Abstract

Deposits of exposed and embedded silver nanoparticles were grown on Si(100) and silica substrates by laser ablating high-purity silver and SiO2 targets in vacuum using a femtosecond Ti:sapphire laser delivering 45 fs pulses at 804 nm and 1 kHz repetition rate. The effect of the laser fluence and irradiation time on the obtained nanostructures was investigated using several fluences between 650 mJ/cm2 and 3.2 J/cm2 and deposition times in the range of 1-20 minutes. Optical response of the deposits was characterized using optical absorption spectroscopy and the surface morphology was studied by scanning electron microscopy (SEM). Samples with the optimal optical response were obtained by depositing three successive Ag/SiO2 bilayers at the main laser wavelength (804 nm) under vacuum at substrate room temperature. They were composed of silver nanoparticles with an average diameter of 6 nm and a narrow size distribution; each layer of these nanoparticles was then separated by silica layers of approximately 100 nm. The laser fluence and deposition time for Ag (SiO2) were 650 mJ/cm2 (3.2 J/cm2) and 1 min (10 min), respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Erbium-doped glass nanoparticle embedded polymer thin films using femtosecond pulsed laser deposition

Eric Kumi Barimah, Marcin W. Ziarko, Nikolaos Bamiedakis, Ian H. White, Richard V. Penty, and Gin Jose
Opt. Mater. Express 8(7) 1997-2007 (2018)

Assembly of silver nanoparticles on nanowires into ordered nanostructures with femtosecond laser radiation

L. Lin, H. Huang, M. Sivayoganathan, L. Liu, G. Zou, W. W. Duley, and Y. Zhou
Appl. Opt. 54(9) 2524-2531 (2015)

Layered silver nanoparticles embedded in a BaF2 matrix: optical characterization

Maria L. Protopapa, Antonella Rizzo, Marilena Re, and Luciano Pilloni
Appl. Opt. 48(35) 6662-6669 (2009)

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, 1st ed. (Springer, 1995).
  2. V. M. Shalaev, ed., Optical Properties of Nanostructured Random Media, Topics in Applied Physics (Springer-Verlag, 2002).
  3. P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci. 33(9), 2235–2249 (1998).
    [Crossref]
  4. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  5. S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).
  6. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
    [Crossref]
  7. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  8. Y. Lei and W.-K. Chim, “Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence,” J. Am. Chem. Soc. 127(5), 1487–1492 (2005).
    [Crossref] [PubMed]
  9. T. Ghodselahi, M. A. Vesaghi, and A. Shafiekhani, “Study of surface plasmon resonance of Cu@Cu2O core-shell nanoparticles by Mie theory,” J. Phys. Appl. Phys. 42(1), 015308 (2009).
    [Crossref]
  10. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
    [Crossref] [PubMed]
  11. J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: A case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett. 1, 686–695 (2010).
  12. Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113(49), 20896–20902 (2009).
    [Crossref]
  13. S. B. Kalidindi, U. Sanyal, and B. R. Jagirdar, “Nanostructured Cu and Cu@Cu(2)O core shell catalysts for hydrogen generation from ammonia-borane,” Phys. Chem. Chem. Phys. 10(38), 5870–5874 (2008).
    [Crossref] [PubMed]
  14. G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
    [Crossref]
  15. L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55(4), 403–409 (2007).
    [Crossref]
  16. P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22(1), 47–52 (2004).
    [Crossref] [PubMed]
  17. Z. Jian, Z. Jun-Wu, and L. Jian-Jun, “Location-dependent local field enhancement along the surface of the metal-dielectric core-shell nanostructure,” Plasmonics 5(3), 311–318 (2010).
    [Crossref]
  18. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
    [Crossref]
  19. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. Appl. Phys. 39(23), 5037–5042 (2006).
    [Crossref]
  20. S. D. Hudson and G. Chumanov, “Surface enhanced Raman scattering and resonance elastic scattering from capped single Ag nanoparticles,” J. Phys. Chem. C 112(50), 19866–19871 (2008).
    [Crossref]
  21. J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59(11), 1413–1416 (2005).
    [Crossref]
  22. N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. At. Mol. Opt. Phys. 19, 395–402 (2002).
  23. Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
    [Crossref] [PubMed]
  24. L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066601 (2003).
    [Crossref] [PubMed]
  25. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  26. Q. Zhang, Y. N. Tan, J. Xie, and J. Y. Lee, “Colloidal synthesis of plasmonic metallic nanoparticles,” Plasmonics 4(1), 9–22 (2009).
    [Crossref]
  27. D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films, 1st edition (Wiley-Interscience, 1994).
  28. R. Eason, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (John Wiley & Sons, 2007).
  29. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [Crossref]
  30. J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett. 78(19), 2949–2951 (2001).
    [Crossref]
  31. D. Perez and L. J. Lewis, “Ablation of solids under femtosecond laser pulses,” Phys. Rev. Lett. 89(25), 255504 (2002).
    [Crossref] [PubMed]
  32. D. Perez and L. J. Lewis, “Molecular-dynamics study of ablation of solids under femtosecond laser pulses,” Phys. Rev. B 67(18), 184102 (2003).
    [Crossref]
  33. L. V. Zhigilei, “Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 76(3), 339–350 (2003).
    [Crossref]
  34. S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
    [Crossref]
  35. J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. Appl. Phys. 40(22), 7069–7076 (2007).
    [Crossref]
  36. S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. Appl. Phys. 40(2), 331–340 (2007).
    [Crossref]
  37. O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
    [Crossref]
  38. S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69(14), 144119 (2004).
    [Crossref]
  39. S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98(4), 044907 (2005).
    [Crossref]
  40. R. Teghil, L. D’Alessio, A. De Bonis, A. Galasso, P. Villani, and A. Santagata, “Femtosecond pulsed laser ablation and deposition of titanium carbide,” Thin Solid Films 515(4), 1411–1418 (2006).
    [Crossref]
  41. B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
    [Crossref]
  42. S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, C. Campana, and X. Wang, “Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum,” Appl. Surf. Sci. 254(4), 1012–1016 (2007).
    [Crossref]
  43. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
    [Crossref]
  44. T. W. Trelenberg, L. N. Dinh, C. K. Saw, B. C. Stuart, and M. Balooch, “Femtosecond pulsed laser ablation of GaAs,” Appl. Surf. Sci. 221(1-4), 364–369 (2004).
    [Crossref]
  45. Y. Zhang, R. E. Russo, and S. S. Mao, “Femtosecond laser assisted growth of ZnO nanowires,” Appl. Phys. Lett. 87(13), 133115 (2005).
    [Crossref]
  46. M. Okoshi, K. Higashikawa, and M. Hanabusa, “Wavelength dependence of femtosecond pulsed laser deposition of zinc oxide films,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1287–1288 (2001).
    [Crossref]
  47. X. L. Tong, D. S. Jiang, Y. Li, Z. M. Liu, and M. Z. Luo, “The influence of the silicon substrate temperature on structural and optical properties of thin-film cadmium sulfide formed with femtosecond laser deposition,” Phys. B Condens. Matter 382, 105–109 (2006).
  48. M. Sanz, M. Walczak, R. de Nalda, M. Oujja, J. F. Marco, J. Rodriguez, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured TiO2 films,” Appl. Surf. Sci. 255(10), 5206–5210 (2009).
    [Crossref]
  49. M. Sanz, R. de Nalda, J. F. Marco, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured CdS films,” J. Phys. Chem. C 114(11), 4864–4868 (2010).
    [Crossref]
  50. F. Gámez, A. Plaza-Reyes, P. Hurtado, E. Guillén, J. A. Anta, B. Martínez-Haya, S. Pérez, M. Sanz, M. Castillejo, J. G. Izquierdo, and L. Bañares, “Nanoparticle TiO2 films prepared by pulsed laser deposition: Laser desorption and cationization of model adsorbates,” J. Phys. Chem. C 114(41), 17409–17415 (2010).
    [Crossref]
  51. S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, and G. Račiukaitis, “Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow,” Appl. Phys. Lett. 91(8), 083113 (2007).
    [Crossref]
  52. T. Tsuji, T. Kakita, and M. Tsuji, “Preparation of nano-size particles of silver with femtosecond laser ablation in water,” Appl. Surf. Sci. 206(1-4), 314–320 (2003).
    [Crossref]
  53. Y. Herbani, T. Nakamura, and S. Sato, “Synthesis of near-monodispersed Au-Ag nanoalloys by high intensity laser irradiation of metal ions in hexane,” J. Phys. Chem. C 115(44), 21592–21598 (2011).
    [Crossref]
  54. A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, “Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins,” J. Phys. Chem. B 107(19), 4527–4531 (2003).
    [Crossref]
  55. J.-P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: Influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
    [Crossref]
  56. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).
  57. A. Richter and J. Sturm, “Dielectric and optical properties of C60 material studied by ellipsometry and quantitative IR and UV/VIS spectroscopy,” Appl. Phys., A Mater. Sci. Process. 61(2), 163–170 (1995).
    [Crossref]

2011 (1)

Y. Herbani, T. Nakamura, and S. Sato, “Synthesis of near-monodispersed Au-Ag nanoalloys by high intensity laser irradiation of metal ions in hexane,” J. Phys. Chem. C 115(44), 21592–21598 (2011).
[Crossref]

2010 (5)

M. Sanz, R. de Nalda, J. F. Marco, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured CdS films,” J. Phys. Chem. C 114(11), 4864–4868 (2010).
[Crossref]

F. Gámez, A. Plaza-Reyes, P. Hurtado, E. Guillén, J. A. Anta, B. Martínez-Haya, S. Pérez, M. Sanz, M. Castillejo, J. G. Izquierdo, and L. Bañares, “Nanoparticle TiO2 films prepared by pulsed laser deposition: Laser desorption and cationization of model adsorbates,” J. Phys. Chem. C 114(41), 17409–17415 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: A case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett. 1, 686–695 (2010).

Z. Jian, Z. Jun-Wu, and L. Jian-Jun, “Location-dependent local field enhancement along the surface of the metal-dielectric core-shell nanostructure,” Plasmonics 5(3), 311–318 (2010).
[Crossref]

2009 (5)

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113(49), 20896–20902 (2009).
[Crossref]

T. Ghodselahi, M. A. Vesaghi, and A. Shafiekhani, “Study of surface plasmon resonance of Cu@Cu2O core-shell nanoparticles by Mie theory,” J. Phys. Appl. Phys. 42(1), 015308 (2009).
[Crossref]

Q. Zhang, Y. N. Tan, J. Xie, and J. Y. Lee, “Colloidal synthesis of plasmonic metallic nanoparticles,” Plasmonics 4(1), 9–22 (2009).
[Crossref]

M. Sanz, M. Walczak, R. de Nalda, M. Oujja, J. F. Marco, J. Rodriguez, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured TiO2 films,” Appl. Surf. Sci. 255(10), 5206–5210 (2009).
[Crossref]

2008 (2)

S. B. Kalidindi, U. Sanyal, and B. R. Jagirdar, “Nanostructured Cu and Cu@Cu(2)O core shell catalysts for hydrogen generation from ammonia-borane,” Phys. Chem. Chem. Phys. 10(38), 5870–5874 (2008).
[Crossref] [PubMed]

S. D. Hudson and G. Chumanov, “Surface enhanced Raman scattering and resonance elastic scattering from capped single Ag nanoparticles,” J. Phys. Chem. C 112(50), 19866–19871 (2008).
[Crossref]

2007 (8)

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[Crossref] [PubMed]

L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55(4), 403–409 (2007).
[Crossref]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. Appl. Phys. 40(22), 7069–7076 (2007).
[Crossref]

S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. Appl. Phys. 40(2), 331–340 (2007).
[Crossref]

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, C. Campana, and X. Wang, “Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum,” Appl. Surf. Sci. 254(4), 1012–1016 (2007).
[Crossref]

S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, and G. Račiukaitis, “Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow,” Appl. Phys. Lett. 91(8), 083113 (2007).
[Crossref]

2006 (5)

R. Teghil, L. D’Alessio, A. De Bonis, A. Galasso, P. Villani, and A. Santagata, “Femtosecond pulsed laser ablation and deposition of titanium carbide,” Thin Solid Films 515(4), 1411–1418 (2006).
[Crossref]

X. L. Tong, D. S. Jiang, Y. Li, Z. M. Liu, and M. Z. Luo, “The influence of the silicon substrate temperature on structural and optical properties of thin-film cadmium sulfide formed with femtosecond laser deposition,” Phys. B Condens. Matter 382, 105–109 (2006).

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. Appl. Phys. 39(23), 5037–5042 (2006).
[Crossref]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

2005 (6)

Y. Lei and W.-K. Chim, “Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence,” J. Am. Chem. Soc. 127(5), 1487–1492 (2005).
[Crossref] [PubMed]

J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59(11), 1413–1416 (2005).
[Crossref]

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98(4), 044907 (2005).
[Crossref]

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[Crossref]

Y. Zhang, R. E. Russo, and S. S. Mao, “Femtosecond laser assisted growth of ZnO nanowires,” Appl. Phys. Lett. 87(13), 133115 (2005).
[Crossref]

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: Influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

2004 (4)

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69(14), 144119 (2004).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

T. W. Trelenberg, L. N. Dinh, C. K. Saw, B. C. Stuart, and M. Balooch, “Femtosecond pulsed laser ablation of GaAs,” Appl. Surf. Sci. 221(1-4), 364–369 (2004).
[Crossref]

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22(1), 47–52 (2004).
[Crossref] [PubMed]

2003 (8)

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066601 (2003).
[Crossref] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

D. Perez and L. J. Lewis, “Molecular-dynamics study of ablation of solids under femtosecond laser pulses,” Phys. Rev. B 67(18), 184102 (2003).
[Crossref]

L. V. Zhigilei, “Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 76(3), 339–350 (2003).
[Crossref]

A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, “Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins,” J. Phys. Chem. B 107(19), 4527–4531 (2003).
[Crossref]

T. Tsuji, T. Kakita, and M. Tsuji, “Preparation of nano-size particles of silver with femtosecond laser ablation in water,” Appl. Surf. Sci. 206(1-4), 314–320 (2003).
[Crossref]

2002 (2)

D. Perez and L. J. Lewis, “Ablation of solids under femtosecond laser pulses,” Phys. Rev. Lett. 89(25), 255504 (2002).
[Crossref] [PubMed]

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. At. Mol. Opt. Phys. 19, 395–402 (2002).

2001 (2)

J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett. 78(19), 2949–2951 (2001).
[Crossref]

M. Okoshi, K. Higashikawa, and M. Hanabusa, “Wavelength dependence of femtosecond pulsed laser deposition of zinc oxide films,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1287–1288 (2001).
[Crossref]

1998 (1)

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci. 33(9), 2235–2249 (1998).
[Crossref]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

1995 (1)

A. Richter and J. Sturm, “Dielectric and optical properties of C60 material studied by ellipsometry and quantitative IR and UV/VIS spectroscopy,” Appl. Phys., A Mater. Sci. Process. 61(2), 163–170 (1995).
[Crossref]

Ai, Z.

Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113(49), 20896–20902 (2009).
[Crossref]

Albert, O.

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

Alivisatos, P.

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22(1), 47–52 (2004).
[Crossref] [PubMed]

Amoruso, S.

S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. Appl. Phys. 40(2), 331–340 (2007).
[Crossref]

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, C. Campana, and X. Wang, “Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum,” Appl. Surf. Sci. 254(4), 1012–1016 (2007).
[Crossref]

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98(4), 044907 (2005).
[Crossref]

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Andreazza, C.

J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett. 78(19), 2949–2951 (2001).
[Crossref]

Anta, J. A.

F. Gámez, A. Plaza-Reyes, P. Hurtado, E. Guillén, J. A. Anta, B. Martínez-Haya, S. Pérez, M. Sanz, M. Castillejo, J. G. Izquierdo, and L. Bañares, “Nanoparticle TiO2 films prepared by pulsed laser deposition: Laser desorption and cationization of model adsorbates,” J. Phys. Chem. C 114(41), 17409–17415 (2010).
[Crossref]

Atanasov, P. A.

S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. Appl. Phys. 40(2), 331–340 (2007).
[Crossref]

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98(4), 044907 (2005).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Ausanio, G.

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, C. Campana, and X. Wang, “Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum,” Appl. Surf. Sci. 254(4), 1012–1016 (2007).
[Crossref]

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Baffou, G.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

Balooch, M.

T. W. Trelenberg, L. N. Dinh, C. K. Saw, B. C. Stuart, and M. Balooch, “Femtosecond pulsed laser ablation of GaAs,” Appl. Surf. Sci. 221(1-4), 364–369 (2004).
[Crossref]

Bañares, L.

F. Gámez, A. Plaza-Reyes, P. Hurtado, E. Guillén, J. A. Anta, B. Martínez-Haya, S. Pérez, M. Sanz, M. Castillejo, J. G. Izquierdo, and L. Bañares, “Nanoparticle TiO2 films prepared by pulsed laser deposition: Laser desorption and cationization of model adsorbates,” J. Phys. Chem. C 114(41), 17409–17415 (2010).
[Crossref]

M. Sanz, R. de Nalda, J. F. Marco, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured CdS films,” J. Phys. Chem. C 114(11), 4864–4868 (2010).
[Crossref]

M. Sanz, M. Walczak, R. de Nalda, M. Oujja, J. F. Marco, J. Rodriguez, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured TiO2 films,” Appl. Surf. Sci. 255(10), 5206–5210 (2009).
[Crossref]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Barcikowski, S.

S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, and G. Račiukaitis, “Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow,” Appl. Phys. Lett. 91(8), 083113 (2007).
[Crossref]

Barone, A. C.

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, C. Campana, and X. Wang, “Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum,” Appl. Surf. Sci. 254(4), 1012–1016 (2007).
[Crossref]

Benzerga, R.

J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. Appl. Phys. 40(22), 7069–7076 (2007).
[Crossref]

Boneberg, J.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

Boulmer-Leborgne, C.

J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. Appl. Phys. 40(22), 7069–7076 (2007).
[Crossref]

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

Brikas, M.

S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, and G. Račiukaitis, “Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow,” Appl. Phys. Lett. 91(8), 083113 (2007).
[Crossref]

Bruzzese, R.

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, C. Campana, and X. Wang, “Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum,” Appl. Surf. Sci. 254(4), 1012–1016 (2007).
[Crossref]

S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. Appl. Phys. 40(2), 331–340 (2007).
[Crossref]

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[Crossref]

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98(4), 044907 (2005).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Campana, C.

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, C. Campana, and X. Wang, “Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum,” Appl. Surf. Sci. 254(4), 1012–1016 (2007).
[Crossref]

Castillejo, M.

F. Gámez, A. Plaza-Reyes, P. Hurtado, E. Guillén, J. A. Anta, B. Martínez-Haya, S. Pérez, M. Sanz, M. Castillejo, J. G. Izquierdo, and L. Bañares, “Nanoparticle TiO2 films prepared by pulsed laser deposition: Laser desorption and cationization of model adsorbates,” J. Phys. Chem. C 114(41), 17409–17415 (2010).
[Crossref]

M. Sanz, R. de Nalda, J. F. Marco, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured CdS films,” J. Phys. Chem. C 114(11), 4864–4868 (2010).
[Crossref]

M. Sanz, M. Walczak, R. de Nalda, M. Oujja, J. F. Marco, J. Rodriguez, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured TiO2 films,” Appl. Surf. Sci. 255(10), 5206–5210 (2009).
[Crossref]

Chakraborty, P.

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci. 33(9), 2235–2249 (1998).
[Crossref]

Chamarro, M.

J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett. 78(19), 2949–2951 (2001).
[Crossref]

Charron, E.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. At. Mol. Opt. Phys. 19, 395–402 (2002).

Che, Y.

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

Chen, Y.

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

Chichkov, B.

S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, and G. Račiukaitis, “Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow,” Appl. Phys. Lett. 91(8), 083113 (2007).
[Crossref]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Chim, W.-K.

Y. Lei and W.-K. Chim, “Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence,” J. Am. Chem. Soc. 127(5), 1487–1492 (2005).
[Crossref] [PubMed]

Chumanov, G.

S. D. Hudson and G. Chumanov, “Surface enhanced Raman scattering and resonance elastic scattering from capped single Ag nanoparticles,” J. Phys. Chem. C 112(50), 19866–19871 (2008).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

D’Alessio, L.

R. Teghil, L. D’Alessio, A. De Bonis, A. Galasso, P. Villani, and A. Santagata, “Femtosecond pulsed laser ablation and deposition of titanium carbide,” Thin Solid Films 515(4), 1411–1418 (2006).
[Crossref]

De Bonis, A.

R. Teghil, L. D’Alessio, A. De Bonis, A. Galasso, P. Villani, and A. Santagata, “Femtosecond pulsed laser ablation and deposition of titanium carbide,” Thin Solid Films 515(4), 1411–1418 (2006).
[Crossref]

de Nalda, R.

M. Sanz, R. de Nalda, J. F. Marco, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured CdS films,” J. Phys. Chem. C 114(11), 4864–4868 (2010).
[Crossref]

M. Sanz, M. Walczak, R. de Nalda, M. Oujja, J. F. Marco, J. Rodriguez, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured TiO2 films,” Appl. Surf. Sci. 255(10), 5206–5210 (2009).
[Crossref]

Debrus, S.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. At. Mol. Opt. Phys. 19, 395–402 (2002).

Dinh, L. N.

T. W. Trelenberg, L. N. Dinh, C. K. Saw, B. C. Stuart, and M. Balooch, “Femtosecond pulsed laser ablation of GaAs,” Appl. Surf. Sci. 221(1-4), 364–369 (2004).
[Crossref]

Eliaz, N.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69(14), 144119 (2004).
[Crossref]

Eliezer, S.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69(14), 144119 (2004).
[Crossref]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Etchepare, J.

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

Fisher, D.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69(14), 144119 (2004).
[Crossref]

Fraenkel, M.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69(14), 144119 (2004).
[Crossref]

Galasso, A.

R. Teghil, L. D’Alessio, A. De Bonis, A. Galasso, P. Villani, and A. Santagata, “Femtosecond pulsed laser ablation and deposition of titanium carbide,” Thin Solid Films 515(4), 1411–1418 (2006).
[Crossref]

Gámez, F.

F. Gámez, A. Plaza-Reyes, P. Hurtado, E. Guillén, J. A. Anta, B. Martínez-Haya, S. Pérez, M. Sanz, M. Castillejo, J. G. Izquierdo, and L. Bañares, “Nanoparticle TiO2 films prepared by pulsed laser deposition: Laser desorption and cationization of model adsorbates,” J. Phys. Chem. C 114(41), 17409–17415 (2010).
[Crossref]

Gao, L.

L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55(4), 403–409 (2007).
[Crossref]

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066601 (2003).
[Crossref] [PubMed]

Ghodselahi, T.

T. Ghodselahi, M. A. Vesaghi, and A. Shafiekhani, “Study of surface plasmon resonance of Cu@Cu2O core-shell nanoparticles by Mie theory,” J. Phys. Appl. Phys. 42(1), 015308 (2009).
[Crossref]

Girard, C.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

Glinec, Y.

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

Gong, H.-M.

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[Crossref] [PubMed]

Gouzman, I.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69(14), 144119 (2004).
[Crossref]

Grossman, E.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69(14), 144119 (2004).
[Crossref]

Gu, L.

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066601 (2003).
[Crossref] [PubMed]

Guillén, E.

F. Gámez, A. Plaza-Reyes, P. Hurtado, E. Guillén, J. A. Anta, B. Martínez-Haya, S. Pérez, M. Sanz, M. Castillejo, J. G. Izquierdo, and L. Bañares, “Nanoparticle TiO2 films prepared by pulsed laser deposition: Laser desorption and cationization of model adsorbates,” J. Phys. Chem. C 114(41), 17409–17415 (2010).
[Crossref]

Guo, D.-L.

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[Crossref] [PubMed]

Halas, N. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Han, J.-B.

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[Crossref] [PubMed]

Han, Y.-B.

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[Crossref] [PubMed]

Hanabusa, M.

M. Okoshi, K. Higashikawa, and M. Hanabusa, “Wavelength dependence of femtosecond pulsed laser deposition of zinc oxide films,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1287–1288 (2001).
[Crossref]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Henis, Z.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69(14), 144119 (2004).
[Crossref]

Herbani, Y.

Y. Herbani, T. Nakamura, and S. Sato, “Synthesis of near-monodispersed Au-Ag nanoalloys by high intensity laser irradiation of metal ions in hexane,” J. Phys. Chem. C 115(44), 21592–21598 (2011).
[Crossref]

Higashikawa, K.

M. Okoshi, K. Higashikawa, and M. Hanabusa, “Wavelength dependence of femtosecond pulsed laser deposition of zinc oxide films,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1287–1288 (2001).
[Crossref]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Ho, W.

Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113(49), 20896–20902 (2009).
[Crossref]

Horovitz, Y.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69(14), 144119 (2004).
[Crossref]

Hu, Z.

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Hudson, S. D.

S. D. Hudson and G. Chumanov, “Surface enhanced Raman scattering and resonance elastic scattering from capped single Ag nanoparticles,” J. Phys. Chem. C 112(50), 19866–19871 (2008).
[Crossref]

Hurtado, P.

F. Gámez, A. Plaza-Reyes, P. Hurtado, E. Guillén, J. A. Anta, B. Martínez-Haya, S. Pérez, M. Sanz, M. Castillejo, J. G. Izquierdo, and L. Bañares, “Nanoparticle TiO2 films prepared by pulsed laser deposition: Laser desorption and cationization of model adsorbates,” J. Phys. Chem. C 114(41), 17409–17415 (2010).
[Crossref]

Iannotti, V.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Izquierdo, J. G.

M. Sanz, R. de Nalda, J. F. Marco, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured CdS films,” J. Phys. Chem. C 114(11), 4864–4868 (2010).
[Crossref]

F. Gámez, A. Plaza-Reyes, P. Hurtado, E. Guillén, J. A. Anta, B. Martínez-Haya, S. Pérez, M. Sanz, M. Castillejo, J. G. Izquierdo, and L. Bañares, “Nanoparticle TiO2 films prepared by pulsed laser deposition: Laser desorption and cationization of model adsorbates,” J. Phys. Chem. C 114(41), 17409–17415 (2010).
[Crossref]

M. Sanz, M. Walczak, R. de Nalda, M. Oujja, J. F. Marco, J. Rodriguez, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured TiO2 films,” Appl. Surf. Sci. 255(10), 5206–5210 (2009).
[Crossref]

Jagirdar, B. R.

S. B. Kalidindi, U. Sanyal, and B. R. Jagirdar, “Nanostructured Cu and Cu@Cu(2)O core shell catalysts for hydrogen generation from ammonia-borane,” Phys. Chem. Chem. Phys. 10(38), 5870–5874 (2008).
[Crossref] [PubMed]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Jian, Z.

Z. Jian, Z. Jun-Wu, and L. Jian-Jun, “Location-dependent local field enhancement along the surface of the metal-dielectric core-shell nanostructure,” Plasmonics 5(3), 311–318 (2010).
[Crossref]

Jiang, D. S.

X. L. Tong, D. S. Jiang, Y. Li, Z. M. Liu, and M. Z. Luo, “The influence of the silicon substrate temperature on structural and optical properties of thin-film cadmium sulfide formed with femtosecond laser deposition,” Phys. B Condens. Matter 382, 105–109 (2006).

Jian-Jun, L.

Z. Jian, Z. Jun-Wu, and L. Jian-Jun, “Location-dependent local field enhancement along the surface of the metal-dielectric core-shell nanostructure,” Plasmonics 5(3), 311–318 (2010).
[Crossref]

Jun-Wu, Z.

Z. Jian, Z. Jun-Wu, and L. Jian-Jun, “Location-dependent local field enhancement along the surface of the metal-dielectric core-shell nanostructure,” Plasmonics 5(3), 311–318 (2010).
[Crossref]

Kabashin, A. V.

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: Influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, “Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins,” J. Phys. Chem. B 107(19), 4527–4531 (2003).
[Crossref]

Kakita, T.

T. Tsuji, T. Kakita, and M. Tsuji, “Preparation of nano-size particles of silver with femtosecond laser ablation in water,” Appl. Surf. Sci. 206(1-4), 314–320 (2003).
[Crossref]

Kalidindi, S. B.

S. B. Kalidindi, U. Sanyal, and B. R. Jagirdar, “Nanostructured Cu and Cu@Cu(2)O core shell catalysts for hydrogen generation from ammonia-borane,” Phys. Chem. Chem. Phys. 10(38), 5870–5874 (2008).
[Crossref] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kingston, C.

A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, “Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins,” J. Phys. Chem. B 107(19), 4527–4531 (2003).
[Crossref]

Kotaidis, V.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

Lanotte, L.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Lee, J. Y.

Q. Zhang, Y. N. Tan, J. Xie, and J. Y. Lee, “Colloidal synthesis of plasmonic metallic nanoparticles,” Plasmonics 4(1), 9–22 (2009).
[Crossref]

Lee, S.

Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113(49), 20896–20902 (2009).
[Crossref]

Lei, Y.

Y. Lei and W.-K. Chim, “Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence,” J. Am. Chem. Soc. 127(5), 1487–1492 (2005).
[Crossref] [PubMed]

Lereah, Y.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69(14), 144119 (2004).
[Crossref]

Lewis, L. J.

D. Perez and L. J. Lewis, “Molecular-dynamics study of ablation of solids under femtosecond laser pulses,” Phys. Rev. B 67(18), 184102 (2003).
[Crossref]

D. Perez and L. J. Lewis, “Ablation of solids under femtosecond laser pulses,” Phys. Rev. Lett. 89(25), 255504 (2002).
[Crossref] [PubMed]

Li, Y.

X. L. Tong, D. S. Jiang, Y. Li, Z. M. Liu, and M. Z. Luo, “The influence of the silicon substrate temperature on structural and optical properties of thin-film cadmium sulfide formed with femtosecond laser deposition,” Phys. B Condens. Matter 382, 105–109 (2006).

Li, Z.

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066601 (2003).
[Crossref] [PubMed]

Liu, B.

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

Liu, Z. M.

X. L. Tong, D. S. Jiang, Y. Li, Z. M. Liu, and M. Z. Luo, “The influence of the silicon substrate temperature on structural and optical properties of thin-film cadmium sulfide formed with femtosecond laser deposition,” Phys. B Condens. Matter 382, 105–109 (2006).

Lorenc, M.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

Loulergue, J. C.

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

Luo, M. Z.

X. L. Tong, D. S. Jiang, Y. Li, Z. M. Liu, and M. Z. Luo, “The influence of the silicon substrate temperature on structural and optical properties of thin-film cadmium sulfide formed with femtosecond laser deposition,” Phys. B Condens. Matter 382, 105–109 (2006).

Luong, J. H. T.

A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, “Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins,” J. Phys. Chem. B 107(19), 4527–4531 (2003).
[Crossref]

Maman, S.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69(14), 144119 (2004).
[Crossref]

Mao, S. S.

Y. Zhang, R. E. Russo, and S. S. Mao, “Femtosecond laser assisted growth of ZnO nanowires,” Appl. Phys. Lett. 87(13), 133115 (2005).
[Crossref]

Marco, J. F.

M. Sanz, R. de Nalda, J. F. Marco, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured CdS films,” J. Phys. Chem. C 114(11), 4864–4868 (2010).
[Crossref]

M. Sanz, M. Walczak, R. de Nalda, M. Oujja, J. F. Marco, J. Rodriguez, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured TiO2 films,” Appl. Surf. Sci. 255(10), 5206–5210 (2009).
[Crossref]

Martínez-Haya, B.

F. Gámez, A. Plaza-Reyes, P. Hurtado, E. Guillén, J. A. Anta, B. Martínez-Haya, S. Pérez, M. Sanz, M. Castillejo, J. G. Izquierdo, and L. Bañares, “Nanoparticle TiO2 films prepared by pulsed laser deposition: Laser desorption and cationization of model adsorbates,” J. Phys. Chem. C 114(41), 17409–17415 (2010).
[Crossref]

Menéndez-Manjón, A.

S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, and G. Račiukaitis, “Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow,” Appl. Phys. Lett. 91(8), 083113 (2007).
[Crossref]

Meunier, M.

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: Influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, “Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins,” J. Phys. Chem. B 107(19), 4527–4531 (2003).
[Crossref]

Millon, E.

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett. 78(19), 2949–2951 (2001).
[Crossref]

Miyanishi, T.

N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. Appl. Phys. 39(23), 5037–5042 (2006).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Morcrette, M.

J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett. 78(19), 2949–2951 (2001).
[Crossref]

Nakamura, T.

Y. Herbani, T. Nakamura, and S. Sato, “Synthesis of near-monodispersed Au-Ag nanoalloys by high intensity laser irradiation of metal ions in hexane,” J. Phys. Chem. C 115(44), 21592–21598 (2011).
[Crossref]

Nedialkov, N. N.

S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. Appl. Phys. 40(2), 331–340 (2007).
[Crossref]

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98(4), 044907 (2005).
[Crossref]

Nedyalkov, N.

N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. Appl. Phys. 39(23), 5037–5042 (2006).
[Crossref]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Obara, M.

N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. Appl. Phys. 39(23), 5037–5042 (2006).
[Crossref]

Okoshi, M.

M. Okoshi, K. Higashikawa, and M. Hanabusa, “Wavelength dependence of femtosecond pulsed laser deposition of zinc oxide films,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1287–1288 (2001).
[Crossref]

Oujja, M.

M. Sanz, M. Walczak, R. de Nalda, M. Oujja, J. F. Marco, J. Rodriguez, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured TiO2 films,” Appl. Surf. Sci. 255(10), 5206–5210 (2009).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Palpant, B.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. At. Mol. Opt. Phys. 19, 395–402 (2002).

Pan, X.

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

Pecker, S.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69(14), 144119 (2004).
[Crossref]

Perez, D.

D. Perez and L. J. Lewis, “Molecular-dynamics study of ablation of solids under femtosecond laser pulses,” Phys. Rev. B 67(18), 184102 (2003).
[Crossref]

D. Perez and L. J. Lewis, “Ablation of solids under femtosecond laser pulses,” Phys. Rev. Lett. 89(25), 255504 (2002).
[Crossref] [PubMed]

Pérez, S.

F. Gámez, A. Plaza-Reyes, P. Hurtado, E. Guillén, J. A. Anta, B. Martínez-Haya, S. Pérez, M. Sanz, M. Castillejo, J. G. Izquierdo, and L. Bañares, “Nanoparticle TiO2 films prepared by pulsed laser deposition: Laser desorption and cationization of model adsorbates,” J. Phys. Chem. C 114(41), 17409–17415 (2010).
[Crossref]

Perrière, J.

J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. Appl. Phys. 40(22), 7069–7076 (2007).
[Crossref]

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett. 78(19), 2949–2951 (2001).
[Crossref]

Pinçon, N.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. At. Mol. Opt. Phys. 19, 395–402 (2002).

Plaza-Reyes, A.

F. Gámez, A. Plaza-Reyes, P. Hurtado, E. Guillén, J. A. Anta, B. Martínez-Haya, S. Pérez, M. Sanz, M. Castillejo, J. G. Izquierdo, and L. Bañares, “Nanoparticle TiO2 films prepared by pulsed laser deposition: Laser desorption and cationization of model adsorbates,” J. Phys. Chem. C 114(41), 17409–17415 (2010).
[Crossref]

Plech, A.

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Prot, D.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. At. Mol. Opt. Phys. 19, 395–402 (2002).

Quidant, R.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

Raciukaitis, G.

S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, and G. Račiukaitis, “Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow,” Appl. Phys. Lett. 91(8), 083113 (2007).
[Crossref]

Richter, A.

A. Richter and J. Sturm, “Dielectric and optical properties of C60 material studied by ellipsometry and quantitative IR and UV/VIS spectroscopy,” Appl. Phys., A Mater. Sci. Process. 61(2), 163–170 (1995).
[Crossref]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Rodriguez, J.

M. Sanz, M. Walczak, R. de Nalda, M. Oujja, J. F. Marco, J. Rodriguez, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured TiO2 films,” Appl. Surf. Sci. 255(10), 5206–5210 (2009).
[Crossref]

Roger, S.

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

Russo, R. E.

Y. Zhang, R. E. Russo, and S. S. Mao, “Femtosecond laser assisted growth of ZnO nanowires,” Appl. Phys. Lett. 87(13), 133115 (2005).
[Crossref]

Sacher, E.

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: Influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

Sakai, T.

N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. Appl. Phys. 39(23), 5037–5042 (2006).
[Crossref]

Santagata, A.

R. Teghil, L. D’Alessio, A. De Bonis, A. Galasso, P. Villani, and A. Santagata, “Femtosecond pulsed laser ablation and deposition of titanium carbide,” Thin Solid Films 515(4), 1411–1418 (2006).
[Crossref]

Sanyal, U.

S. B. Kalidindi, U. Sanyal, and B. R. Jagirdar, “Nanostructured Cu and Cu@Cu(2)O core shell catalysts for hydrogen generation from ammonia-borane,” Phys. Chem. Chem. Phys. 10(38), 5870–5874 (2008).
[Crossref] [PubMed]

Sanz, M.

F. Gámez, A. Plaza-Reyes, P. Hurtado, E. Guillén, J. A. Anta, B. Martínez-Haya, S. Pérez, M. Sanz, M. Castillejo, J. G. Izquierdo, and L. Bañares, “Nanoparticle TiO2 films prepared by pulsed laser deposition: Laser desorption and cationization of model adsorbates,” J. Phys. Chem. C 114(41), 17409–17415 (2010).
[Crossref]

M. Sanz, R. de Nalda, J. F. Marco, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured CdS films,” J. Phys. Chem. C 114(11), 4864–4868 (2010).
[Crossref]

M. Sanz, M. Walczak, R. de Nalda, M. Oujja, J. F. Marco, J. Rodriguez, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured TiO2 films,” Appl. Surf. Sci. 255(10), 5206–5210 (2009).
[Crossref]

Sato, S.

Y. Herbani, T. Nakamura, and S. Sato, “Synthesis of near-monodispersed Au-Ag nanoalloys by high intensity laser irradiation of metal ions in hexane,” J. Phys. Chem. C 115(44), 21592–21598 (2011).
[Crossref]

Saw, C. K.

T. W. Trelenberg, L. N. Dinh, C. K. Saw, B. C. Stuart, and M. Balooch, “Femtosecond pulsed laser ablation of GaAs,” Appl. Surf. Sci. 221(1-4), 364–369 (2004).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Shafiekhani, A.

T. Ghodselahi, M. A. Vesaghi, and A. Shafiekhani, “Study of surface plasmon resonance of Cu@Cu2O core-shell nanoparticles by Mie theory,” J. Phys. Appl. Phys. 42(1), 015308 (2009).
[Crossref]

Spinelli, N.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Stuart, B. C.

T. W. Trelenberg, L. N. Dinh, C. K. Saw, B. C. Stuart, and M. Balooch, “Femtosecond pulsed laser ablation of GaAs,” Appl. Surf. Sci. 221(1-4), 364–369 (2004).
[Crossref]

Sturm, J.

A. Richter and J. Sturm, “Dielectric and optical properties of C60 material studied by ellipsometry and quantitative IR and UV/VIS spectroscopy,” Appl. Phys., A Mater. Sci. Process. 61(2), 163–170 (1995).
[Crossref]

Sylvestre, J.-P.

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: Influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

Tan, Y. N.

Q. Zhang, Y. N. Tan, J. Xie, and J. Y. Lee, “Colloidal synthesis of plasmonic metallic nanoparticles,” Plasmonics 4(1), 9–22 (2009).
[Crossref]

Teghil, R.

R. Teghil, L. D’Alessio, A. De Bonis, A. Galasso, P. Villani, and A. Santagata, “Femtosecond pulsed laser ablation and deposition of titanium carbide,” Thin Solid Films 515(4), 1411–1418 (2006).
[Crossref]

Tong, X. L.

X. L. Tong, D. S. Jiang, Y. Li, Z. M. Liu, and M. Z. Luo, “The influence of the silicon substrate temperature on structural and optical properties of thin-film cadmium sulfide formed with femtosecond laser deposition,” Phys. B Condens. Matter 382, 105–109 (2006).

Trelenberg, T. W.

T. W. Trelenberg, L. N. Dinh, C. K. Saw, B. C. Stuart, and M. Balooch, “Femtosecond pulsed laser ablation of GaAs,” Appl. Surf. Sci. 221(1-4), 364–369 (2004).
[Crossref]

Tricot, S.

J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. Appl. Phys. 40(22), 7069–7076 (2007).
[Crossref]

Tsuji, M.

T. Tsuji, T. Kakita, and M. Tsuji, “Preparation of nano-size particles of silver with femtosecond laser ablation in water,” Appl. Surf. Sci. 206(1-4), 314–320 (2003).
[Crossref]

Tsuji, T.

T. Tsuji, T. Kakita, and M. Tsuji, “Preparation of nano-size particles of silver with femtosecond laser ablation in water,” Appl. Surf. Sci. 206(1-4), 314–320 (2003).
[Crossref]

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Velotta, R.

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Vesaghi, M. A.

T. Ghodselahi, M. A. Vesaghi, and A. Shafiekhani, “Study of surface plasmon resonance of Cu@Cu2O core-shell nanoparticles by Mie theory,” J. Phys. Appl. Phys. 42(1), 015308 (2009).
[Crossref]

Villani, P.

R. Teghil, L. D’Alessio, A. De Bonis, A. Galasso, P. Villani, and A. Santagata, “Femtosecond pulsed laser ablation and deposition of titanium carbide,” Thin Solid Films 515(4), 1411–1418 (2006).
[Crossref]

Vitiello, M.

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98(4), 044907 (2005).
[Crossref]

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Walczak, M.

M. Sanz, M. Walczak, R. de Nalda, M. Oujja, J. F. Marco, J. Rodriguez, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured TiO2 films,” Appl. Surf. Sci. 255(10), 5206–5210 (2009).
[Crossref]

Wang, Q.-Q.

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[Crossref] [PubMed]

Wang, X.

S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. Appl. Phys. 40(2), 331–340 (2007).
[Crossref]

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, C. Campana, and X. Wang, “Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum,” Appl. Surf. Sci. 254(4), 1012–1016 (2007).
[Crossref]

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Xiao, S.

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[Crossref] [PubMed]

Xie, J.

Q. Zhang, Y. N. Tan, J. Xie, and J. Y. Lee, “Colloidal synthesis of plasmonic metallic nanoparticles,” Plasmonics 4(1), 9–22 (2009).
[Crossref]

Yu, X. P.

L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55(4), 403–409 (2007).
[Crossref]

Zhang, J. Z.

J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: A case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett. 1, 686–695 (2010).

Zhang, L.

Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113(49), 20896–20902 (2009).
[Crossref]

Zhang, Q.

Q. Zhang, Y. N. Tan, J. Xie, and J. Y. Lee, “Colloidal synthesis of plasmonic metallic nanoparticles,” Plasmonics 4(1), 9–22 (2009).
[Crossref]

Zhang, Y.

Y. Zhang, R. E. Russo, and S. S. Mao, “Femtosecond laser assisted growth of ZnO nanowires,” Appl. Phys. Lett. 87(13), 133115 (2005).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhigilei, L. V.

L. V. Zhigilei, “Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 76(3), 339–350 (2003).
[Crossref]

Zhu, J.

J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59(11), 1413–1416 (2005).
[Crossref]

Zou, X.-W.

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: Influence of morphology,” Appl. Phys. Lett. 94(15), 153109 (2009).
[Crossref]

J. Perrière, E. Millon, M. Chamarro, M. Morcrette, and C. Andreazza, “Formation of GaAs nanocrystals by laser ablation,” Appl. Phys. Lett. 78(19), 2949–2951 (2001).
[Crossref]

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, and L. Lanotte, “Generation of silicon nanoparticles via femtosecond laser ablation in vacuum,” Appl. Phys. Lett. 84(22), 4502–4504 (2004).
[Crossref]

Y. Zhang, R. E. Russo, and S. S. Mao, “Femtosecond laser assisted growth of ZnO nanowires,” Appl. Phys. Lett. 87(13), 133115 (2005).
[Crossref]

S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, and G. Račiukaitis, “Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow,” Appl. Phys. Lett. 91(8), 083113 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (5)

J.-P. Sylvestre, A. V. Kabashin, E. Sacher, and M. Meunier, “Femtosecond laser ablation of gold in water: Influence of the laser-produced plasma on the nanoparticle size distribution,” Appl. Phys., A Mater. Sci. Process. 80(4), 753–758 (2005).
[Crossref]

O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Millon, “Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers,” Appl. Phys., A Mater. Sci. Process. 76(3), 319–323 (2003).
[Crossref]

A. Richter and J. Sturm, “Dielectric and optical properties of C60 material studied by ellipsometry and quantitative IR and UV/VIS spectroscopy,” Appl. Phys., A Mater. Sci. Process. 61(2), 163–170 (1995).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

L. V. Zhigilei, “Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation,” Appl. Phys., A Mater. Sci. Process. 76(3), 339–350 (2003).
[Crossref]

Appl. Surf. Sci. (4)

T. W. Trelenberg, L. N. Dinh, C. K. Saw, B. C. Stuart, and M. Balooch, “Femtosecond pulsed laser ablation of GaAs,” Appl. Surf. Sci. 221(1-4), 364–369 (2004).
[Crossref]

S. Amoruso, G. Ausanio, A. C. Barone, R. Bruzzese, C. Campana, and X. Wang, “Nanoparticles size modifications during femtosecond laser ablation of nickel in vacuum,” Appl. Surf. Sci. 254(4), 1012–1016 (2007).
[Crossref]

T. Tsuji, T. Kakita, and M. Tsuji, “Preparation of nano-size particles of silver with femtosecond laser ablation in water,” Appl. Surf. Sci. 206(1-4), 314–320 (2003).
[Crossref]

M. Sanz, M. Walczak, R. de Nalda, M. Oujja, J. F. Marco, J. Rodriguez, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured TiO2 films,” Appl. Surf. Sci. 255(10), 5206–5210 (2009).
[Crossref]

Eur. Phys. J. At. Mol. Opt. Phys. (1)

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. At. Mol. Opt. Phys. 19, 395–402 (2002).

Eur. Phys. J. B (1)

L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55(4), 403–409 (2007).
[Crossref]

J. Am. Chem. Soc. (1)

Y. Lei and W.-K. Chim, “Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence,” J. Am. Chem. Soc. 127(5), 1487–1492 (2005).
[Crossref] [PubMed]

J. Appl. Phys. (1)

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98(4), 044907 (2005).
[Crossref]

J. Mater. Sci. (1)

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci. 33(9), 2235–2249 (1998).
[Crossref]

J. Phys. Appl. Phys. (4)

T. Ghodselahi, M. A. Vesaghi, and A. Shafiekhani, “Study of surface plasmon resonance of Cu@Cu2O core-shell nanoparticles by Mie theory,” J. Phys. Appl. Phys. 42(1), 015308 (2009).
[Crossref]

N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. Appl. Phys. 39(23), 5037–5042 (2006).
[Crossref]

J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. Appl. Phys. 40(22), 7069–7076 (2007).
[Crossref]

S. Amoruso, R. Bruzzese, X. Wang, N. N. Nedialkov, and P. A. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. Appl. Phys. 40(2), 331–340 (2007).
[Crossref]

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, “Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins,” J. Phys. Chem. B 107(19), 4527–4531 (2003).
[Crossref]

J. Phys. Chem. C (5)

M. Sanz, R. de Nalda, J. F. Marco, J. G. Izquierdo, L. Bañares, and M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured CdS films,” J. Phys. Chem. C 114(11), 4864–4868 (2010).
[Crossref]

F. Gámez, A. Plaza-Reyes, P. Hurtado, E. Guillén, J. A. Anta, B. Martínez-Haya, S. Pérez, M. Sanz, M. Castillejo, J. G. Izquierdo, and L. Bañares, “Nanoparticle TiO2 films prepared by pulsed laser deposition: Laser desorption and cationization of model adsorbates,” J. Phys. Chem. C 114(41), 17409–17415 (2010).
[Crossref]

Y. Herbani, T. Nakamura, and S. Sato, “Synthesis of near-monodispersed Au-Ag nanoalloys by high intensity laser irradiation of metal ions in hexane,” J. Phys. Chem. C 115(44), 21592–21598 (2011).
[Crossref]

S. D. Hudson and G. Chumanov, “Surface enhanced Raman scattering and resonance elastic scattering from capped single Ag nanoparticles,” J. Phys. Chem. C 112(50), 19866–19871 (2008).
[Crossref]

Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113(49), 20896–20902 (2009).
[Crossref]

J. Phys. Chem. Lett. (1)

J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: A case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett. 1, 686–695 (2010).

Jpn. J. Appl. Phys. (1)

M. Okoshi, K. Higashikawa, and M. Hanabusa, “Wavelength dependence of femtosecond pulsed laser deposition of zinc oxide films,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1287–1288 (2001).
[Crossref]

Mater. Lett. (1)

J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59(11), 1413–1416 (2005).
[Crossref]

Nano Lett. (1)

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22(1), 47–52 (2004).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Phys. (1)

A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006).
[Crossref]

Phys. B Condens. Matter (1)

X. L. Tong, D. S. Jiang, Y. Li, Z. M. Liu, and M. Z. Luo, “The influence of the silicon substrate temperature on structural and optical properties of thin-film cadmium sulfide formed with femtosecond laser deposition,” Phys. B Condens. Matter 382, 105–109 (2006).

Phys. Chem. Chem. Phys. (1)

S. B. Kalidindi, U. Sanyal, and B. R. Jagirdar, “Nanostructured Cu and Cu@Cu(2)O core shell catalysts for hydrogen generation from ammonia-borane,” Phys. Chem. Chem. Phys. 10(38), 5870–5874 (2008).
[Crossref] [PubMed]

Phys. Rev. B (3)

S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005).
[Crossref]

D. Perez and L. J. Lewis, “Molecular-dynamics study of ablation of solids under femtosecond laser pulses,” Phys. Rev. B 67(18), 184102 (2003).
[Crossref]

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69(14), 144119 (2004).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066601 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. Perez and L. J. Lewis, “Ablation of solids under femtosecond laser pulses,” Phys. Rev. Lett. 89(25), 255504 (2002).
[Crossref] [PubMed]

Plasmonics (3)

Q. Zhang, Y. N. Tan, J. Xie, and J. Y. Lee, “Colloidal synthesis of plasmonic metallic nanoparticles,” Plasmonics 4(1), 9–22 (2009).
[Crossref]

Z. Jian, Z. Jun-Wu, and L. Jian-Jun, “Location-dependent local field enhancement along the surface of the metal-dielectric core-shell nanostructure,” Plasmonics 5(3), 311–318 (2010).
[Crossref]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2(3), 107–118 (2007).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Thin Solid Films (1)

R. Teghil, L. D’Alessio, A. De Bonis, A. Galasso, P. Villani, and A. Santagata, “Femtosecond pulsed laser ablation and deposition of titanium carbide,” Thin Solid Films 515(4), 1411–1418 (2006).
[Crossref]

Other (6)

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1977).

S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, 1st ed. (Springer, 1995).

V. M. Shalaev, ed., Optical Properties of Nanostructured Random Media, Topics in Applied Physics (Springer-Verlag, 2002).

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films, 1st edition (Wiley-Interscience, 1994).

R. Eason, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (John Wiley & Sons, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic representation of the multilayer model used to analyze the reflectance data measured in situ. In this model we considered m layers between a semi-infinite transparent ambient and a semi-infinite substrate.
Fig. 2
Fig. 2 SEM micrographs, illustrating typical sizes and morphologies of silver nanoparticles, obtained from samples with deposition times of (a) one and (b) five minutes with 45 fs laser pulses centered at 804 nm and 1 kHz repetition rate.
Fig. 3
Fig. 3 Size histogram of the nanoparticles produced by fs laser ablation, obtained from samples with deposition times of (a) one and (b) five minutes. Insets represent the typical optical spectra obtained from both types of samples.
Fig. 4
Fig. 4 (a) Evolution of the thickness of the silica layer, ΔdSiO2, for the different laser fluences used, and (b) deposition rate as a function of laser fluence. An ablation threshold of around 200 mW is deduced from the linear extrapolation of the data in (b). Thickness of the silica layer was obtained from in situ reflectance measurements.
Fig. 5
Fig. 5 SEM micrograph, showing the transversal section of a multilayer structure (Ag/SiO2/Ag/SiO2/Ag/SiO2) deposited on a silica substrate. The upper denser layer is an aluminum layer deposited to prevent charge accumulation in the SEM.
Fig. 6
Fig. 6 Typical optical responses obtained from a silver monolayer grown during one (black line) and five (red line) minutes and an Ag/SiO2/Ag/SiO2/Ag/SiO2 multilayer, as-deposited (green line) and after one hour of annealing at 600 °C (blue line).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I jk = 1 t jk [ 1 r jk r jk 1 ]
r jk TE = q j q k q j + q k
t jk TE = 2 q j q j + q k
r jk TM = ñ k 2 q j ñ j 2 q k ñ k 2 q j + ñ j 2 q k
t jk TM = 2 ñ k 2 ñ k 2 q j ñ k 2 q j + ñ j 2 q k
L j =[ e i ξ j d j 0 0 e i ξ j d j ]
[ E 0 + E 0 ]=S[ E m+1 + E m+1 ]
S=[ S 11 S 12 S 21 S 22 ] =( l=1 m I (l1)l L l ) I m(m+1)
r= E 0 E 0 + = S 21 S 11
t= E m+1 E 0 + = 1 S 11
r= r 01 + r 12 e 2i β 1 1+ r 01 r 12 e 2i β 1
β 1 =2π d 1 λ ñ 1 2 n 0 2 sin ϕ 0

Metrics