Abstract

We utilize shape memory polymers as active mold inserts for the thermoforming of complex, hierarchical nano- and microstructured optical components with undercuts on large scales. Our approach combines nanoimprint/hot embossing and thermoforming with the unique features of shape memory polymers. As examples for this nano- and microthermo-forming process, we demonstrate the fabrication of hierarchical photonic structures inspired by the blue Morpho butterfly as well as diffractive optical elements with nm- and μm-size structures.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour26, 79–84 (1967).
  2. A. R. Parker, “515 million year of structural colors,” J. Opt. A: Pure Appl. Opt.2, R15–R28 (2000).
    [CrossRef]
  3. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424, 852–855 (2003).
    [CrossRef] [PubMed]
  4. R. A. Potyrailo, H. Ghiradella, A. Vertiatchick, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapor response,” Nature Photonics1, 123–128 (2007).
    [CrossRef]
  5. L. Biro and J. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser & Photon. Rev.5, 27–51 (2011).
    [CrossRef]
  6. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B273, 661–667 (2006).
    [CrossRef] [PubMed]
  7. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
    [CrossRef]
  8. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
    [CrossRef]
  9. A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nature Photonics6, 195–200 (2012).
    [CrossRef]
  10. S. J. Abbott and P. H. Gaskell, “Mass production of bio-inspired structured surfaces,” Proc. IMechE Vol. 221C221, 1181–1191 (2007).
  11. M. Worgull, Hot Embossing - Theory and Technology of Microreplication (William Andrew, 2009), 1st ed.
  12. E. Brousseau, S. Dimov, and D. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol.47, 161–180 (2010).
    [CrossRef]
  13. M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol. B30, 061802 (2012).
    [CrossRef]
  14. N. C. Lee, Understanding Blow Molding (Hanser-Gardner Publ., 2007), 2nd ed.
  15. M. Heilig, S. Giselbrecht, A. Guber, and M. Worgull, “Microthermoforming of nanostructured polymer films: a new bonding method for the integration of nanostructures in 3-dimensional cavities,” Microsys. Technol.16, 1221–1231 (2010).
    [CrossRef]
  16. M. Heilig, M. Schneider, H. Dinglreiter, and M. Worgull, “Technology of microthermoforming of complex three-dimensional parts with multiscale features,” Microsys. Technol.17, 593–600 (2011).
    [CrossRef]
  17. R. Truckenmueller, Z. Rummler, T. Schaller, and W. K. Schomburg, “Low-cost thermoforming of micro fluidic analysis chips,” J. Micromech. Microeng.12, 375 (2002).
    [CrossRef]
  18. S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmüller, K. Weibezahn, and A. Welle, “3d tissue culture substrates produced by microthermoforming of pre-processed polymer films,” Biomed. Microdevices8, 191–199 (2006).
    [CrossRef] [PubMed]
  19. A. Lendlein and R. Langer, “Biodegradable, elastic shape-memory polymers for potential biomedical applications,” Science296, 1673–1676 (2002).
    [CrossRef] [PubMed]
  20. C. Liu, H. Qin, and P. T. Mather, “Review of progress in shape-memory polymers,” J. Mat. Chem.17, 1543–1558 (2007).
    [CrossRef]
  21. T. Xie, “Tunable polymer multi-shape memory effect,” Nature464, 267–270 (2010).
    [CrossRef] [PubMed]
  22. M. Behl, M. Y. Razzaq, and A. Lendlein, “Multifunctional Shape-Memory Polymers,” Adv. Mater.22, 3388–3410 (2010).
    [CrossRef] [PubMed]
  23. H. Xu, C. Yu, S. Wang, V. Malyarchuk, T. Xie, and J. A. Rogers, “Deformable, Programmable, and Shape-Memorizing Micro-Optics,” Adv. Func. Mat.23, 3299–3306 (2013).
    [CrossRef]
  24. A. Espinha, M. C. Serrano, Á. Blanco, and C. López, “Thermoresponsive Shape-Memory Photonic Nanostructures,” Adv. Optical Mater. pp. 516–521 (2014).
    [CrossRef]
  25. E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA process),” Microelectron. Eng.4, 35–56 (1986).
    [CrossRef]
  26. L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19, 495–513 (2007).
    [CrossRef]
  27. H. Schift and A. Kristensen, Handbook of Nanotechnology (Springer Verlag, Berlin, 2010), chap. 9. Nanoimprint lithography - Patterning of Resists Using Molding, pp. 271–312, 3rd ed.
    [CrossRef]
  28. H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev.10, 63–73 (2003).
    [CrossRef]
  29. A. Waddie, M. Taghizadeh, J. Mohr, V. Piotter, C. Mehne, A. Stuck, E. Stijns, and H. Thienpont, Design, fabrication and replication of micro-optical components for educational purposes within the Network of Excellence in Micro-Optics (NEMO), SPIE Proceedings Vol. 6185, doi: (2006).
    [CrossRef]
  30. C. Stuart and Y. Chen, “Roll in and roll out: A path to high-throughput nanoimprint lithography,” ACS Nano3, 2062–2064 (2009).
    [CrossRef] [PubMed]

2013

H. Xu, C. Yu, S. Wang, V. Malyarchuk, T. Xie, and J. A. Rogers, “Deformable, Programmable, and Shape-Memorizing Micro-Optics,” Adv. Func. Mat.23, 3299–3306 (2013).
[CrossRef]

2012

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nature Photonics6, 195–200 (2012).
[CrossRef]

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol. B30, 061802 (2012).
[CrossRef]

2011

M. Heilig, M. Schneider, H. Dinglreiter, and M. Worgull, “Technology of microthermoforming of complex three-dimensional parts with multiscale features,” Microsys. Technol.17, 593–600 (2011).
[CrossRef]

L. Biro and J. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser & Photon. Rev.5, 27–51 (2011).
[CrossRef]

2010

M. Heilig, S. Giselbrecht, A. Guber, and M. Worgull, “Microthermoforming of nanostructured polymer films: a new bonding method for the integration of nanostructures in 3-dimensional cavities,” Microsys. Technol.16, 1221–1231 (2010).
[CrossRef]

E. Brousseau, S. Dimov, and D. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol.47, 161–180 (2010).
[CrossRef]

T. Xie, “Tunable polymer multi-shape memory effect,” Nature464, 267–270 (2010).
[CrossRef] [PubMed]

M. Behl, M. Y. Razzaq, and A. Lendlein, “Multifunctional Shape-Memory Polymers,” Adv. Mater.22, 3388–3410 (2010).
[CrossRef] [PubMed]

2009

C. Stuart and Y. Chen, “Roll in and roll out: A path to high-throughput nanoimprint lithography,” ACS Nano3, 2062–2064 (2009).
[CrossRef] [PubMed]

2007

C. Liu, H. Qin, and P. T. Mather, “Review of progress in shape-memory polymers,” J. Mat. Chem.17, 1543–1558 (2007).
[CrossRef]

L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19, 495–513 (2007).
[CrossRef]

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

S. J. Abbott and P. H. Gaskell, “Mass production of bio-inspired structured surfaces,” Proc. IMechE Vol. 221C221, 1181–1191 (2007).

R. A. Potyrailo, H. Ghiradella, A. Vertiatchick, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapor response,” Nature Photonics1, 123–128 (2007).
[CrossRef]

2006

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B273, 661–667 (2006).
[CrossRef] [PubMed]

S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmüller, K. Weibezahn, and A. Welle, “3d tissue culture substrates produced by microthermoforming of pre-processed polymer films,” Biomed. Microdevices8, 191–199 (2006).
[CrossRef] [PubMed]

2003

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424, 852–855 (2003).
[CrossRef] [PubMed]

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev.10, 63–73 (2003).
[CrossRef]

2002

A. Lendlein and R. Langer, “Biodegradable, elastic shape-memory polymers for potential biomedical applications,” Science296, 1673–1676 (2002).
[CrossRef] [PubMed]

R. Truckenmueller, Z. Rummler, T. Schaller, and W. K. Schomburg, “Low-cost thermoforming of micro fluidic analysis chips,” J. Micromech. Microeng.12, 375 (2002).
[CrossRef]

2000

A. R. Parker, “515 million year of structural colors,” J. Opt. A: Pure Appl. Opt.2, R15–R28 (2000).
[CrossRef]

1999

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

1986

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA process),” Microelectron. Eng.4, 35–56 (1986).
[CrossRef]

1967

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour26, 79–84 (1967).

Abbott, S. J.

S. J. Abbott and P. H. Gaskell, “Mass production of bio-inspired structured surfaces,” Proc. IMechE Vol. 221C221, 1181–1191 (2007).

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B273, 661–667 (2006).
[CrossRef] [PubMed]

Aryal, M.

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol. B30, 061802 (2012).
[CrossRef]

Becker, E. W.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA process),” Microelectron. Eng.4, 35–56 (1986).
[CrossRef]

Behl, M.

M. Behl, M. Y. Razzaq, and A. Lendlein, “Multifunctional Shape-Memory Polymers,” Adv. Mater.22, 3388–3410 (2010).
[CrossRef] [PubMed]

Bernhard, C. G.

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour26, 79–84 (1967).

Biro, L.

L. Biro and J. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser & Photon. Rev.5, 27–51 (2011).
[CrossRef]

Blanco, Á.

A. Espinha, M. C. Serrano, Á. Blanco, and C. López, “Thermoresponsive Shape-Memory Photonic Nanostructures,” Adv. Optical Mater. pp. 516–521 (2014).
[CrossRef]

Bläsi, B.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Brousseau, E.

E. Brousseau, S. Dimov, and D. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol.47, 161–180 (2010).
[CrossRef]

Chang, Y.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

Chattopadhyay, S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

Chen, K.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

Chen, L.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

Chen, Y.

C. Stuart and Y. Chen, “Roll in and roll out: A path to high-throughput nanoimprint lithography,” ACS Nano3, 2062–2064 (2009).
[CrossRef] [PubMed]

Cournoyer, J. R.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchick, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapor response,” Nature Photonics1, 123–128 (2007).
[CrossRef]

Deng, T.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nature Photonics6, 195–200 (2012).
[CrossRef]

Dimov, S.

E. Brousseau, S. Dimov, and D. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol.47, 161–180 (2010).
[CrossRef]

Dinglreiter, H.

M. Heilig, M. Schneider, H. Dinglreiter, and M. Worgull, “Technology of microthermoforming of complex three-dimensional parts with multiscale features,” Microsys. Technol.17, 593–600 (2011).
[CrossRef]

Döll, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Dovidenko, K.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchick, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapor response,” Nature Photonics1, 123–128 (2007).
[CrossRef]

Dreibholz, J.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Ehrfeld, W.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA process),” Microelectron. Eng.4, 35–56 (1986).
[CrossRef]

Espinha, A.

A. Espinha, M. C. Serrano, Á. Blanco, and C. López, “Thermoresponsive Shape-Memory Photonic Nanostructures,” Adv. Optical Mater. pp. 516–521 (2014).
[CrossRef]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B273, 661–667 (2006).
[CrossRef] [PubMed]

Gadisa, A.

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol. B30, 061802 (2012).
[CrossRef]

Gaskell, P. H.

S. J. Abbott and P. H. Gaskell, “Mass production of bio-inspired structured surfaces,” Proc. IMechE Vol. 221C221, 1181–1191 (2007).

Ghiradella, H.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchick, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapor response,” Nature Photonics1, 123–128 (2007).
[CrossRef]

Ghiradella, H. T.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nature Photonics6, 195–200 (2012).
[CrossRef]

Gietzelt, T.

S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmüller, K. Weibezahn, and A. Welle, “3d tissue culture substrates produced by microthermoforming of pre-processed polymer films,” Biomed. Microdevices8, 191–199 (2006).
[CrossRef] [PubMed]

Giselbrecht, S.

M. Heilig, S. Giselbrecht, A. Guber, and M. Worgull, “Microthermoforming of nanostructured polymer films: a new bonding method for the integration of nanostructures in 3-dimensional cavities,” Microsys. Technol.16, 1221–1231 (2010).
[CrossRef]

S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmüller, K. Weibezahn, and A. Welle, “3d tissue culture substrates produced by microthermoforming of pre-processed polymer films,” Biomed. Microdevices8, 191–199 (2006).
[CrossRef] [PubMed]

Glaubitt, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Gombert, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Gottwald, E.

S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmüller, K. Weibezahn, and A. Welle, “3d tissue culture substrates produced by microthermoforming of pre-processed polymer films,” Biomed. Microdevices8, 191–199 (2006).
[CrossRef] [PubMed]

Guber, A.

M. Heilig, S. Giselbrecht, A. Guber, and M. Worgull, “Microthermoforming of nanostructured polymer films: a new bonding method for the integration of nanostructures in 3-dimensional cavities,” Microsys. Technol.16, 1221–1231 (2010).
[CrossRef]

Guo, L. J.

L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19, 495–513 (2007).
[CrossRef]

Hagmann, P.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA process),” Microelectron. Eng.4, 35–56 (1986).
[CrossRef]

Heilig, M.

M. Heilig, M. Schneider, H. Dinglreiter, and M. Worgull, “Technology of microthermoforming of complex three-dimensional parts with multiscale features,” Microsys. Technol.17, 593–600 (2011).
[CrossRef]

M. Heilig, S. Giselbrecht, A. Guber, and M. Worgull, “Microthermoforming of nanostructured polymer films: a new bonding method for the integration of nanostructures in 3-dimensional cavities,” Microsys. Technol.16, 1221–1231 (2010).
[CrossRef]

Heinzel, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Hsu, C.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

Jen, Y.-J.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

Kikuta, H.

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev.10, 63–73 (2003).
[CrossRef]

Ko, D.-H.

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol. B30, 061802 (2012).
[CrossRef]

Kristensen, A.

H. Schift and A. Kristensen, Handbook of Nanotechnology (Springer Verlag, Berlin, 2010), chap. 9. Nanoimprint lithography - Patterning of Resists Using Molding, pp. 271–312, 3rd ed.
[CrossRef]

Langer, R.

A. Lendlein and R. Langer, “Biodegradable, elastic shape-memory polymers for potential biomedical applications,” Science296, 1673–1676 (2002).
[CrossRef] [PubMed]

Lee, C.-S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

Lee, N. C.

N. C. Lee, Understanding Blow Molding (Hanser-Gardner Publ., 2007), 2nd ed.

Lendlein, A.

M. Behl, M. Y. Razzaq, and A. Lendlein, “Multifunctional Shape-Memory Polymers,” Adv. Mater.22, 3388–3410 (2010).
[CrossRef] [PubMed]

A. Lendlein and R. Langer, “Biodegradable, elastic shape-memory polymers for potential biomedical applications,” Science296, 1673–1676 (2002).
[CrossRef] [PubMed]

Liu, C.

C. Liu, H. Qin, and P. T. Mather, “Review of progress in shape-memory polymers,” J. Mat. Chem.17, 1543–1558 (2007).
[CrossRef]

Liu, T.-A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

Lopez, R.

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol. B30, 061802 (2012).
[CrossRef]

López, C.

A. Espinha, M. C. Serrano, Á. Blanco, and C. López, “Thermoresponsive Shape-Memory Photonic Nanostructures,” Adv. Optical Mater. pp. 516–521 (2014).
[CrossRef]

Malyarchuk, V.

H. Xu, C. Yu, S. Wang, V. Malyarchuk, T. Xie, and J. A. Rogers, “Deformable, Programmable, and Shape-Memorizing Micro-Optics,” Adv. Func. Mat.23, 3299–3306 (2013).
[CrossRef]

Maner, A.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA process),” Microelectron. Eng.4, 35–56 (1986).
[CrossRef]

Mather, P. T.

C. Liu, H. Qin, and P. T. Mather, “Review of progress in shape-memory polymers,” J. Mat. Chem.17, 1543–1558 (2007).
[CrossRef]

Mehne, C.

A. Waddie, M. Taghizadeh, J. Mohr, V. Piotter, C. Mehne, A. Stuck, E. Stijns, and H. Thienpont, Design, fabrication and replication of micro-optical components for educational purposes within the Network of Excellence in Micro-Optics (NEMO), SPIE Proceedings Vol. 6185, doi: (2006).
[CrossRef]

Mohr, J.

A. Waddie, M. Taghizadeh, J. Mohr, V. Piotter, C. Mehne, A. Stuck, E. Stijns, and H. Thienpont, Design, fabrication and replication of micro-optical components for educational purposes within the Network of Excellence in Micro-Optics (NEMO), SPIE Proceedings Vol. 6185, doi: (2006).
[CrossRef]

Morris, W. G.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nature Photonics6, 195–200 (2012).
[CrossRef]

Münchmeyer, D.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA process),” Microelectron. Eng.4, 35–56 (1986).
[CrossRef]

Olson, E.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchick, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapor response,” Nature Photonics1, 123–128 (2007).
[CrossRef]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B273, 661–667 (2006).
[CrossRef] [PubMed]

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

Parker, A. R.

A. R. Parker, “515 million year of structural colors,” J. Opt. A: Pure Appl. Opt.2, R15–R28 (2000).
[CrossRef]

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

Pham, D.

E. Brousseau, S. Dimov, and D. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol.47, 161–180 (2010).
[CrossRef]

Piotter, V.

A. Waddie, M. Taghizadeh, J. Mohr, V. Piotter, C. Mehne, A. Stuck, E. Stijns, and H. Thienpont, Design, fabrication and replication of micro-optical components for educational purposes within the Network of Excellence in Micro-Optics (NEMO), SPIE Proceedings Vol. 6185, doi: (2006).
[CrossRef]

Potyrailo, R. A.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nature Photonics6, 195–200 (2012).
[CrossRef]

R. A. Potyrailo, H. Ghiradella, A. Vertiatchick, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapor response,” Nature Photonics1, 123–128 (2007).
[CrossRef]

Pris, A. D.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nature Photonics6, 195–200 (2012).
[CrossRef]

Qin, H.

C. Liu, H. Qin, and P. T. Mather, “Review of progress in shape-memory polymers,” J. Mat. Chem.17, 1543–1558 (2007).
[CrossRef]

Razzaq, M. Y.

M. Behl, M. Y. Razzaq, and A. Lendlein, “Multifunctional Shape-Memory Polymers,” Adv. Mater.22, 3388–3410 (2010).
[CrossRef] [PubMed]

Rogers, J. A.

H. Xu, C. Yu, S. Wang, V. Malyarchuk, T. Xie, and J. A. Rogers, “Deformable, Programmable, and Shape-Memorizing Micro-Optics,” Adv. Func. Mat.23, 3299–3306 (2013).
[CrossRef]

Rose, K.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Rummler, Z.

R. Truckenmueller, Z. Rummler, T. Schaller, and W. K. Schomburg, “Low-cost thermoforming of micro fluidic analysis chips,” J. Micromech. Microeng.12, 375 (2002).
[CrossRef]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424, 852–855 (2003).
[CrossRef] [PubMed]

Samulski, E. T.

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol. B30, 061802 (2012).
[CrossRef]

Schaller, T.

R. Truckenmueller, Z. Rummler, T. Schaller, and W. K. Schomburg, “Low-cost thermoforming of micro fluidic analysis chips,” J. Micromech. Microeng.12, 375 (2002).
[CrossRef]

Schift, H.

H. Schift and A. Kristensen, Handbook of Nanotechnology (Springer Verlag, Berlin, 2010), chap. 9. Nanoimprint lithography - Patterning of Resists Using Molding, pp. 271–312, 3rd ed.
[CrossRef]

Schneider, M.

M. Heilig, M. Schneider, H. Dinglreiter, and M. Worgull, “Technology of microthermoforming of complex three-dimensional parts with multiscale features,” Microsys. Technol.17, 593–600 (2011).
[CrossRef]

Schomburg, W. K.

R. Truckenmueller, Z. Rummler, T. Schaller, and W. K. Schomburg, “Low-cost thermoforming of micro fluidic analysis chips,” J. Micromech. Microeng.12, 375 (2002).
[CrossRef]

Serrano, M. C.

A. Espinha, M. C. Serrano, Á. Blanco, and C. López, “Thermoresponsive Shape-Memory Photonic Nanostructures,” Adv. Optical Mater. pp. 516–521 (2014).
[CrossRef]

Sporn, D.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B273, 661–667 (2006).
[CrossRef] [PubMed]

Stijns, E.

A. Waddie, M. Taghizadeh, J. Mohr, V. Piotter, C. Mehne, A. Stuck, E. Stijns, and H. Thienpont, Design, fabrication and replication of micro-optical components for educational purposes within the Network of Excellence in Micro-Optics (NEMO), SPIE Proceedings Vol. 6185, doi: (2006).
[CrossRef]

Stuart, C.

C. Stuart and Y. Chen, “Roll in and roll out: A path to high-throughput nanoimprint lithography,” ACS Nano3, 2062–2064 (2009).
[CrossRef] [PubMed]

Stuck, A.

A. Waddie, M. Taghizadeh, J. Mohr, V. Piotter, C. Mehne, A. Stuck, E. Stijns, and H. Thienpont, Design, fabrication and replication of micro-optical components for educational purposes within the Network of Excellence in Micro-Optics (NEMO), SPIE Proceedings Vol. 6185, doi: (2006).
[CrossRef]

Surman, C.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nature Photonics6, 195–200 (2012).
[CrossRef]

Taghizadeh, M.

A. Waddie, M. Taghizadeh, J. Mohr, V. Piotter, C. Mehne, A. Stuck, E. Stijns, and H. Thienpont, Design, fabrication and replication of micro-optical components for educational purposes within the Network of Excellence in Micro-Optics (NEMO), SPIE Proceedings Vol. 6185, doi: (2006).
[CrossRef]

Thienpont, H.

A. Waddie, M. Taghizadeh, J. Mohr, V. Piotter, C. Mehne, A. Stuck, E. Stijns, and H. Thienpont, Design, fabrication and replication of micro-optical components for educational purposes within the Network of Excellence in Micro-Optics (NEMO), SPIE Proceedings Vol. 6185, doi: (2006).
[CrossRef]

Toyota, H.

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev.10, 63–73 (2003).
[CrossRef]

Trautmann, C.

S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmüller, K. Weibezahn, and A. Welle, “3d tissue culture substrates produced by microthermoforming of pre-processed polymer films,” Biomed. Microdevices8, 191–199 (2006).
[CrossRef] [PubMed]

Truckenmueller, R.

R. Truckenmueller, Z. Rummler, T. Schaller, and W. K. Schomburg, “Low-cost thermoforming of micro fluidic analysis chips,” J. Micromech. Microeng.12, 375 (2002).
[CrossRef]

Truckenmüller, R.

S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmüller, K. Weibezahn, and A. Welle, “3d tissue culture substrates produced by microthermoforming of pre-processed polymer films,” Biomed. Microdevices8, 191–199 (2006).
[CrossRef] [PubMed]

Tumbleston, J. R.

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol. B30, 061802 (2012).
[CrossRef]

Utturkar, Y.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nature Photonics6, 195–200 (2012).
[CrossRef]

Vert, A.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nature Photonics6, 195–200 (2012).
[CrossRef]

Vertiatchick, A.

R. A. Potyrailo, H. Ghiradella, A. Vertiatchick, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapor response,” Nature Photonics1, 123–128 (2007).
[CrossRef]

Vigneron, J.

L. Biro and J. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser & Photon. Rev.5, 27–51 (2011).
[CrossRef]

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424, 852–855 (2003).
[CrossRef] [PubMed]

Waddie, A.

A. Waddie, M. Taghizadeh, J. Mohr, V. Piotter, C. Mehne, A. Stuck, E. Stijns, and H. Thienpont, Design, fabrication and replication of micro-optical components for educational purposes within the Network of Excellence in Micro-Optics (NEMO), SPIE Proceedings Vol. 6185, doi: (2006).
[CrossRef]

Wang, S.

H. Xu, C. Yu, S. Wang, V. Malyarchuk, T. Xie, and J. A. Rogers, “Deformable, Programmable, and Shape-Memorizing Micro-Optics,” Adv. Func. Mat.23, 3299–3306 (2013).
[CrossRef]

Weibezahn, K.

S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmüller, K. Weibezahn, and A. Welle, “3d tissue culture substrates produced by microthermoforming of pre-processed polymer films,” Biomed. Microdevices8, 191–199 (2006).
[CrossRef] [PubMed]

Welle, A.

S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmüller, K. Weibezahn, and A. Welle, “3d tissue culture substrates produced by microthermoforming of pre-processed polymer films,” Biomed. Microdevices8, 191–199 (2006).
[CrossRef] [PubMed]

Wittwer, V.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Worgull, M.

M. Heilig, M. Schneider, H. Dinglreiter, and M. Worgull, “Technology of microthermoforming of complex three-dimensional parts with multiscale features,” Microsys. Technol.17, 593–600 (2011).
[CrossRef]

M. Heilig, S. Giselbrecht, A. Guber, and M. Worgull, “Microthermoforming of nanostructured polymer films: a new bonding method for the integration of nanostructures in 3-dimensional cavities,” Microsys. Technol.16, 1221–1231 (2010).
[CrossRef]

M. Worgull, Hot Embossing - Theory and Technology of Microreplication (William Andrew, 2009), 1st ed.

Xie, T.

H. Xu, C. Yu, S. Wang, V. Malyarchuk, T. Xie, and J. A. Rogers, “Deformable, Programmable, and Shape-Memorizing Micro-Optics,” Adv. Func. Mat.23, 3299–3306 (2013).
[CrossRef]

T. Xie, “Tunable polymer multi-shape memory effect,” Nature464, 267–270 (2010).
[CrossRef] [PubMed]

Xu, H.

H. Xu, C. Yu, S. Wang, V. Malyarchuk, T. Xie, and J. A. Rogers, “Deformable, Programmable, and Shape-Memorizing Micro-Optics,” Adv. Func. Mat.23, 3299–3306 (2013).
[CrossRef]

Yu, C.

H. Xu, C. Yu, S. Wang, V. Malyarchuk, T. Xie, and J. A. Rogers, “Deformable, Programmable, and Shape-Memorizing Micro-Optics,” Adv. Func. Mat.23, 3299–3306 (2013).
[CrossRef]

Yu, W.

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev.10, 63–73 (2003).
[CrossRef]

Zalyubovskiy, S.

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nature Photonics6, 195–200 (2012).
[CrossRef]

ACS Nano

C. Stuart and Y. Chen, “Roll in and roll out: A path to high-throughput nanoimprint lithography,” ACS Nano3, 2062–2064 (2009).
[CrossRef] [PubMed]

Adv. Func. Mat.

H. Xu, C. Yu, S. Wang, V. Malyarchuk, T. Xie, and J. A. Rogers, “Deformable, Programmable, and Shape-Memorizing Micro-Optics,” Adv. Func. Mat.23, 3299–3306 (2013).
[CrossRef]

Adv. Mater.

L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19, 495–513 (2007).
[CrossRef]

M. Behl, M. Y. Razzaq, and A. Lendlein, “Multifunctional Shape-Memory Polymers,” Adv. Mater.22, 3388–3410 (2010).
[CrossRef] [PubMed]

Biomed. Microdevices

S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmüller, K. Weibezahn, and A. Welle, “3d tissue culture substrates produced by microthermoforming of pre-processed polymer films,” Biomed. Microdevices8, 191–199 (2006).
[CrossRef] [PubMed]

Endeavour

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour26, 79–84 (1967).

Int. J. Adv. Manuf. Technol.

E. Brousseau, S. Dimov, and D. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol.47, 161–180 (2010).
[CrossRef]

J. Mat. Chem.

C. Liu, H. Qin, and P. T. Mather, “Review of progress in shape-memory polymers,” J. Mat. Chem.17, 1543–1558 (2007).
[CrossRef]

J. Micromech. Microeng.

R. Truckenmueller, Z. Rummler, T. Schaller, and W. K. Schomburg, “Low-cost thermoforming of micro fluidic analysis chips,” J. Micromech. Microeng.12, 375 (2002).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

A. R. Parker, “515 million year of structural colors,” J. Opt. A: Pure Appl. Opt.2, R15–R28 (2000).
[CrossRef]

J. Vac. Sci. Technol. B

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol. B30, 061802 (2012).
[CrossRef]

Laser & Photon. Rev.

L. Biro and J. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser & Photon. Rev.5, 27–51 (2011).
[CrossRef]

Microelectron. Eng.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Münchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic molding (LIGA process),” Microelectron. Eng.4, 35–56 (1986).
[CrossRef]

Microsys. Technol.

M. Heilig, S. Giselbrecht, A. Guber, and M. Worgull, “Microthermoforming of nanostructured polymer films: a new bonding method for the integration of nanostructures in 3-dimensional cavities,” Microsys. Technol.16, 1221–1231 (2010).
[CrossRef]

M. Heilig, M. Schneider, H. Dinglreiter, and M. Worgull, “Technology of microthermoforming of complex three-dimensional parts with multiscale features,” Microsys. Technol.17, 593–600 (2011).
[CrossRef]

Nature

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424, 852–855 (2003).
[CrossRef] [PubMed]

T. Xie, “Tunable polymer multi-shape memory effect,” Nature464, 267–270 (2010).
[CrossRef] [PubMed]

Nature Nanotechnology

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nature Nanotechnology2, 770–774 (2007).
[CrossRef]

Nature Photonics

A. D. Pris, Y. Utturkar, C. Surman, W. G. Morris, A. Vert, S. Zalyubovskiy, T. Deng, H. T. Ghiradella, and R. A. Potyrailo, “Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures,” Nature Photonics6, 195–200 (2012).
[CrossRef]

R. A. Potyrailo, H. Ghiradella, A. Vertiatchick, K. Dovidenko, J. R. Cournoyer, and E. Olson, “Morpho butterfly wing scales demonstrate highly selective vapor response,” Nature Photonics1, 123–128 (2007).
[CrossRef]

Opt. Rev.

H. Kikuta, H. Toyota, and W. Yu, “Optical elements with subwavelength structured surfaces,” Opt. Rev.10, 63–73 (2003).
[CrossRef]

Proc. IMechE Vol. 221C

S. J. Abbott and P. H. Gaskell, “Mass production of bio-inspired structured surfaces,” Proc. IMechE Vol. 221C221, 1181–1191 (2007).

Proc. R. Soc. B

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B273, 661–667 (2006).
[CrossRef] [PubMed]

Science

A. Lendlein and R. Langer, “Biodegradable, elastic shape-memory polymers for potential biomedical applications,” Science296, 1673–1676 (2002).
[CrossRef] [PubMed]

Thin Solid Films

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Bläsi, A. Heinzel, D. Sporn, W. Döll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films351, 73–78 (1999).
[CrossRef]

Other

N. C. Lee, Understanding Blow Molding (Hanser-Gardner Publ., 2007), 2nd ed.

M. Worgull, Hot Embossing - Theory and Technology of Microreplication (William Andrew, 2009), 1st ed.

A. Waddie, M. Taghizadeh, J. Mohr, V. Piotter, C. Mehne, A. Stuck, E. Stijns, and H. Thienpont, Design, fabrication and replication of micro-optical components for educational purposes within the Network of Excellence in Micro-Optics (NEMO), SPIE Proceedings Vol. 6185, doi: (2006).
[CrossRef]

H. Schift and A. Kristensen, Handbook of Nanotechnology (Springer Verlag, Berlin, 2010), chap. 9. Nanoimprint lithography - Patterning of Resists Using Molding, pp. 271–312, 3rd ed.
[CrossRef]

A. Espinha, M. C. Serrano, Á. Blanco, and C. López, “Thermoresponsive Shape-Memory Photonic Nanostructures,” Adv. Optical Mater. pp. 516–521 (2014).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the hierarchical nano- and microthermoforming of optical component with a shape memory polymer (not to scale). (a) A primary structure is permanently replicated into a SMP foil by hot embossing with a mold insert, (b) then demolded and (c+d) hot embossed again to a temporary flat shape. (e) Afterwards, an ultrathin polymer layer is spincoated onto the flat SMP and (f+g) hot embossed with the secondary structure. (h) Finally, both polymer films are heated and the thin nanostructured film is thermoformed by the recovering of the SMP into its permanent shape. As described in the text this is the important step for the fabrication of hierarchical structures and the relation between the characteristic temperatures of the SMP (Tperm, Ttrans) and the thin film (Tg) is crucial for it.

Fig. 2
Fig. 2

SEM images of a triangular grating with a period 20 μm superimposed with a 400 nm grating manufactured using the process described in Fig. 1. (a) The overview demonstrates the uniformity whereas (b) presents details of the structured surface. The 400 nm grating remained intact during the nanothermoforming process. (c) The tilted view into the secondary structures reveals the distinctive undercuts created by the 400 nm grating on the slopes of the underlying triangular ridges.

Fig. 3
Fig. 3

Fabrication of a Morpho-type structure. The topography images (left) and line scans (right) of the samples were measured by atomic force microscopy. (a) The grating has a periodicity of 3 μm which is hot embossed into the shape memory polymer. Subsequently, the surface is flattened and a thin PMMA film is spin-coated onto the SMP. (b) The AFM image and line scan show the 400 nm grating which is hot embossed into the thin film. (c) Finally, after the recovery of the previously programmed primary structure both gratings are combined. The resulting surface topography resembles that of the optical structure of a Morpho butterfly. (d) A direct comparison of the 400 nm grating with the final Morpho-type structure in diffusive white light reveals that the blue iridescence of the butterfly structure appears blue even for large viewing angles of up to 15° while the 400 nm grating does not. The total reflection spectra of the 400 nm grating (dashed line) and the replicated Morpho-type structure (solid line) explain the difference in their optical appearance.

Fig. 4
Fig. 4

Combination of two diffractive optical elements. The photos on the left show the image on the screen when the DOEs are illuminated with a laser as depicted in the sketch in the upper left corner. The images in the right column represent the topography of the DOEs measured by atomic force microscopy. (a) The linear grating results in a characteristic interference pattern. (b) The PF-DOE creates a flattop as diffraction pattern. (c) The superposition of both optical structures creates a combined pattern, i.e., the flattop appears as main and side order of the linear grating.

Metrics