Abstract

We report on the optical extinction properties of the clearest ultrapure water measured so far within the wavelength interval between 181 nm and 340 nm (TOC level: 2.6 ± 0.7 ppb, specific conductivity: 0.055 µS cm−1). Our results extend the state-of-the-art extinction spectrum of ultrapure water by 15 nm towards shorter wavelengths and accurately resolve the ultraviolet extinction edge, allowing redefining a straightforward fitting function of the ultraviolet extinction of water (Urbach constant: 0.337 at 25 °C). The spectral distribution of our calculated Rayleigh scattering contribution shows a significantly better agreement with the experimental data than those reported in literature. The extinction temperature coefficient was determined in the range from 10 to 30 °C as a function of wavelength, showing significantly smaller values than those previously reported and being useful for noninvasively determining the temperature of ultrapure water samples.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. I. Quickenden and J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys.72(8), 4416–4428 (1980).
    [CrossRef]
  2. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-microm wavelength region,” Appl. Opt.12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  3. D. J. David Segelstein, The complex refractive index of water, master thesis, University of Missouri-Kansas City (1981). https://mospace.umsystem.edu/xmlui/handle/10355/11599 .
  4. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt.20(2), 177–184 (1981).
    [CrossRef] [PubMed]
  5. W. M. Irvine and J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus8(1–3), 324–360 (1968).
    [CrossRef]
  6. S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: A revised compilation,” J. Geophys. Res.113(D14), D14220 (2008).
    [CrossRef]
  7. T. W. Marin, K. Takahashi, and D. M. Bartels, “Temperature and density dependence of the light and heavy water ultraviolet absorption edge,” J. Chem. Phys.125(10), 104314 (2006).
    [CrossRef] [PubMed]
  8. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev.92(5), 1324 (1953).
    [CrossRef]
  9. R. Onaka and T. Takahashi, “Vacuum UV absorption spectra of liquid water and ice,” J. Phys. Soc. Jpn.24(3), 548–550 (1968).
    [CrossRef]
  10. F. Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys.64(4), 1549–1554 (1976).
  11. D. P. Stevenson, “On the monomer concentration in liquid water,” J. Phys. Chem.69(7), 2145–2152 (1965).
    [CrossRef]
  12. J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficients of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res.19(3), 559–567 (1963).
    [CrossRef] [PubMed]
  13. J. Barrett and A. L. Mansell, “Ultra-violet absorption spectra of the molecules H2O, HDO and D2O,” Nature187(4732), 138 (1960).
    [CrossRef]
  14. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt.36(33), 8710–8723 (1997).
    [CrossRef] [PubMed]
  15. F. M. Sogandares and E. S. Fry, “Absorption spectrum (340-640 nm) of pure water. I. Photothermal measurements,” Appl. Opt.36(33), 8699–8709 (1997).
    [CrossRef] [PubMed]
  16. M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water - Theoretical and Experimental Foundations (Academic Press, 2007), Chap. 2.
  17. E. S. Fry, G. W. Kattawar, and R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt.31(12), 2055–2065 (1992).
    [CrossRef] [PubMed]
  18. L. J. Heidt and A. M. Johnson, “Optical study of the hydrates of molecular oxygen in water,” J. Am. Chem. Soc.79(21), 5587–5593 (1957).
    [CrossRef]
  19. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205–1209 (1965).
    [CrossRef]
  20. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt.46(18), 3811–3820 (2007).
    [CrossRef] [PubMed]
  21. K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia31(4), 315–316 (1994).
    [CrossRef]
  22. M. Halman and I. Platzner, “Tempeature dependence of absorption of liquid water in the far-ultraviolet region,” J. Phys. Chem.70(2), 580–581 (1966).
    [CrossRef]
  23. A. Bernas, C. Ferradini, and J.-P. Jay-Gerin, “On the electronic structure of liquid water: facts and reflections,” Chem. Phys.222(2-3), 151–160 (1997).
    [CrossRef]
  24. L. Weiss, A. Tazibt, A. Tidu, and M. Aillerie, “Water density and polarizability deduced from the refractive index determined by interferometric measurements up to 250 MPa,” J. Chem. Phys.136(12), 124201 (2012).
    [CrossRef] [PubMed]
  25. C. V. Raman and K. Seshagiri Rao, “On the molecular scattering and extinction of light in liquids and the determination of the Avogadro constant,” Philos. Mag. S. 6(45), 625-640 (1923).
  26. A. Bray, R. Chapman, and T. Plakhotnik, “Accurate measurements of the Raman scattering coefficient and the depolarization ratio in liquid water,” Appl. Opt.52(11), 2503–2510 (2013).
    [CrossRef] [PubMed]
  27. J. P. Kratohvil, M. Kerker, and L. E. Oppenheimer, “Light scattering by pure water,” J. Chem. Phys.43(3), 914 (1965).
    [CrossRef]
  28. G. S. Kell, “Density, thermal expansity, and compressibility of liquid water from 0° to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data20(1), 97–105 (1975).
    [CrossRef]
  29. H. H. Perkampus, UV-VIS Atlas of Organic Compounds, 2nd ed. (Wiley-VCH, 1992).
  30. W. S. Pegau and J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr.38(1), 188–192 (1993).
    [CrossRef]
  31. J. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
    [CrossRef]
  32. V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A105(39), 8916–8921 (2001).
    [CrossRef]
  33. L. Kröckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Res.45(3), 1423–1431 (2011).
    [CrossRef] [PubMed]

2013

2012

L. Weiss, A. Tazibt, A. Tidu, and M. Aillerie, “Water density and polarizability deduced from the refractive index determined by interferometric measurements up to 250 MPa,” J. Chem. Phys.136(12), 124201 (2012).
[CrossRef] [PubMed]

2011

L. Kröckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Res.45(3), 1423–1431 (2011).
[CrossRef] [PubMed]

2008

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: A revised compilation,” J. Geophys. Res.113(D14), D14220 (2008).
[CrossRef]

2007

2006

T. W. Marin, K. Takahashi, and D. M. Bartels, “Temperature and density dependence of the light and heavy water ultraviolet absorption edge,” J. Chem. Phys.125(10), 104314 (2006).
[CrossRef] [PubMed]

2001

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A105(39), 8916–8921 (2001).
[CrossRef]

1997

1994

K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia31(4), 315–316 (1994).
[CrossRef]

J. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
[CrossRef]

1993

W. S. Pegau and J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr.38(1), 188–192 (1993).
[CrossRef]

1992

1981

1980

T. I. Quickenden and J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys.72(8), 4416–4428 (1980).
[CrossRef]

1976

F. Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys.64(4), 1549–1554 (1976).

1975

G. S. Kell, “Density, thermal expansity, and compressibility of liquid water from 0° to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data20(1), 97–105 (1975).
[CrossRef]

1973

1968

W. M. Irvine and J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus8(1–3), 324–360 (1968).
[CrossRef]

R. Onaka and T. Takahashi, “Vacuum UV absorption spectra of liquid water and ice,” J. Phys. Soc. Jpn.24(3), 548–550 (1968).
[CrossRef]

1966

M. Halman and I. Platzner, “Tempeature dependence of absorption of liquid water in the far-ultraviolet region,” J. Phys. Chem.70(2), 580–581 (1966).
[CrossRef]

1965

J. P. Kratohvil, M. Kerker, and L. E. Oppenheimer, “Light scattering by pure water,” J. Chem. Phys.43(3), 914 (1965).
[CrossRef]

I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205–1209 (1965).
[CrossRef]

D. P. Stevenson, “On the monomer concentration in liquid water,” J. Phys. Chem.69(7), 2145–2152 (1965).
[CrossRef]

1963

J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficients of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res.19(3), 559–567 (1963).
[CrossRef] [PubMed]

1960

J. Barrett and A. L. Mansell, “Ultra-violet absorption spectra of the molecules H2O, HDO and D2O,” Nature187(4732), 138 (1960).
[CrossRef]

1957

L. J. Heidt and A. M. Johnson, “Optical study of the hydrates of molecular oxygen in water,” J. Am. Chem. Soc.79(21), 5587–5593 (1957).
[CrossRef]

1953

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev.92(5), 1324 (1953).
[CrossRef]

Aillerie, M.

L. Weiss, A. Tazibt, A. Tidu, and M. Aillerie, “Water density and polarizability deduced from the refractive index determined by interferometric measurements up to 250 MPa,” J. Chem. Phys.136(12), 124201 (2012).
[CrossRef] [PubMed]

Baker, K. S.

Barrett, J.

J. Barrett and A. L. Mansell, “Ultra-violet absorption spectra of the molecules H2O, HDO and D2O,” Nature187(4732), 138 (1960).
[CrossRef]

Bartels, D. M.

T. W. Marin, K. Takahashi, and D. M. Bartels, “Temperature and density dependence of the light and heavy water ultraviolet absorption edge,” J. Chem. Phys.125(10), 104314 (2006).
[CrossRef] [PubMed]

Bernas, A.

A. Bernas, C. Ferradini, and J.-P. Jay-Gerin, “On the electronic structure of liquid water: facts and reflections,” Chem. Phys.222(2-3), 151–160 (1997).
[CrossRef]

Birch, K. P.

K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia31(4), 315–316 (1994).
[CrossRef]

Brandt, R. E.

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: A revised compilation,” J. Geophys. Res.113(D14), D14220 (2008).
[CrossRef]

Bray, A.

Buiteveld, J.

J. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Chapman, R.

Daimon, M.

Donze, M.

J. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Downs, M. J.

K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia31(4), 315–316 (1994).
[CrossRef]

Ferradini, C.

A. Bernas, C. Ferradini, and J.-P. Jay-Gerin, “On the electronic structure of liquid water: facts and reflections,” Chem. Phys.222(2-3), 151–160 (1997).
[CrossRef]

Fry, E. S.

Gordon, S.

J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficients of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res.19(3), 559–567 (1963).
[CrossRef] [PubMed]

Hakvoort, J. H. M.

J. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Hale, G. M.

Halman, M.

M. Halman and I. Platzner, “Tempeature dependence of absorption of liquid water in the far-ultraviolet region,” J. Phys. Chem.70(2), 580–581 (1966).
[CrossRef]

Heidt, L. J.

L. J. Heidt and A. M. Johnson, “Optical study of the hydrates of molecular oxygen in water,” J. Am. Chem. Soc.79(21), 5587–5593 (1957).
[CrossRef]

Hillenius, S.

F. Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys.64(4), 1549–1554 (1976).

Irvin, J. A.

T. I. Quickenden and J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys.72(8), 4416–4428 (1980).
[CrossRef]

Irvine, W. M.

W. M. Irvine and J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus8(1–3), 324–360 (1968).
[CrossRef]

Jay-Gerin, J.-P.

A. Bernas, C. Ferradini, and J.-P. Jay-Gerin, “On the electronic structure of liquid water: facts and reflections,” Chem. Phys.222(2-3), 151–160 (1997).
[CrossRef]

Johnson, A. M.

L. J. Heidt and A. M. Johnson, “Optical study of the hydrates of molecular oxygen in water,” J. Am. Chem. Soc.79(21), 5587–5593 (1957).
[CrossRef]

Kattawar, G. W.

Kell, G. S.

G. S. Kell, “Density, thermal expansity, and compressibility of liquid water from 0° to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data20(1), 97–105 (1975).
[CrossRef]

Kerker, M.

J. P. Kratohvil, M. Kerker, and L. E. Oppenheimer, “Light scattering by pure water,” J. Chem. Phys.43(3), 914 (1965).
[CrossRef]

Kratohvil, J. P.

J. P. Kratohvil, M. Kerker, and L. E. Oppenheimer, “Light scattering by pure water,” J. Chem. Phys.43(3), 914 (1965).
[CrossRef]

Kröckel, L.

L. Kröckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Res.45(3), 1423–1431 (2011).
[CrossRef] [PubMed]

Langford, V. S.

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A105(39), 8916–8921 (2001).
[CrossRef]

Lehmann, H.

L. Kröckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Res.45(3), 1423–1431 (2011).
[CrossRef] [PubMed]

Malitson, I. H.

Mansell, A. L.

J. Barrett and A. L. Mansell, “Ultra-violet absorption spectra of the molecules H2O, HDO and D2O,” Nature187(4732), 138 (1960).
[CrossRef]

Marin, T. W.

T. W. Marin, K. Takahashi, and D. M. Bartels, “Temperature and density dependence of the light and heavy water ultraviolet absorption edge,” J. Chem. Phys.125(10), 104314 (2006).
[CrossRef] [PubMed]

Masumura, A.

McKinley, A. J.

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A105(39), 8916–8921 (2001).
[CrossRef]

Meaburn, G. M. A. C.

J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficients of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res.19(3), 559–567 (1963).
[CrossRef] [PubMed]

Onaka, R.

R. Onaka and T. Takahashi, “Vacuum UV absorption spectra of liquid water and ice,” J. Phys. Soc. Jpn.24(3), 548–550 (1968).
[CrossRef]

Oppenheimer, L. E.

J. P. Kratohvil, M. Kerker, and L. E. Oppenheimer, “Light scattering by pure water,” J. Chem. Phys.43(3), 914 (1965).
[CrossRef]

Pegau, W. S.

W. S. Pegau and J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr.38(1), 188–192 (1993).
[CrossRef]

Plakhotnik, T.

Platzner, I.

M. Halman and I. Platzner, “Tempeature dependence of absorption of liquid water in the far-ultraviolet region,” J. Phys. Chem.70(2), 580–581 (1966).
[CrossRef]

Pollack, J. B.

W. M. Irvine and J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus8(1–3), 324–360 (1968).
[CrossRef]

Pope, R. M.

Querry, M. R.

Quickenden, T. I.

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A105(39), 8916–8921 (2001).
[CrossRef]

T. I. Quickenden and J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys.72(8), 4416–4428 (1980).
[CrossRef]

Raman, C. V.

C. V. Raman and K. Seshagiri Rao, “On the molecular scattering and extinction of light in liquids and the determination of the Avogadro constant,” Philos. Mag. S. 6(45), 625-640 (1923).

Schwotzer, G.

L. Kröckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Res.45(3), 1423–1431 (2011).
[CrossRef] [PubMed]

Seshagiri Rao, K.

C. V. Raman and K. Seshagiri Rao, “On the molecular scattering and extinction of light in liquids and the determination of the Avogadro constant,” Philos. Mag. S. 6(45), 625-640 (1923).

Smith, R. C.

Sogandares, F. M.

Stevenson, D. P.

D. P. Stevenson, “On the monomer concentration in liquid water,” J. Phys. Chem.69(7), 2145–2152 (1965).
[CrossRef]

Takahashi, K.

T. W. Marin, K. Takahashi, and D. M. Bartels, “Temperature and density dependence of the light and heavy water ultraviolet absorption edge,” J. Chem. Phys.125(10), 104314 (2006).
[CrossRef] [PubMed]

Takahashi, T.

R. Onaka and T. Takahashi, “Vacuum UV absorption spectra of liquid water and ice,” J. Phys. Soc. Jpn.24(3), 548–550 (1968).
[CrossRef]

Tazibt, A.

L. Weiss, A. Tazibt, A. Tidu, and M. Aillerie, “Water density and polarizability deduced from the refractive index determined by interferometric measurements up to 250 MPa,” J. Chem. Phys.136(12), 124201 (2012).
[CrossRef] [PubMed]

Tidu, A.

L. Weiss, A. Tazibt, A. Tidu, and M. Aillerie, “Water density and polarizability deduced from the refractive index determined by interferometric measurements up to 250 MPa,” J. Chem. Phys.136(12), 124201 (2012).
[CrossRef] [PubMed]

Urbach, F.

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev.92(5), 1324 (1953).
[CrossRef]

Varma, S. P.

F. Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys.64(4), 1549–1554 (1976).

Warren, S. G.

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: A revised compilation,” J. Geophys. Res.113(D14), D14220 (2008).
[CrossRef]

Weeks, J. L.

J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficients of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res.19(3), 559–567 (1963).
[CrossRef] [PubMed]

Weiss, L.

L. Weiss, A. Tazibt, A. Tidu, and M. Aillerie, “Water density and polarizability deduced from the refractive index determined by interferometric measurements up to 250 MPa,” J. Chem. Phys.136(12), 124201 (2012).
[CrossRef] [PubMed]

Wieduwilt, T.

L. Kröckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Res.45(3), 1423–1431 (2011).
[CrossRef] [PubMed]

Williams, F.

F. Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys.64(4), 1549–1554 (1976).

Zaneveld, J. R. V.

W. S. Pegau and J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr.38(1), 188–192 (1993).
[CrossRef]

Appl. Opt.

Chem. Phys.

A. Bernas, C. Ferradini, and J.-P. Jay-Gerin, “On the electronic structure of liquid water: facts and reflections,” Chem. Phys.222(2-3), 151–160 (1997).
[CrossRef]

Icarus

W. M. Irvine and J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus8(1–3), 324–360 (1968).
[CrossRef]

J. Am. Chem. Soc.

L. J. Heidt and A. M. Johnson, “Optical study of the hydrates of molecular oxygen in water,” J. Am. Chem. Soc.79(21), 5587–5593 (1957).
[CrossRef]

J. Chem. Eng. Data

G. S. Kell, “Density, thermal expansity, and compressibility of liquid water from 0° to 150°C: correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale,” J. Chem. Eng. Data20(1), 97–105 (1975).
[CrossRef]

J. Chem. Phys.

J. P. Kratohvil, M. Kerker, and L. E. Oppenheimer, “Light scattering by pure water,” J. Chem. Phys.43(3), 914 (1965).
[CrossRef]

L. Weiss, A. Tazibt, A. Tidu, and M. Aillerie, “Water density and polarizability deduced from the refractive index determined by interferometric measurements up to 250 MPa,” J. Chem. Phys.136(12), 124201 (2012).
[CrossRef] [PubMed]

F. Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys.64(4), 1549–1554 (1976).

T. W. Marin, K. Takahashi, and D. M. Bartels, “Temperature and density dependence of the light and heavy water ultraviolet absorption edge,” J. Chem. Phys.125(10), 104314 (2006).
[CrossRef] [PubMed]

T. I. Quickenden and J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys.72(8), 4416–4428 (1980).
[CrossRef]

J. Geophys. Res.

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: A revised compilation,” J. Geophys. Res.113(D14), D14220 (2008).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Chem.

D. P. Stevenson, “On the monomer concentration in liquid water,” J. Phys. Chem.69(7), 2145–2152 (1965).
[CrossRef]

M. Halman and I. Platzner, “Tempeature dependence of absorption of liquid water in the far-ultraviolet region,” J. Phys. Chem.70(2), 580–581 (1966).
[CrossRef]

J. Phys. Chem. A

V. S. Langford, A. J. McKinley, and T. I. Quickenden, “Temperature dependence of the visible-near-infrared absorption spectrum of liquid water,” J. Phys. Chem. A105(39), 8916–8921 (2001).
[CrossRef]

J. Phys. Soc. Jpn.

R. Onaka and T. Takahashi, “Vacuum UV absorption spectra of liquid water and ice,” J. Phys. Soc. Jpn.24(3), 548–550 (1968).
[CrossRef]

Limnol. Oceanogr.

W. S. Pegau and J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr.38(1), 188–192 (1993).
[CrossRef]

Metrologia

K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia31(4), 315–316 (1994).
[CrossRef]

Nature

J. Barrett and A. L. Mansell, “Ultra-violet absorption spectra of the molecules H2O, HDO and D2O,” Nature187(4732), 138 (1960).
[CrossRef]

Phys. Rev.

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev.92(5), 1324 (1953).
[CrossRef]

Proc. SPIE

J. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE2258, 174–183 (1994).
[CrossRef]

Radiat. Res.

J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficients of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res.19(3), 559–567 (1963).
[CrossRef] [PubMed]

Water Res.

L. Kröckel, G. Schwotzer, H. Lehmann, and T. Wieduwilt, “Spectral optical monitoring of nitrate in inland and seawater with miniaturized optical components,” Water Res.45(3), 1423–1431 (2011).
[CrossRef] [PubMed]

Other

C. V. Raman and K. Seshagiri Rao, “On the molecular scattering and extinction of light in liquids and the determination of the Avogadro constant,” Philos. Mag. S. 6(45), 625-640 (1923).

H. H. Perkampus, UV-VIS Atlas of Organic Compounds, 2nd ed. (Wiley-VCH, 1992).

M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water - Theoretical and Experimental Foundations (Academic Press, 2007), Chap. 2.

D. J. David Segelstein, The complex refractive index of water, master thesis, University of Missouri-Kansas City (1981). https://mospace.umsystem.edu/xmlui/handle/10355/11599 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured extinction spectra of ultrapure water of the present work (green) and of Quickenden and Irvin (blue) [1]. The dashed grey vertical line corresponds to the shortest wavelength measured in [1] (the greenish bar indicates the region not measured by Quickenden and Irvin). The dashed curves (3) and (4) represent the nonlinear fitting function and the calculated Rayleigh scattering contribution, respectively. Inset: Published ultraviolet extinction spectra of ultrapure and pure water. The numbers in the square brackets next to the curves relate to the corresponding reference. The red curve is the Rayleigh scattering contribution calculated by Quickenden and Irvin [1].

Fig. 2
Fig. 2

Spectral distribution of the decadic extinction temperature coefficients (dE/dT) of ultrapure water; (temperature range: 10 to 30 °C; red solid curve: mean values from the experiment; black error bars refer to three standard deviations). The red dashed line results from interpolating our curve towards shorter wavelengths allowing to compare our findings with those of Weeks et al [12].

Fig. 3
Fig. 3

Comparison of the material dispersion of ultrapure water given by Masamura [20] (measurement) and by Weiss [24] (calculation) at environmental pressure. Inset: Comparison of pressure derivatives dn/dp at 25 °C. The blue curve represents the values of Quickenden [1] calculated by an extrapolation based on the material parameters in the visible spectral domain reported by Kratohvil et al. [27]. Qickenden and Irvin [1] used four values from [27] for dn/dp at 365, 405, 436, and 546 nm and linearly extrapolated these values down to 190 nm.

Fig. 4
Fig. 4

Dependency of water extinction on temperature at three predefined wavelengths (red: 187 nm, blue: 190nm, green: 195 nm). The points represent the measurement data and the solid lines are linear fits.

Tables (3)

Tables Icon

Table 1 Overview on published UV extinction studies on pure liquid water

Tables Icon

Table 2 Comparison of the extinction values between 181 and 187 nm of our measurements and those reported in [11]

Tables Icon

Table 3 Fitting coefficients of the UV extinction of ultrapure water using Eq. (2)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E= log 10 ( ( 1 R AS ) 2 ( 1 R WS ) 2 10 εcd )+ log 10 ( ( 1 R W S ) 2 ( 1 R AS ) 2 )
E= B 1 exp( B 2 λ )+ B 3 exp( B 4 λ )
E= E 0 exp[ σ( hυh υ 0 ) k b T ]
E RS = 32 π 3 k b T 3 λ 4 β T ln(10) n 2 ( n p ) T 2 ( 6+3ρ 63ρ )
E( T )=E( T 0 )( 1+β( T T 0 ) )
β= 1 E( T ) dE( T ) dT | T= T 0

Metrics