. Persoons, “Second-order nonlinear optical signatures of surface chirality,” J. Mod. Opt. 45(2), 403–423 (1998).
    [Crossref]
  10. J. M. Hicks, Chirality: Physical Chemistry (American Chemical Society, 2002).
  11. S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mat. Sci. Eng. R. Elsevier. 42(5-6), 115–155 (2003).
    [Crossref]
  12. M. Belkin and Y. R. Shen, “Non-linear optical spectroscopy as a novel probe for molecular chirality,” Int. Rev. Phys. Chem. 24, 257–299 (2005).
    [Crossref]
  13. P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17(8), 421–437 (2005).
    [Crossref] [PubMed]
  14. J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B Condens. Matter 49(20), 14643–14647 (1994).
    [Crossref] [PubMed]
  15. P. Fischer and A. Buckingham, “Surface second-order nonlinear optical activity,” J. Opt. Soc. Am. B 15(12), 2951–2957 (1998).
    [Crossref]
  16. M. J. Huttunen, M. Erkintalo, and M. Kauranen, “Absolute nonlinear optical probes of surface chirality,” J. Opt. A, Pure Appl. Opt. 11(3), 034006 (2009).
    [Crossref]
  17. X. Chen, C. Raggio, and P. J. Campagnola, “Second-harmonic generation circular dichroism studies of osteogenesis imperfecta,” Opt. Lett. 37(18), 3837–3839 (2012).
    [Crossref] [PubMed]
  18. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
    [Crossref]
  19. J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett. 16(15), 1198–1200 (1991).
    [Crossref] [PubMed]
  20. P. J. Flatau and B. T. Draine, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491 (1994).
    [Crossref]
  21. J.-X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. B 19(7), 1604–1610 (2002).
    [Crossref]
  22. E. Y. S. Yew and C. J. R. Sheppard, “Effects of axial field components on second harmonic generation microscopy,” Opt. Express 14(3), 1167–1174 (2006).
    [Crossref] [PubMed]
  23. N. K. Balla, P. T. C. So, and C. J. R. Sheppard, “Second harmonic scattering from small particles using Discrete Dipole Approximation,” Opt. Express 18(21), 21603–21611 (2010).
    [Crossref] [PubMed]
  24. N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
    [Crossref] [PubMed]
  25. D. Sandkuijl, A. E. Tuer, D. Tokarz, J. Sipe, and V. Barzda, “Numerical second-and third-harmonic generation microscopy,” J. Opt. Soc. Am. B 30(2), 382–395 (2013).
    [Crossref]
  26. I. Gusachenko and M.-C. Schanne-Klein, “Numerical simulation of polarization-resolved second-harmonic microscopy in birefringent media,” Phys. Rev. A 88(5), 053811 (2013).
    [Crossref]
  27. N. K. Balla, E. Y. Yew, C. J. Sheppard, and P. T. So, “Coupled and uncoupled dipole models of nonlinear scattering,” Opt. Express 20(23), 25834–25842 (2012).
    [Crossref] [PubMed]
  28. D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
    [Crossref] [PubMed]
  29. M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing order lipid assembles with polarized third-harmonic generation microscopy,” Phys Rev. X 3, 011002 (2013).
  30. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
    [Crossref] [PubMed]
  31. V. P. Torchilin, “Recent advances with liposomes as pharmaceutical carriers,” Nat. Rev. Drug Discov. 4(2), 145–160 (2005).
    [Crossref] [PubMed]
  32. G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. (2014).
  33. C. Acquista, “Light scattering by tenuous particles: a generalization of the Rayleigh-Gans-Rocard approach,” Appl. Opt. 15(11), 2932–2936 (1976).
    [Crossref] [PubMed]
  34. A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79(15), 155420 (2009).
    [Crossref]
  35. O. J. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3909–3915 (1998).
    [Crossref]
  36. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  37. M. J. Huttunen, J. Mäkitalo, G. Bautista, and M. Kauranen, “Multipolar second-harmonic emission with focused Gaussian beams,” New J. Phys. 14(11), 113005 (2012).
    [Crossref]
  38. S. W. Smith, The Scientist and Engineer's Guide to Digital Signal (Processing California Technical Publishing, 1997).

2013 (5)

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

H. Lee, M. J. Huttunen, K.-J. Hsu, M. Partanen, G.-Y. Zhuo, M. Kauranen, and S.-W. Chu, “Chiral imaging of collagen by second-harmonic generation circular dichroism,” Biomed. Opt. Express 4(6), 909–916 (2013).
[Crossref] [PubMed]

D. Sandkuijl, A. E. Tuer, D. Tokarz, J. Sipe, and V. Barzda, “Numerical second-and third-harmonic generation microscopy,” J. Opt. Soc. Am. B 30(2), 382–395 (2013).
[Crossref]

I. Gusachenko and M.-C. Schanne-Klein, “Numerical simulation of polarization-resolved second-harmonic microscopy in birefringent media,” Phys. Rev. A 88(5), 053811 (2013).
[Crossref]

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing order lipid assembles with polarized third-harmonic generation microscopy,” Phys Rev. X 3, 011002 (2013).

2012 (3)

2011 (1)

2010 (2)

2009 (2)

A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79(15), 155420 (2009).
[Crossref]

M. J. Huttunen, M. Erkintalo, and M. Kauranen, “Absolute nonlinear optical probes of surface chirality,” J. Opt. A, Pure Appl. Opt. 11(3), 034006 (2009).
[Crossref]

2006 (2)

E. Y. S. Yew and C. J. R. Sheppard, “Effects of axial field components on second harmonic generation microscopy,” Opt. Express 14(3), 1167–1174 (2006).
[Crossref] [PubMed]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

2005 (4)

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[Crossref] [PubMed]

V. P. Torchilin, “Recent advances with liposomes as pharmaceutical carriers,” Nat. Rev. Drug Discov. 4(2), 145–160 (2005).
[Crossref] [PubMed]

M. Belkin and Y. R. Shen, “Non-linear optical spectroscopy as a novel probe for molecular chirality,” Int. Rev. Phys. Chem. 24, 257–299 (2005).
[Crossref]

P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17(8), 421–437 (2005).
[Crossref] [PubMed]

2003 (1)

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mat. Sci. Eng. R. Elsevier. 42(5-6), 115–155 (2003).
[Crossref]

2002 (1)

J.-X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. B 19(7), 1604–1610 (2002).
[Crossref]

1998 (4)

O. J. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3909–3915 (1998).
[Crossref]

M. Kauranen, T. Verbiest, and A. Persoons, “Second-order nonlinear optical signatures of surface chirality,” J. Mod. Opt. 45(2), 403–423 (1998).
[Crossref]

J. A. Squier, M. Muller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
[Crossref] [PubMed]

P. Fischer and A. Buckingham, “Surface second-order nonlinear optical activity,” J. Opt. Soc. Am. B 15(12), 2951–2957 (1998).
[Crossref]

1997 (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

1994 (2)

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B Condens. Matter 49(20), 14643–14647 (1994).
[Crossref] [PubMed]

P. J. Flatau and B. T. Draine, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491 (1994).
[Crossref]

1993 (1)

T. Petralli-Mallow, T. Wong, J. Byers, H. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation stude,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[Crossref]

1991 (1)

1976 (1)

1973 (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Acquista, C.

Aptel, F.

Balla, N. K.

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Barzda, V.

Bautista, G.

M. J. Huttunen, J. Mäkitalo, G. Bautista, and M. Kauranen, “Multipolar second-harmonic emission with focused Gaussian beams,” New J. Phys. 14(11), 113005 (2012).
[Crossref]

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. (2014).

Beaurepaire, E.

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing order lipid assembles with polarized third-harmonic generation microscopy,” Phys Rev. X 3, 011002 (2013).

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[Crossref] [PubMed]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Belkin, M.

M. Belkin and Y. R. Shen, “Non-linear optical spectroscopy as a novel probe for molecular chirality,” Int. Rev. Phys. Chem. 24, 257–299 (2005).
[Crossref]

Brakenhoff, G.

Brasselet, S.

Buckingham, A.

Byers, J.

T. Petralli-Mallow, T. Wong, J. Byers, H. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation stude,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[Crossref]

Byers, J. D.

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B Condens. Matter 49(20), 14643–14647 (1994).
[Crossref] [PubMed]

Campagnola, P. J.

Chen, X.

Cheng, J.-X.

J.-X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. B 19(7), 1604–1610 (2002).
[Crossref]

Chu, S.-W.

Combettes, L.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

de Beer, A. G. F.

A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79(15), 155420 (2009).
[Crossref]

Débarre, D.

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing order lipid assembles with polarized third-harmonic generation microscopy,” Phys Rev. X 3, 011002 (2013).

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Draine, B. T.

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Erkintalo, M.

M. J. Huttunen, M. Erkintalo, and M. Kauranen, “Absolute nonlinear optical probes of surface chirality,” J. Opt. A, Pure Appl. Opt. 11(3), 034006 (2009).
[Crossref]

Fabre, A.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Fischer, P.

P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17(8), 421–437 (2005).
[Crossref] [PubMed]

P. Fischer and A. Buckingham, “Surface second-order nonlinear optical activity,” J. Opt. Soc. Am. B 15(12), 2951–2957 (1998).
[Crossref]

Flatau, P. J.

Goodman, J. J.

Gusachenko, I.

I. Gusachenko and M.-C. Schanne-Klein, “Numerical simulation of polarization-resolved second-harmonic microscopy in birefringent media,” Phys. Rev. A 88(5), 053811 (2013).
[Crossref]

Hache, F.

P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17(8), 421–437 (2005).
[Crossref] [PubMed]

Hicks, J. M.

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B Condens. Matter 49(20), 14643–14647 (1994).
[Crossref] [PubMed]

T. Petralli-Mallow, T. Wong, J. Byers, H. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation stude,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[Crossref]

Hoover, E. E.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Hsu, K.-J.

Huttunen, M. J.

H. Lee, M. J. Huttunen, K.-J. Hsu, M. Partanen, G.-Y. Zhuo, M. Kauranen, and S.-W. Chu, “Chiral imaging of collagen by second-harmonic generation circular dichroism,” Biomed. Opt. Express 4(6), 909–916 (2013).
[Crossref] [PubMed]

M. J. Huttunen, J. Mäkitalo, G. Bautista, and M. Kauranen, “Multipolar second-harmonic emission with focused Gaussian beams,” New J. Phys. 14(11), 113005 (2012).
[Crossref]

M. J. Huttunen, M. Erkintalo, and M. Kauranen, “Absolute nonlinear optical probes of surface chirality,” J. Opt. A, Pure Appl. Opt. 11(3), 034006 (2009).
[Crossref]

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. (2014).

Ikonen, E.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. (2014).

Kanerva, K.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. (2014).

Kauranen, M.

H. Lee, M. J. Huttunen, K.-J. Hsu, M. Partanen, G.-Y. Zhuo, M. Kauranen, and S.-W. Chu, “Chiral imaging of collagen by second-harmonic generation circular dichroism,” Biomed. Opt. Express 4(6), 909–916 (2013).
[Crossref] [PubMed]

M. J. Huttunen, J. Mäkitalo, G. Bautista, and M. Kauranen, “Multipolar second-harmonic emission with focused Gaussian beams,” New J. Phys. 14(11), 113005 (2012).
[Crossref]

M. J. Huttunen, M. Erkintalo, and M. Kauranen, “Absolute nonlinear optical probes of surface chirality,” J. Opt. A, Pure Appl. Opt. 11(3), 034006 (2009).
[Crossref]

M. Kauranen, T. Verbiest, and A. Persoons, “Second-order nonlinear optical signatures of surface chirality,” J. Mod. Opt. 45(2), 403–423 (1998).
[Crossref]

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. (2014).

Lee, H.

Mahou, P.

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing order lipid assembles with polarized third-harmonic generation microscopy,” Phys Rev. X 3, 011002 (2013).

Mäkitalo, J.

M. J. Huttunen, J. Mäkitalo, G. Bautista, and M. Kauranen, “Multipolar second-harmonic emission with focused Gaussian beams,” New J. Phys. 14(11), 113005 (2012).
[Crossref]

Martin, O. J.

O. J. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3909–3915 (1998).
[Crossref]

Muller, M.

Olivier, N.

Partanen, M.

Pena, A.-M.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Persoons, A.

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mat. Sci. Eng. R. Elsevier. 42(5-6), 115–155 (2003).
[Crossref]

M. Kauranen, T. Verbiest, and A. Persoons, “Second-order nonlinear optical signatures of surface chirality,” J. Mod. Opt. 45(2), 403–423 (1998).
[Crossref]

Petralli-Mallow, T.

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B Condens. Matter 49(20), 14643–14647 (1994).
[Crossref] [PubMed]

T. Petralli-Mallow, T. Wong, J. Byers, H. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation stude,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[Crossref]

Pfisterer, S. G.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. (2014).

Piller, N. B.

O. J. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3909–3915 (1998).
[Crossref]

Plamann, K.

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Raggio, C.

Ranjan, S.

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. (2014).

Roke, S.

A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79(15), 155420 (2009).
[Crossref]

Sandkuijl, D.

Schanne-Klein, M.-C.

I. Gusachenko and M.-C. Schanne-Klein, “Numerical simulation of polarization-resolved second-harmonic microscopy in birefringent media,” Phys. Rev. A 88(5), 053811 (2013).
[Crossref]

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing order lipid assembles with polarized third-harmonic generation microscopy,” Phys Rev. X 3, 011002 (2013).

N. Olivier, F. Aptel, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Harmonic microscopy of isotropic and anisotropic microstructure of the human cornea,” Opt. Express 18(5), 5028–5040 (2010).
[Crossref] [PubMed]

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Shen, Y. R.

M. Belkin and Y. R. Shen, “Non-linear optical spectroscopy as a novel probe for molecular chirality,” Int. Rev. Phys. Chem. 24, 257–299 (2005).
[Crossref]

Sheppard, C. J.

Sheppard, C. J. R.

Silberberg, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Sioncke, S.

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mat. Sci. Eng. R. Elsevier. 42(5-6), 115–155 (2003).
[Crossref]

Sipe, J.

So, P. T.

So, P. T. C.

Squier, J. A.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

J. A. Squier, M. Muller, G. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3(9), 315–324 (1998).
[Crossref] [PubMed]

Supatto, W.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Tokarz, D.

Torchilin, V. P.

V. P. Torchilin, “Recent advances with liposomes as pharmaceutical carriers,” Nat. Rev. Drug Discov. 4(2), 145–160 (2005).
[Crossref] [PubMed]

Tordjmann, T.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Tuer, A. E.

Verbiest, T.

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mat. Sci. Eng. R. Elsevier. 42(5-6), 115–155 (2003).
[Crossref]

M. Kauranen, T. Verbiest, and A. Persoons, “Second-order nonlinear optical signatures of surface chirality,” J. Mod. Opt. 45(2), 403–423 (1998).
[Crossref]

Webb, W. W.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[Crossref] [PubMed]

Williams, R. M.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[Crossref] [PubMed]

Wilson, K. R.

Wong, T.

T. Petralli-Mallow, T. Wong, J. Byers, H. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation stude,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[Crossref]

Xie, X. S.

J.-X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. B 19(7), 1604–1610 (2002).
[Crossref]

Yee, H.

T. Petralli-Mallow, T. Wong, J. Byers, H. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation stude,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[Crossref]

Yee, H. I.

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B Condens. Matter 49(20), 14643–14647 (1994).
[Crossref] [PubMed]

Yew, E. Y.

Yew, E. Y. S.

Zhuo, G.-Y.

Zimmerley, M.

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing order lipid assembles with polarized third-harmonic generation microscopy,” Phys Rev. X 3, 011002 (2013).

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70(8), 922–924 (1997).
[Crossref]

Astrophys. J. (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (1)

R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005).
[Crossref] [PubMed]

Chirality (1)

P. Fischer and F. Hache, “Nonlinear optical spectroscopy of chiral molecules,” Chirality 17(8), 421–437 (2005).
[Crossref] [PubMed]

Int. Rev. Phys. Chem. (1)

M. Belkin and Y. R. Shen, “Non-linear optical spectroscopy as a novel probe for molecular chirality,” Int. Rev. Phys. Chem. 24, 257–299 (2005).
[Crossref]

J. Mod. Opt. (1)

M. Kauranen, T. Verbiest, and A. Persoons, “Second-order nonlinear optical signatures of surface chirality,” J. Mod. Opt. 45(2), 403–423 (1998).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

M. J. Huttunen, M. Erkintalo, and M. Kauranen, “Absolute nonlinear optical probes of surface chirality,” J. Opt. A, Pure Appl. Opt. 11(3), 034006 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Opt. Soc. B (1)

J.-X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. B 19(7), 1604–1610 (2002).
[Crossref]

J. Phys. Chem. (1)

T. Petralli-Mallow, T. Wong, J. Byers, H. Yee, and J. M. Hicks, “Circular dichroism spectroscopy at interfaces: a surface second harmonic generation stude,” J. Phys. Chem. 97(7), 1383–1388 (1993).
[Crossref]

Mat. Sci. Eng. R. Elsevier. (1)

S. Sioncke, T. Verbiest, and A. Persoons, “Second-order nonlinear optical properties of chiral materials,” Mat. Sci. Eng. R. Elsevier. 42(5-6), 115–155 (2003).
[Crossref]

Nat. Methods (1)

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Nat. Rev. Drug Discov. (1)

V. P. Torchilin, “Recent advances with liposomes as pharmaceutical carriers,” Nat. Rev. Drug Discov. 4(2), 145–160 (2005).
[Crossref] [PubMed]

New J. Phys. (1)

M. J. Huttunen, J. Mäkitalo, G. Bautista, and M. Kauranen, “Multipolar second-harmonic emission with focused Gaussian beams,” New J. Phys. 14(11), 113005 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys Rev. X (1)

M. Zimmerley, P. Mahou, D. Débarre, M.-C. Schanne-Klein, and E. Beaurepaire, “Probing order lipid assembles with polarized third-harmonic generation microscopy,” Phys Rev. X 3, 011002 (2013).

Phys. Rev. A (1)

I. Gusachenko and M.-C. Schanne-Klein, “Numerical simulation of polarization-resolved second-harmonic microscopy in birefringent media,” Phys. Rev. A 88(5), 053811 (2013).
[Crossref]

Phys. Rev. B (1)

A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79(15), 155420 (2009).
[Crossref]

Phys. Rev. B Condens. Matter (1)

J. D. Byers, H. I. Yee, T. Petralli-Mallow, and J. M. Hicks, “Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers,” Phys. Rev. B Condens. Matter 49(20), 14643–14647 (1994).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

O. J. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(3), 3909–3915 (1998).
[Crossref]

Other (6)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

S. W. Smith, The Scientist and Engineer's Guide to Digital Signal (Processing California Technical Publishing, 1997).

G. Bautista, S. G. Pfisterer, M. J. Huttunen, S. Ranjan, K. Kanerva, E. Ikonen, and M. Kauranen, “Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells,” Biophys. J. (2014).

L. D. Barron, “Molecular light scattering and optical activity,” Cambridge University Press (1982).

R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

J. M. Hicks, Chirality: Physical Chemistry (American Chemical Society, 2002).

Supplementary Material (3)

» Media 1: AVI (1009 KB)     
» Media 2: AVI (3104 KB)     
» Media 3: AVI (1903 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Numerical SHG microscopy of a collagen fiber. Schematics showing the relative size and position of the modeled collagen fibril as viewed from the top (xy plane) (a) and side (xz plane) (b). The molecular coordinate frame (x’,y’,z’) is shown with dotted arrows. SHG images using (c-e) LHCP and (f-h) RHCP input polarizations were used to calculate the corresponding SHG-CD images for fibers with: (i) achiral and real-valued, (j) chiral and real-valued and (k) chiral and complex-valued χ i j k ( 2 ) susceptibilities. The normalized maximum SHG values are shown at the upper right of the SHG images and the maximum and minimum SHG-CD values are shown at the upper right of the SHG-CD images. Video showing SHG and SHG-CD images while varying the fiber orientation in the focus for the complex-valued case is given in (Media 1). Scale bars are 800 nm.

Fig. 2
Fig. 2

Numerical SHG-CD microscopy of a collagen fiber as a function of the relative z-position of the fiber with respect to the focal plane (dotted line). (a) Side views show the z-position of the fiber, where z = 0 μm corresponds to fiber being at the focal plane. SHG-CD images using (b) real-valued and (c) complex-valued chiral susceptibilities. The maximum SHG-CD values are shown at the upper right of the images. Complex-valued susceptibility leads to larger SHG-CD values, which are dominantly positive. Scale bars are 800 nm.

Fig. 3
Fig. 3

Numerical THG microscopy of a MLV with a homogenous core. Schematics showing the relative size and position of the modeled MLV as seen from the top (xy plane) (a) and side (xz plane) (e). Scanning was performed in the xy-plane. THG images taken with (b) LHCP and (c) RHCP inputs were used to calculate the (d) THG-CD image. (f-h) Microscopy images taken using linear input polarizations (0°, 45° and 90° with respect to the y-axis) was also modeled predicting a ~10 000-fold THG signal enhancement compared to THG using CP inputs. The normalized maximum THG values are shown at the upper right of the THG images and the maximum THG-CD value is shown at the upper right of the THG-CD image. Video showing THG images while varying the MLV z-position in the focus is given in (Media 2). Scale bars are 500 nm.

Fig. 4
Fig. 4

Numerical THG microscopy a MLV with a partially ordered core. Schematics showing the relative size and position of the MLV as seen from the top (xy plane) (a) and side (xz plane) (e). Scanning was performed in xy-plane. THG images taken with (b) LHCP and (c) RHCP inputs were used to calculate the (d) THG-CD image, which shows a clear THG-CD response. (f-h) Microscopy images taken with linear input polarizations (0°, 45° and 90° with respect to the y-axis) was also modeled predicting decreased THG signal enhancement compared to THG using CP inputs (now only ~1800-fold). The normalized maximum THG values are shown at the upper right of the THG images and the maximum THG-CD value is shown at the upper right of the THG-CD image. Video showing images while varying the relative concentration c2 of the ordered MLV center is given in (Media 3). Scale bars are 500 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P (2) (2ω,r)= χ (2) (2ω,r):E(ω,r)E(ω,r)
P (3) (3ω,r)= χ (3) (3ω,r)E(ω,r)E(ω,r)E(ω,r).
E(Nω,R)= V G(Nω,Rr) P (N) ( Nω,r )dr,
I(Nω) A | E(Nω,R) | 2 dA.

Metrics