Abstract

TiNxOy films with controllable optical properties have been fabricated by reactive mid-frequency magnetron sputtering from titanium nitride target. The optical and electrical properties were studied as a function of the reactive gas flow and were correlated with the film stoichiometry. The results showed that the behavior of TiNxOy films can be adjusted from metallic to dielectric by increasing oxygen content, which is of great significance to their extensive applications. Owing to the accurate control of optical properties, a TiNxOy based solar selective absorbing coating has been designed and prepared with the aid of TiO2/Si3N4/SiO2 antireflection layers. Its solar absorbance is as high as 97.5% and thermal emissivity is 4.3% with total thickness of 230 nm. The solar absorbance can maintain above 90% for a broad incident angle range from 0° to 65°.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Martin, O. Banakh, A. M. E. Santo, S. Springer, R. Sanjines, J. Takadoum, and F. Levy, “Correlation between processing and properties of TiOxNy thin films sputter deposited by the reactive gas pulsing technique,” Appl. Surf. Sci.185(1-2), 123–133 (2001).
    [CrossRef]
  2. M. J. Jung, K. H. Nam, Y. M. Chung, J. H. Boo, and J. G. Han, “The physiochemical properties of TiOxNy films with controlled oxygen partial pressure,” Surf. Coat. Tech.171(1-3), 71–74 (2002).
    [CrossRef]
  3. M. Radecka, E. Pamula, A. Trenczek-Zajac, K. Zakrzewska, A. Brudnik, E. Kusior, N.-T. H. Kim-Ngan, and A. G. Balogh, “Chemical composition, crystallographic structure and impedance spectroscopy of titanium oxynitride TiNxOy thin films,” Solid State Ionics 192, 693–698, 267–269 (2011).
  4. P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
    [CrossRef]
  5. J. M. Chappé, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, and J. Takadoum, “Water as reactive gas to prepare titanium oxynitride thin films by reactive sputtering,” Thin Solid Films440(1-2), 66–73 (2003).
    [CrossRef]
  6. F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, and J. de Rijk, “Structural, optical and mechanical properties of coloured TiNxOy thin films,” Thin Solid Films447–448, 449–454 (2004).
    [CrossRef]
  7. M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, and M. Dinescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci.253(19), 8210–8214 (2007).
    [CrossRef]
  8. S. Y. Kim, D. H. Han, J. N. Kim, and J. J. Lee, “Titanium oxynitride films for a bipolar plate of polymer electrolyte membrane fuel cell prepared by inductively coupled plasma assisted reactive sputtering,” J. Power Sources193(2), 570–574 (2009).
    [CrossRef]
  9. M. E. A. Warwick, G. Hyett, I. Ridley, F. R. Laffir, C. Olivero, P. Chapon, and R. Binions, “Synthesis and energy modelling studies of titanium oxy-nitride films as energy efficient glazing,” Sol. Energy Mater. Sol. Cells118, 149–156 (2013).
    [CrossRef]
  10. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011).
    [CrossRef]
  11. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
    [CrossRef]
  12. N. D. Cuong, D. J. Kim, B. D. Kang, and S. G. Yoon, “Structural and electrical properties of TiNxOy thin-film resistors for 30 dB applications of π -type attenuator,” J. Electrochem. Soc.153(9), G856–G859 (2006).
    [CrossRef]
  13. G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J. Phys. D Appl. Phys.41(4), 045304 (2008).
    [CrossRef]
  14. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293(5528), 269–271 (2001).
    [CrossRef] [PubMed]
  15. E. Martinez-Ferrero, Y. Sakatani, C. Boissiere, D. Grosso, A. Fuertes, J. Fraxedas, and C. Sanchez, “Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts,” Adv. Funct. Mater.17(16), 3348–3354 (2007).
    [CrossRef]
  16. C. K. Lim, H. Huang, C. L. Chow, P. Y. Tan, X. Chen, M. S. Tse, and O. K. Tan, “Enhanced charge transport properties of dye-sensitized solar cells using TiNxOy nanostructure composite photoanode,” J. Phys. Chem. C116(37), 19659–19664 (2012).
    [CrossRef]
  17. M. Lazarov, P. Raths, H. Metzger, and W. Spirkl, “Optical constants and film density of TiNxOy solar selective absorbers,” J. Appl. Phys.77(5), 2133 (1995).
    [CrossRef]
  18. A. Rizzo, M. A. Signore, L. Tapfer, E. Piscopiello, A. Cappello, E. Bemporad, and M. Sebastiani, “Graded selective coatings based on zirconium and titanium oxynitride,” J. Phys. D Appl. Phys.42(11), 115406 (2009).
    [CrossRef]
  19. J. Park, J. Y. Lee, and J. H. Cho, “Ultraviolet-visible absorption spectra of N-doped TiO2 film deposited on sapphire,” J. Appl. Phys.100(11), 113534 (2006).
    [CrossRef]
  20. T. L. Chen, Y. Hirose, T. Hitosugi, and T. Hasegawa, “One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO2 films,” J. Phys. D Appl. Phys.41(6), 062005 (2008).
    [CrossRef]
  21. E. P. Quijorna, V. T. Costa, F. A. Rueda, P. H. Fernandez, A. Climent, F. Rossi, and M. M. Silvan, “TiNxOy/TiN dielectric contrasts obtained by ion implantation of O+2; structural, optical and electrical properties,” J. Phys. D Appl. Phys.44, 235501 (2011).
  22. V. Stranak, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, Z. Hubicka, M. Tichy, and R. Hippler, “Effect of nitrogen doping on TiNxOy thin film formation at reactive high-power pulsed magnetron sputtering,” J. Phys. D Appl. Phys.43(28), 285203 (2010).
    [CrossRef]
  23. C. Rousselot and N. Martin, “Influence of two reactive gases on the instabilities of the reactive sputtering process,” Surf. Coat. Tech.142–144, 206–210 (2001).
    [CrossRef]
  24. S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys.82(7), 3334 (1997).
    [CrossRef]
  25. L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells105, 202–207 (2012).
    [CrossRef]
  26. G. B. Smith, P. D. Swift, and A. Bendavid, “TiNx films with metallic behavior at high N/Ti ratios for better solar control windows,” Appl. Phys. Lett.75(5), 630 (1999).
    [CrossRef]
  27. J. Graciani, S. Hamad, and J. F. Sanz, “Changing the physical and chemical properties of titanium oxynitrides TiN1−xOx by changing the composition,” Phys. Rev. B80(18), 184112 (2009).
    [CrossRef]
  28. N. Selvakumara and H. C. Barshilia, “Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications,” Sol. Energy Mater. Sol. Cells98, 1–23 (2012).
    [CrossRef]
  29. H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett.89(19), 191909 (2006).
    [CrossRef]
  30. Q. C. Zhang and D. R. Mills, “New cermet film structures with much improved selectivity for solar thermal applications,” Appl. Phys. Lett.60(5), 545 (1992).
    [CrossRef]

2013 (1)

M. E. A. Warwick, G. Hyett, I. Ridley, F. R. Laffir, C. Olivero, P. Chapon, and R. Binions, “Synthesis and energy modelling studies of titanium oxy-nitride films as energy efficient glazing,” Sol. Energy Mater. Sol. Cells118, 149–156 (2013).
[CrossRef]

2012 (4)

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express2(4), 478–489 (2012).
[CrossRef]

N. Selvakumara and H. C. Barshilia, “Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications,” Sol. Energy Mater. Sol. Cells98, 1–23 (2012).
[CrossRef]

C. K. Lim, H. Huang, C. L. Chow, P. Y. Tan, X. Chen, M. S. Tse, and O. K. Tan, “Enhanced charge transport properties of dye-sensitized solar cells using TiNxOy nanostructure composite photoanode,” J. Phys. Chem. C116(37), 19659–19664 (2012).
[CrossRef]

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells105, 202–207 (2012).
[CrossRef]

2011 (2)

E. P. Quijorna, V. T. Costa, F. A. Rueda, P. H. Fernandez, A. Climent, F. Rossi, and M. M. Silvan, “TiNxOy/TiN dielectric contrasts obtained by ion implantation of O+2; structural, optical and electrical properties,” J. Phys. D Appl. Phys.44, 235501 (2011).

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011).
[CrossRef]

2010 (1)

V. Stranak, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, Z. Hubicka, M. Tichy, and R. Hippler, “Effect of nitrogen doping on TiNxOy thin film formation at reactive high-power pulsed magnetron sputtering,” J. Phys. D Appl. Phys.43(28), 285203 (2010).
[CrossRef]

2009 (3)

J. Graciani, S. Hamad, and J. F. Sanz, “Changing the physical and chemical properties of titanium oxynitrides TiN1−xOx by changing the composition,” Phys. Rev. B80(18), 184112 (2009).
[CrossRef]

A. Rizzo, M. A. Signore, L. Tapfer, E. Piscopiello, A. Cappello, E. Bemporad, and M. Sebastiani, “Graded selective coatings based on zirconium and titanium oxynitride,” J. Phys. D Appl. Phys.42(11), 115406 (2009).
[CrossRef]

S. Y. Kim, D. H. Han, J. N. Kim, and J. J. Lee, “Titanium oxynitride films for a bipolar plate of polymer electrolyte membrane fuel cell prepared by inductively coupled plasma assisted reactive sputtering,” J. Power Sources193(2), 570–574 (2009).
[CrossRef]

2008 (2)

G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J. Phys. D Appl. Phys.41(4), 045304 (2008).
[CrossRef]

T. L. Chen, Y. Hirose, T. Hitosugi, and T. Hasegawa, “One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO2 films,” J. Phys. D Appl. Phys.41(6), 062005 (2008).
[CrossRef]

2007 (2)

E. Martinez-Ferrero, Y. Sakatani, C. Boissiere, D. Grosso, A. Fuertes, J. Fraxedas, and C. Sanchez, “Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts,” Adv. Funct. Mater.17(16), 3348–3354 (2007).
[CrossRef]

M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, and M. Dinescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci.253(19), 8210–8214 (2007).
[CrossRef]

2006 (3)

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett.89(19), 191909 (2006).
[CrossRef]

N. D. Cuong, D. J. Kim, B. D. Kang, and S. G. Yoon, “Structural and electrical properties of TiNxOy thin-film resistors for 30 dB applications of π -type attenuator,” J. Electrochem. Soc.153(9), G856–G859 (2006).
[CrossRef]

J. Park, J. Y. Lee, and J. H. Cho, “Ultraviolet-visible absorption spectra of N-doped TiO2 film deposited on sapphire,” J. Appl. Phys.100(11), 113534 (2006).
[CrossRef]

2005 (1)

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

2004 (1)

F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, and J. de Rijk, “Structural, optical and mechanical properties of coloured TiNxOy thin films,” Thin Solid Films447–448, 449–454 (2004).
[CrossRef]

2003 (1)

J. M. Chappé, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, and J. Takadoum, “Water as reactive gas to prepare titanium oxynitride thin films by reactive sputtering,” Thin Solid Films440(1-2), 66–73 (2003).
[CrossRef]

2002 (1)

M. J. Jung, K. H. Nam, Y. M. Chung, J. H. Boo, and J. G. Han, “The physiochemical properties of TiOxNy films with controlled oxygen partial pressure,” Surf. Coat. Tech.171(1-3), 71–74 (2002).
[CrossRef]

2001 (3)

N. Martin, O. Banakh, A. M. E. Santo, S. Springer, R. Sanjines, J. Takadoum, and F. Levy, “Correlation between processing and properties of TiOxNy thin films sputter deposited by the reactive gas pulsing technique,” Appl. Surf. Sci.185(1-2), 123–133 (2001).
[CrossRef]

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293(5528), 269–271 (2001).
[CrossRef] [PubMed]

C. Rousselot and N. Martin, “Influence of two reactive gases on the instabilities of the reactive sputtering process,” Surf. Coat. Tech.142–144, 206–210 (2001).
[CrossRef]

1999 (1)

G. B. Smith, P. D. Swift, and A. Bendavid, “TiNx films with metallic behavior at high N/Ti ratios for better solar control windows,” Appl. Phys. Lett.75(5), 630 (1999).
[CrossRef]

1997 (1)

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys.82(7), 3334 (1997).
[CrossRef]

1995 (1)

M. Lazarov, P. Raths, H. Metzger, and W. Spirkl, “Optical constants and film density of TiNxOy solar selective absorbers,” J. Appl. Phys.77(5), 2133 (1995).
[CrossRef]

1992 (1)

Q. C. Zhang and D. R. Mills, “New cermet film structures with much improved selectivity for solar thermal applications,” Appl. Phys. Lett.60(5), 545 (1992).
[CrossRef]

Alves, E.

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells105, 202–207 (2012).
[CrossRef]

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, and J. de Rijk, “Structural, optical and mechanical properties of coloured TiNxOy thin films,” Thin Solid Films447–448, 449–454 (2004).
[CrossRef]

Andritschky, M.

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells105, 202–207 (2012).
[CrossRef]

Aoki, K.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293(5528), 269–271 (2001).
[CrossRef] [PubMed]

Asahi, R.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293(5528), 269–271 (2001).
[CrossRef] [PubMed]

Balaceanu, M.

M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, and M. Dinescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci.253(19), 8210–8214 (2007).
[CrossRef]

Banakh, O.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

N. Martin, O. Banakh, A. M. E. Santo, S. Springer, R. Sanjines, J. Takadoum, and F. Levy, “Correlation between processing and properties of TiOxNy thin films sputter deposited by the reactive gas pulsing technique,” Appl. Surf. Sci.185(1-2), 123–133 (2001).
[CrossRef]

Barshilia, H. C.

N. Selvakumara and H. C. Barshilia, “Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications,” Sol. Energy Mater. Sol. Cells98, 1–23 (2012).
[CrossRef]

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett.89(19), 191909 (2006).
[CrossRef]

Bemporad, E.

A. Rizzo, M. A. Signore, L. Tapfer, E. Piscopiello, A. Cappello, E. Bemporad, and M. Sebastiani, “Graded selective coatings based on zirconium and titanium oxynitride,” J. Phys. D Appl. Phys.42(11), 115406 (2009).
[CrossRef]

Bendavid, A.

G. B. Smith, P. D. Swift, and A. Bendavid, “TiNx films with metallic behavior at high N/Ti ratios for better solar control windows,” Appl. Phys. Lett.75(5), 630 (1999).
[CrossRef]

Binions, R.

M. E. A. Warwick, G. Hyett, I. Ridley, F. R. Laffir, C. Olivero, P. Chapon, and R. Binions, “Synthesis and energy modelling studies of titanium oxy-nitride films as energy efficient glazing,” Sol. Energy Mater. Sol. Cells118, 149–156 (2013).
[CrossRef]

Birjega, R.

M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, and M. Dinescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci.253(19), 8210–8214 (2007).
[CrossRef]

Biswas, A.

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett.89(19), 191909 (2006).
[CrossRef]

Bogdanowicz, R.

V. Stranak, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, Z. Hubicka, M. Tichy, and R. Hippler, “Effect of nitrogen doping on TiNxOy thin film formation at reactive high-power pulsed magnetron sputtering,” J. Phys. D Appl. Phys.43(28), 285203 (2010).
[CrossRef]

Boissiere, C.

E. Martinez-Ferrero, Y. Sakatani, C. Boissiere, D. Grosso, A. Fuertes, J. Fraxedas, and C. Sanchez, “Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts,” Adv. Funct. Mater.17(16), 3348–3354 (2007).
[CrossRef]

Boltasseva, A.

Boo, J. H.

M. J. Jung, K. H. Nam, Y. M. Chung, J. H. Boo, and J. G. Han, “The physiochemical properties of TiOxNy films with controlled oxygen partial pressure,” Surf. Coat. Tech.171(1-3), 71–74 (2002).
[CrossRef]

Braic, M.

M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, and M. Dinescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci.253(19), 8210–8214 (2007).
[CrossRef]

Braic, V.

M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, and M. Dinescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci.253(19), 8210–8214 (2007).
[CrossRef]

Capela, P.

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells105, 202–207 (2012).
[CrossRef]

Cappello, A.

A. Rizzo, M. A. Signore, L. Tapfer, E. Piscopiello, A. Cappello, E. Bemporad, and M. Sebastiani, “Graded selective coatings based on zirconium and titanium oxynitride,” J. Phys. D Appl. Phys.42(11), 115406 (2009).
[CrossRef]

Carvalho, P.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

Cavaleiro, A.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

Cerqueira, P.

F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, and J. de Rijk, “Structural, optical and mechanical properties of coloured TiNxOy thin films,” Thin Solid Films447–448, 449–454 (2004).
[CrossRef]

Chapon, P.

M. E. A. Warwick, G. Hyett, I. Ridley, F. R. Laffir, C. Olivero, P. Chapon, and R. Binions, “Synthesis and energy modelling studies of titanium oxy-nitride films as energy efficient glazing,” Sol. Energy Mater. Sol. Cells118, 149–156 (2013).
[CrossRef]

Chappé, J. M.

J. M. Chappé, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, and J. Takadoum, “Water as reactive gas to prepare titanium oxynitride thin films by reactive sputtering,” Thin Solid Films440(1-2), 66–73 (2003).
[CrossRef]

Chen, T. L.

T. L. Chen, Y. Hirose, T. Hitosugi, and T. Hasegawa, “One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO2 films,” J. Phys. D Appl. Phys.41(6), 062005 (2008).
[CrossRef]

Chen, X.

C. K. Lim, H. Huang, C. L. Chow, P. Y. Tan, X. Chen, M. S. Tse, and O. K. Tan, “Enhanced charge transport properties of dye-sensitized solar cells using TiNxOy nanostructure composite photoanode,” J. Phys. Chem. C116(37), 19659–19664 (2012).
[CrossRef]

Cho, J. H.

J. Park, J. Y. Lee, and J. H. Cho, “Ultraviolet-visible absorption spectra of N-doped TiO2 film deposited on sapphire,” J. Appl. Phys.100(11), 113534 (2006).
[CrossRef]

Chow, C. L.

C. K. Lim, H. Huang, C. L. Chow, P. Y. Tan, X. Chen, M. S. Tse, and O. K. Tan, “Enhanced charge transport properties of dye-sensitized solar cells using TiNxOy nanostructure composite photoanode,” J. Phys. Chem. C116(37), 19659–19664 (2012).
[CrossRef]

Chung, Y. M.

M. J. Jung, K. H. Nam, Y. M. Chung, J. H. Boo, and J. G. Han, “The physiochemical properties of TiOxNy films with controlled oxygen partial pressure,” Surf. Coat. Tech.171(1-3), 71–74 (2002).
[CrossRef]

Climent, A.

E. P. Quijorna, V. T. Costa, F. A. Rueda, P. H. Fernandez, A. Climent, F. Rossi, and M. M. Silvan, “TiNxOy/TiN dielectric contrasts obtained by ion implantation of O+2; structural, optical and electrical properties,” J. Phys. D Appl. Phys.44, 235501 (2011).

Costa, V. T.

E. P. Quijorna, V. T. Costa, F. A. Rueda, P. H. Fernandez, A. Climent, F. Rossi, and M. M. Silvan, “TiNxOy/TiN dielectric contrasts obtained by ion implantation of O+2; structural, optical and electrical properties,” J. Phys. D Appl. Phys.44, 235501 (2011).

Cunha, L.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

Cuong, N. D.

N. D. Cuong, D. J. Kim, B. D. Kang, and S. G. Yoon, “Structural and electrical properties of TiNxOy thin-film resistors for 30 dB applications of π -type attenuator,” J. Electrochem. Soc.153(9), G856–G859 (2006).
[CrossRef]

de Rijk, J.

F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, and J. de Rijk, “Structural, optical and mechanical properties of coloured TiNxOy thin films,” Thin Solid Films447–448, 449–454 (2004).
[CrossRef]

Dinescu, G.

M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, and M. Dinescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci.253(19), 8210–8214 (2007).
[CrossRef]

Dinescu, M.

M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, and M. Dinescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci.253(19), 8210–8214 (2007).
[CrossRef]

Epurescu, G.

M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, and M. Dinescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci.253(19), 8210–8214 (2007).
[CrossRef]

Fernandez, P. H.

E. P. Quijorna, V. T. Costa, F. A. Rueda, P. H. Fernandez, A. Climent, F. Rossi, and M. M. Silvan, “TiNxOy/TiN dielectric contrasts obtained by ion implantation of O+2; structural, optical and electrical properties,” J. Phys. D Appl. Phys.44, 235501 (2011).

Fraxedas, J.

E. Martinez-Ferrero, Y. Sakatani, C. Boissiere, D. Grosso, A. Fuertes, J. Fraxedas, and C. Sanchez, “Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts,” Adv. Funct. Mater.17(16), 3348–3354 (2007).
[CrossRef]

Fuertes, A.

E. Martinez-Ferrero, Y. Sakatani, C. Boissiere, D. Grosso, A. Fuertes, J. Fraxedas, and C. Sanchez, “Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts,” Adv. Funct. Mater.17(16), 3348–3354 (2007).
[CrossRef]

Gavoille, J.

J. M. Chappé, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, and J. Takadoum, “Water as reactive gas to prepare titanium oxynitride thin films by reactive sputtering,” Thin Solid Films440(1-2), 66–73 (2003).
[CrossRef]

Goudeau, Ph.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, and J. de Rijk, “Structural, optical and mechanical properties of coloured TiNxOy thin films,” Thin Solid Films447–448, 449–454 (2004).
[CrossRef]

Graciani, J.

J. Graciani, S. Hamad, and J. F. Sanz, “Changing the physical and chemical properties of titanium oxynitrides TiN1−xOx by changing the composition,” Phys. Rev. B80(18), 184112 (2009).
[CrossRef]

Grosso, D.

E. Martinez-Ferrero, Y. Sakatani, C. Boissiere, D. Grosso, A. Fuertes, J. Fraxedas, and C. Sanchez, “Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts,” Adv. Funct. Mater.17(16), 3348–3354 (2007).
[CrossRef]

Hamad, S.

J. Graciani, S. Hamad, and J. F. Sanz, “Changing the physical and chemical properties of titanium oxynitrides TiN1−xOx by changing the composition,” Phys. Rev. B80(18), 184112 (2009).
[CrossRef]

Han, D. H.

S. Y. Kim, D. H. Han, J. N. Kim, and J. J. Lee, “Titanium oxynitride films for a bipolar plate of polymer electrolyte membrane fuel cell prepared by inductively coupled plasma assisted reactive sputtering,” J. Power Sources193(2), 570–574 (2009).
[CrossRef]

Han, J. G.

M. J. Jung, K. H. Nam, Y. M. Chung, J. H. Boo, and J. G. Han, “The physiochemical properties of TiOxNy films with controlled oxygen partial pressure,” Surf. Coat. Tech.171(1-3), 71–74 (2002).
[CrossRef]

Hasegawa, T.

T. L. Chen, Y. Hirose, T. Hitosugi, and T. Hasegawa, “One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO2 films,” J. Phys. D Appl. Phys.41(6), 062005 (2008).
[CrossRef]

He, G.

G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J. Phys. D Appl. Phys.41(4), 045304 (2008).
[CrossRef]

Hippler, R.

V. Stranak, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, Z. Hubicka, M. Tichy, and R. Hippler, “Effect of nitrogen doping on TiNxOy thin film formation at reactive high-power pulsed magnetron sputtering,” J. Phys. D Appl. Phys.43(28), 285203 (2010).
[CrossRef]

Hirose, Y.

T. L. Chen, Y. Hirose, T. Hitosugi, and T. Hasegawa, “One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO2 films,” J. Phys. D Appl. Phys.41(6), 062005 (2008).
[CrossRef]

Hitosugi, T.

T. L. Chen, Y. Hirose, T. Hitosugi, and T. Hasegawa, “One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO2 films,” J. Phys. D Appl. Phys.41(6), 062005 (2008).
[CrossRef]

Huang, H.

C. K. Lim, H. Huang, C. L. Chow, P. Y. Tan, X. Chen, M. S. Tse, and O. K. Tan, “Enhanced charge transport properties of dye-sensitized solar cells using TiNxOy nanostructure composite photoanode,” J. Phys. Chem. C116(37), 19659–19664 (2012).
[CrossRef]

Hubicka, Z.

V. Stranak, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, Z. Hubicka, M. Tichy, and R. Hippler, “Effect of nitrogen doping on TiNxOy thin film formation at reactive high-power pulsed magnetron sputtering,” J. Phys. D Appl. Phys.43(28), 285203 (2010).
[CrossRef]

Hyett, G.

M. E. A. Warwick, G. Hyett, I. Ridley, F. R. Laffir, C. Olivero, P. Chapon, and R. Binions, “Synthesis and energy modelling studies of titanium oxy-nitride films as energy efficient glazing,” Sol. Energy Mater. Sol. Cells118, 149–156 (2013).
[CrossRef]

Johnson, S. R.

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys.82(7), 3334 (1997).
[CrossRef]

Jung, M. J.

M. J. Jung, K. H. Nam, Y. M. Chung, J. H. Boo, and J. G. Han, “The physiochemical properties of TiOxNy films with controlled oxygen partial pressure,” Surf. Coat. Tech.171(1-3), 71–74 (2002).
[CrossRef]

Kang, B. D.

N. D. Cuong, D. J. Kim, B. D. Kang, and S. G. Yoon, “Structural and electrical properties of TiNxOy thin-film resistors for 30 dB applications of π -type attenuator,” J. Electrochem. Soc.153(9), G856–G859 (2006).
[CrossRef]

Kildishev, A. V.

Kim, D. J.

N. D. Cuong, D. J. Kim, B. D. Kang, and S. G. Yoon, “Structural and electrical properties of TiNxOy thin-film resistors for 30 dB applications of π -type attenuator,” J. Electrochem. Soc.153(9), G856–G859 (2006).
[CrossRef]

Kim, J.

Kim, J. N.

S. Y. Kim, D. H. Han, J. N. Kim, and J. J. Lee, “Titanium oxynitride films for a bipolar plate of polymer electrolyte membrane fuel cell prepared by inductively coupled plasma assisted reactive sputtering,” J. Power Sources193(2), 570–574 (2009).
[CrossRef]

Kim, S. Y.

S. Y. Kim, D. H. Han, J. N. Kim, and J. J. Lee, “Titanium oxynitride films for a bipolar plate of polymer electrolyte membrane fuel cell prepared by inductively coupled plasma assisted reactive sputtering,” J. Power Sources193(2), 570–574 (2009).
[CrossRef]

Kiss, A.

M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, and M. Dinescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci.253(19), 8210–8214 (2007).
[CrossRef]

Laffir, F. R.

M. E. A. Warwick, G. Hyett, I. Ridley, F. R. Laffir, C. Olivero, P. Chapon, and R. Binions, “Synthesis and energy modelling studies of titanium oxy-nitride films as energy efficient glazing,” Sol. Energy Mater. Sol. Cells118, 149–156 (2013).
[CrossRef]

Lazarov, M.

M. Lazarov, P. Raths, H. Metzger, and W. Spirkl, “Optical constants and film density of TiNxOy solar selective absorbers,” J. Appl. Phys.77(5), 2133 (1995).
[CrossRef]

Le Bourhis, E.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

Lee, J. J.

S. Y. Kim, D. H. Han, J. N. Kim, and J. J. Lee, “Titanium oxynitride films for a bipolar plate of polymer electrolyte membrane fuel cell prepared by inductively coupled plasma assisted reactive sputtering,” J. Power Sources193(2), 570–574 (2009).
[CrossRef]

Lee, J. Y.

J. Park, J. Y. Lee, and J. H. Cho, “Ultraviolet-visible absorption spectra of N-doped TiO2 film deposited on sapphire,” J. Appl. Phys.100(11), 113534 (2006).
[CrossRef]

Levy, F.

N. Martin, O. Banakh, A. M. E. Santo, S. Springer, R. Sanjines, J. Takadoum, and F. Levy, “Correlation between processing and properties of TiOxNy thin films sputter deposited by the reactive gas pulsing technique,” Appl. Surf. Sci.185(1-2), 123–133 (2001).
[CrossRef]

Li, G. H.

G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J. Phys. D Appl. Phys.41(4), 045304 (2008).
[CrossRef]

Lim, C. K.

C. K. Lim, H. Huang, C. L. Chow, P. Y. Tan, X. Chen, M. S. Tse, and O. K. Tan, “Enhanced charge transport properties of dye-sensitized solar cells using TiNxOy nanostructure composite photoanode,” J. Phys. Chem. C116(37), 19659–19664 (2012).
[CrossRef]

Lim, P. K.

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys.82(7), 3334 (1997).
[CrossRef]

Lintymer, J.

J. M. Chappé, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, and J. Takadoum, “Water as reactive gas to prepare titanium oxynitride thin films by reactive sputtering,” Thin Solid Films440(1-2), 66–73 (2003).
[CrossRef]

Liu, M.

G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J. Phys. D Appl. Phys.41(4), 045304 (2008).
[CrossRef]

Martin, N.

J. M. Chappé, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, and J. Takadoum, “Water as reactive gas to prepare titanium oxynitride thin films by reactive sputtering,” Thin Solid Films440(1-2), 66–73 (2003).
[CrossRef]

N. Martin, O. Banakh, A. M. E. Santo, S. Springer, R. Sanjines, J. Takadoum, and F. Levy, “Correlation between processing and properties of TiOxNy thin films sputter deposited by the reactive gas pulsing technique,” Appl. Surf. Sci.185(1-2), 123–133 (2001).
[CrossRef]

C. Rousselot and N. Martin, “Influence of two reactive gases on the instabilities of the reactive sputtering process,” Surf. Coat. Tech.142–144, 206–210 (2001).
[CrossRef]

Martinez-Ferrero, E.

E. Martinez-Ferrero, Y. Sakatani, C. Boissiere, D. Grosso, A. Fuertes, J. Fraxedas, and C. Sanchez, “Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts,” Adv. Funct. Mater.17(16), 3348–3354 (2007).
[CrossRef]

Matilainen, A.

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells105, 202–207 (2012).
[CrossRef]

Metzger, H.

M. Lazarov, P. Raths, H. Metzger, and W. Spirkl, “Optical constants and film density of TiNxOy solar selective absorbers,” J. Appl. Phys.77(5), 2133 (1995).
[CrossRef]

Mills, D. R.

Q. C. Zhang and D. R. Mills, “New cermet film structures with much improved selectivity for solar thermal applications,” Appl. Phys. Lett.60(5), 545 (1992).
[CrossRef]

Moldovan, A.

M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, and M. Dinescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci.253(19), 8210–8214 (2007).
[CrossRef]

Morikawa, T.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293(5528), 269–271 (2001).
[CrossRef] [PubMed]

Moura, C.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

Muraleedharan, K.

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett.89(19), 191909 (2006).
[CrossRef]

Naik, G. V.

Nam, K. H.

M. J. Jung, K. H. Nam, Y. M. Chung, J. H. Boo, and J. G. Han, “The physiochemical properties of TiOxNy films with controlled oxygen partial pressure,” Surf. Coat. Tech.171(1-3), 71–74 (2002).
[CrossRef]

Nascimento, S. M. C.

F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, and J. de Rijk, “Structural, optical and mechanical properties of coloured TiNxOy thin films,” Thin Solid Films447–448, 449–454 (2004).
[CrossRef]

Ni, X.

O’Leary, S. K.

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys.82(7), 3334 (1997).
[CrossRef]

Ohwaki, T.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293(5528), 269–271 (2001).
[CrossRef] [PubMed]

Olivero, C.

M. E. A. Warwick, G. Hyett, I. Ridley, F. R. Laffir, C. Olivero, P. Chapon, and R. Binions, “Synthesis and energy modelling studies of titanium oxy-nitride films as energy efficient glazing,” Sol. Energy Mater. Sol. Cells118, 149–156 (2013).
[CrossRef]

Park, J.

J. Park, J. Y. Lee, and J. H. Cho, “Ultraviolet-visible absorption spectra of N-doped TiO2 film deposited on sapphire,” J. Appl. Phys.100(11), 113534 (2006).
[CrossRef]

Pierson, J. F.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

Pischow, K.

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells105, 202–207 (2012).
[CrossRef]

F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, and J. de Rijk, “Structural, optical and mechanical properties of coloured TiNxOy thin films,” Thin Solid Films447–448, 449–454 (2004).
[CrossRef]

Piscopiello, E.

A. Rizzo, M. A. Signore, L. Tapfer, E. Piscopiello, A. Cappello, E. Bemporad, and M. Sebastiani, “Graded selective coatings based on zirconium and titanium oxynitride,” J. Phys. D Appl. Phys.42(11), 115406 (2009).
[CrossRef]

Quaas, M.

V. Stranak, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, Z. Hubicka, M. Tichy, and R. Hippler, “Effect of nitrogen doping on TiNxOy thin film formation at reactive high-power pulsed magnetron sputtering,” J. Phys. D Appl. Phys.43(28), 285203 (2010).
[CrossRef]

Quijorna, E. P.

E. P. Quijorna, V. T. Costa, F. A. Rueda, P. H. Fernandez, A. Climent, F. Rossi, and M. M. Silvan, “TiNxOy/TiN dielectric contrasts obtained by ion implantation of O+2; structural, optical and electrical properties,” J. Phys. D Appl. Phys.44, 235501 (2011).

Rajam, K. S.

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett.89(19), 191909 (2006).
[CrossRef]

Raths, P.

M. Lazarov, P. Raths, H. Metzger, and W. Spirkl, “Optical constants and film density of TiNxOy solar selective absorbers,” J. Appl. Phys.77(5), 2133 (1995).
[CrossRef]

Rebouta, L.

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells105, 202–207 (2012).
[CrossRef]

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, and J. de Rijk, “Structural, optical and mechanical properties of coloured TiNxOy thin films,” Thin Solid Films447–448, 449–454 (2004).
[CrossRef]

Ridley, I.

M. E. A. Warwick, G. Hyett, I. Ridley, F. R. Laffir, C. Olivero, P. Chapon, and R. Binions, “Synthesis and energy modelling studies of titanium oxy-nitride films as energy efficient glazing,” Sol. Energy Mater. Sol. Cells118, 149–156 (2013).
[CrossRef]

Riviere, J. P.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, and J. de Rijk, “Structural, optical and mechanical properties of coloured TiNxOy thin films,” Thin Solid Films447–448, 449–454 (2004).
[CrossRef]

Rizzo, A.

A. Rizzo, M. A. Signore, L. Tapfer, E. Piscopiello, A. Cappello, E. Bemporad, and M. Sebastiani, “Graded selective coatings based on zirconium and titanium oxynitride,” J. Phys. D Appl. Phys.42(11), 115406 (2009).
[CrossRef]

Rossi, F.

E. P. Quijorna, V. T. Costa, F. A. Rueda, P. H. Fernandez, A. Climent, F. Rossi, and M. M. Silvan, “TiNxOy/TiN dielectric contrasts obtained by ion implantation of O+2; structural, optical and electrical properties,” J. Phys. D Appl. Phys.44, 235501 (2011).

Rousselot, C.

C. Rousselot and N. Martin, “Influence of two reactive gases on the instabilities of the reactive sputtering process,” Surf. Coat. Tech.142–144, 206–210 (2001).
[CrossRef]

Rueda, F. A.

E. P. Quijorna, V. T. Costa, F. A. Rueda, P. H. Fernandez, A. Climent, F. Rossi, and M. M. Silvan, “TiNxOy/TiN dielectric contrasts obtained by ion implantation of O+2; structural, optical and electrical properties,” J. Phys. D Appl. Phys.44, 235501 (2011).

Sakatani, Y.

E. Martinez-Ferrero, Y. Sakatani, C. Boissiere, D. Grosso, A. Fuertes, J. Fraxedas, and C. Sanchez, “Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts,” Adv. Funct. Mater.17(16), 3348–3354 (2007).
[CrossRef]

Sanchez, C.

E. Martinez-Ferrero, Y. Sakatani, C. Boissiere, D. Grosso, A. Fuertes, J. Fraxedas, and C. Sanchez, “Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts,” Adv. Funct. Mater.17(16), 3348–3354 (2007).
[CrossRef]

Sands, T. D.

Sanjines, R.

N. Martin, O. Banakh, A. M. E. Santo, S. Springer, R. Sanjines, J. Takadoum, and F. Levy, “Correlation between processing and properties of TiOxNy thin films sputter deposited by the reactive gas pulsing technique,” Appl. Surf. Sci.185(1-2), 123–133 (2001).
[CrossRef]

Santilli, P.

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells105, 202–207 (2012).
[CrossRef]

Santo, A. M. E.

N. Martin, O. Banakh, A. M. E. Santo, S. Springer, R. Sanjines, J. Takadoum, and F. Levy, “Correlation between processing and properties of TiOxNy thin films sputter deposited by the reactive gas pulsing technique,” Appl. Surf. Sci.185(1-2), 123–133 (2001).
[CrossRef]

Sanz, J. F.

J. Graciani, S. Hamad, and J. F. Sanz, “Changing the physical and chemical properties of titanium oxynitrides TiN1−xOx by changing the composition,” Phys. Rev. B80(18), 184112 (2009).
[CrossRef]

Schroeder, J. L.

Sebastiani, M.

A. Rizzo, M. A. Signore, L. Tapfer, E. Piscopiello, A. Cappello, E. Bemporad, and M. Sebastiani, “Graded selective coatings based on zirconium and titanium oxynitride,” J. Phys. D Appl. Phys.42(11), 115406 (2009).
[CrossRef]

Selvakumar, N.

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett.89(19), 191909 (2006).
[CrossRef]

Selvakumara, N.

N. Selvakumara and H. C. Barshilia, “Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications,” Sol. Energy Mater. Sol. Cells98, 1–23 (2012).
[CrossRef]

Signore, M. A.

A. Rizzo, M. A. Signore, L. Tapfer, E. Piscopiello, A. Cappello, E. Bemporad, and M. Sebastiani, “Graded selective coatings based on zirconium and titanium oxynitride,” J. Phys. D Appl. Phys.42(11), 115406 (2009).
[CrossRef]

Silvan, M. M.

E. P. Quijorna, V. T. Costa, F. A. Rueda, P. H. Fernandez, A. Climent, F. Rossi, and M. M. Silvan, “TiNxOy/TiN dielectric contrasts obtained by ion implantation of O+2; structural, optical and electrical properties,” J. Phys. D Appl. Phys.44, 235501 (2011).

Smith, G. B.

G. B. Smith, P. D. Swift, and A. Bendavid, “TiNx films with metallic behavior at high N/Ti ratios for better solar control windows,” Appl. Phys. Lett.75(5), 630 (1999).
[CrossRef]

Spirkl, W.

M. Lazarov, P. Raths, H. Metzger, and W. Spirkl, “Optical constants and film density of TiNxOy solar selective absorbers,” J. Appl. Phys.77(5), 2133 (1995).
[CrossRef]

Springer, S.

N. Martin, O. Banakh, A. M. E. Santo, S. Springer, R. Sanjines, J. Takadoum, and F. Levy, “Correlation between processing and properties of TiOxNy thin films sputter deposited by the reactive gas pulsing technique,” Appl. Surf. Sci.185(1-2), 123–133 (2001).
[CrossRef]

Sridhara Rao, D. V.

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett.89(19), 191909 (2006).
[CrossRef]

Steffen, H.

V. Stranak, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, Z. Hubicka, M. Tichy, and R. Hippler, “Effect of nitrogen doping on TiNxOy thin film formation at reactive high-power pulsed magnetron sputtering,” J. Phys. D Appl. Phys.43(28), 285203 (2010).
[CrossRef]

Stranak, V.

V. Stranak, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, Z. Hubicka, M. Tichy, and R. Hippler, “Effect of nitrogen doping on TiNxOy thin film formation at reactive high-power pulsed magnetron sputtering,” J. Phys. D Appl. Phys.43(28), 285203 (2010).
[CrossRef]

Swift, P. D.

G. B. Smith, P. D. Swift, and A. Bendavid, “TiNx films with metallic behavior at high N/Ti ratios for better solar control windows,” Appl. Phys. Lett.75(5), 630 (1999).
[CrossRef]

Taga, Y.

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293(5528), 269–271 (2001).
[CrossRef] [PubMed]

Takadoum, J.

J. M. Chappé, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, and J. Takadoum, “Water as reactive gas to prepare titanium oxynitride thin films by reactive sputtering,” Thin Solid Films440(1-2), 66–73 (2003).
[CrossRef]

N. Martin, O. Banakh, A. M. E. Santo, S. Springer, R. Sanjines, J. Takadoum, and F. Levy, “Correlation between processing and properties of TiOxNy thin films sputter deposited by the reactive gas pulsing technique,” Appl. Surf. Sci.185(1-2), 123–133 (2001).
[CrossRef]

Tan, O. K.

C. K. Lim, H. Huang, C. L. Chow, P. Y. Tan, X. Chen, M. S. Tse, and O. K. Tan, “Enhanced charge transport properties of dye-sensitized solar cells using TiNxOy nanostructure composite photoanode,” J. Phys. Chem. C116(37), 19659–19664 (2012).
[CrossRef]

Tan, P. Y.

C. K. Lim, H. Huang, C. L. Chow, P. Y. Tan, X. Chen, M. S. Tse, and O. K. Tan, “Enhanced charge transport properties of dye-sensitized solar cells using TiNxOy nanostructure composite photoanode,” J. Phys. Chem. C116(37), 19659–19664 (2012).
[CrossRef]

Tapfer, L.

A. Rizzo, M. A. Signore, L. Tapfer, E. Piscopiello, A. Cappello, E. Bemporad, and M. Sebastiani, “Graded selective coatings based on zirconium and titanium oxynitride,” J. Phys. D Appl. Phys.42(11), 115406 (2009).
[CrossRef]

Tavares, C. J.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

Terwagne, G.

J. M. Chappé, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, and J. Takadoum, “Water as reactive gas to prepare titanium oxynitride thin films by reactive sputtering,” Thin Solid Films440(1-2), 66–73 (2003).
[CrossRef]

Tichy, M.

V. Stranak, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, Z. Hubicka, M. Tichy, and R. Hippler, “Effect of nitrogen doping on TiNxOy thin film formation at reactive high-power pulsed magnetron sputtering,” J. Phys. D Appl. Phys.43(28), 285203 (2010).
[CrossRef]

Tse, M. S.

C. K. Lim, H. Huang, C. L. Chow, P. Y. Tan, X. Chen, M. S. Tse, and O. K. Tan, “Enhanced charge transport properties of dye-sensitized solar cells using TiNxOy nanostructure composite photoanode,” J. Phys. Chem. C116(37), 19659–19664 (2012).
[CrossRef]

Vaz, F.

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, and J. de Rijk, “Structural, optical and mechanical properties of coloured TiNxOy thin films,” Thin Solid Films447–448, 449–454 (2004).
[CrossRef]

Vladescu, A.

M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, and M. Dinescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci.253(19), 8210–8214 (2007).
[CrossRef]

Wang, X. J.

G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J. Phys. D Appl. Phys.41(4), 045304 (2008).
[CrossRef]

Warwick, M. E. A.

M. E. A. Warwick, G. Hyett, I. Ridley, F. R. Laffir, C. Olivero, P. Chapon, and R. Binions, “Synthesis and energy modelling studies of titanium oxy-nitride films as energy efficient glazing,” Sol. Energy Mater. Sol. Cells118, 149–156 (2013).
[CrossRef]

Wulff, H.

V. Stranak, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, Z. Hubicka, M. Tichy, and R. Hippler, “Effect of nitrogen doping on TiNxOy thin film formation at reactive high-power pulsed magnetron sputtering,” J. Phys. D Appl. Phys.43(28), 285203 (2010).
[CrossRef]

Yoon, S. G.

N. D. Cuong, D. J. Kim, B. D. Kang, and S. G. Yoon, “Structural and electrical properties of TiNxOy thin-film resistors for 30 dB applications of π -type attenuator,” J. Electrochem. Soc.153(9), G856–G859 (2006).
[CrossRef]

Zhang, L. D.

G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J. Phys. D Appl. Phys.41(4), 045304 (2008).
[CrossRef]

Zhang, Q. C.

Q. C. Zhang and D. R. Mills, “New cermet film structures with much improved selectivity for solar thermal applications,” Appl. Phys. Lett.60(5), 545 (1992).
[CrossRef]

Adv. Funct. Mater. (1)

E. Martinez-Ferrero, Y. Sakatani, C. Boissiere, D. Grosso, A. Fuertes, J. Fraxedas, and C. Sanchez, “Nanostructured titanium oxynitride porous thin films as efficient visible-active photocatalysts,” Adv. Funct. Mater.17(16), 3348–3354 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

H. C. Barshilia, N. Selvakumar, K. S. Rajam, D. V. Sridhara Rao, K. Muraleedharan, and A. Biswas, “TiAlN/TiAlON/Si3N4 tandem absorber for high temperature solar selective applications,” Appl. Phys. Lett.89(19), 191909 (2006).
[CrossRef]

Q. C. Zhang and D. R. Mills, “New cermet film structures with much improved selectivity for solar thermal applications,” Appl. Phys. Lett.60(5), 545 (1992).
[CrossRef]

G. B. Smith, P. D. Swift, and A. Bendavid, “TiNx films with metallic behavior at high N/Ti ratios for better solar control windows,” Appl. Phys. Lett.75(5), 630 (1999).
[CrossRef]

Appl. Surf. Sci. (2)

M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, G. Epurescu, G. Dinescu, A. Moldovan, R. Birjega, and M. Dinescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci.253(19), 8210–8214 (2007).
[CrossRef]

N. Martin, O. Banakh, A. M. E. Santo, S. Springer, R. Sanjines, J. Takadoum, and F. Levy, “Correlation between processing and properties of TiOxNy thin films sputter deposited by the reactive gas pulsing technique,” Appl. Surf. Sci.185(1-2), 123–133 (2001).
[CrossRef]

J. Appl. Phys. (4)

M. Lazarov, P. Raths, H. Metzger, and W. Spirkl, “Optical constants and film density of TiNxOy solar selective absorbers,” J. Appl. Phys.77(5), 2133 (1995).
[CrossRef]

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys.82(7), 3334 (1997).
[CrossRef]

J. Park, J. Y. Lee, and J. H. Cho, “Ultraviolet-visible absorption spectra of N-doped TiO2 film deposited on sapphire,” J. Appl. Phys.100(11), 113534 (2006).
[CrossRef]

P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Riviere, J. F. Pierson, and O. Banakh, “Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films,” J. Appl. Phys.98(2), 023715 (2005).
[CrossRef]

J. Electrochem. Soc. (1)

N. D. Cuong, D. J. Kim, B. D. Kang, and S. G. Yoon, “Structural and electrical properties of TiNxOy thin-film resistors for 30 dB applications of π -type attenuator,” J. Electrochem. Soc.153(9), G856–G859 (2006).
[CrossRef]

J. Phys. Chem. C (1)

C. K. Lim, H. Huang, C. L. Chow, P. Y. Tan, X. Chen, M. S. Tse, and O. K. Tan, “Enhanced charge transport properties of dye-sensitized solar cells using TiNxOy nanostructure composite photoanode,” J. Phys. Chem. C116(37), 19659–19664 (2012).
[CrossRef]

J. Phys. D Appl. Phys. (5)

G. He, L. D. Zhang, G. H. Li, M. Liu, and X. J. Wang, “Structure, composition and evolution of dispersive optical constants of sputtered TiO2 thin films: effects of nitrogen doping,” J. Phys. D Appl. Phys.41(4), 045304 (2008).
[CrossRef]

T. L. Chen, Y. Hirose, T. Hitosugi, and T. Hasegawa, “One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO2 films,” J. Phys. D Appl. Phys.41(6), 062005 (2008).
[CrossRef]

E. P. Quijorna, V. T. Costa, F. A. Rueda, P. H. Fernandez, A. Climent, F. Rossi, and M. M. Silvan, “TiNxOy/TiN dielectric contrasts obtained by ion implantation of O+2; structural, optical and electrical properties,” J. Phys. D Appl. Phys.44, 235501 (2011).

V. Stranak, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, Z. Hubicka, M. Tichy, and R. Hippler, “Effect of nitrogen doping on TiNxOy thin film formation at reactive high-power pulsed magnetron sputtering,” J. Phys. D Appl. Phys.43(28), 285203 (2010).
[CrossRef]

A. Rizzo, M. A. Signore, L. Tapfer, E. Piscopiello, A. Cappello, E. Bemporad, and M. Sebastiani, “Graded selective coatings based on zirconium and titanium oxynitride,” J. Phys. D Appl. Phys.42(11), 115406 (2009).
[CrossRef]

J. Power Sources (1)

S. Y. Kim, D. H. Han, J. N. Kim, and J. J. Lee, “Titanium oxynitride films for a bipolar plate of polymer electrolyte membrane fuel cell prepared by inductively coupled plasma assisted reactive sputtering,” J. Power Sources193(2), 570–574 (2009).
[CrossRef]

Opt. Mater. Express (2)

Phys. Rev. B (1)

J. Graciani, S. Hamad, and J. F. Sanz, “Changing the physical and chemical properties of titanium oxynitrides TiN1−xOx by changing the composition,” Phys. Rev. B80(18), 184112 (2009).
[CrossRef]

Science (1)

R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science293(5528), 269–271 (2001).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (3)

L. Rebouta, P. Capela, M. Andritschky, A. Matilainen, P. Santilli, K. Pischow, and E. Alves, “Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications,” Sol. Energy Mater. Sol. Cells105, 202–207 (2012).
[CrossRef]

N. Selvakumara and H. C. Barshilia, “Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications,” Sol. Energy Mater. Sol. Cells98, 1–23 (2012).
[CrossRef]

M. E. A. Warwick, G. Hyett, I. Ridley, F. R. Laffir, C. Olivero, P. Chapon, and R. Binions, “Synthesis and energy modelling studies of titanium oxy-nitride films as energy efficient glazing,” Sol. Energy Mater. Sol. Cells118, 149–156 (2013).
[CrossRef]

Surf. Coat. Tech. (2)

M. J. Jung, K. H. Nam, Y. M. Chung, J. H. Boo, and J. G. Han, “The physiochemical properties of TiOxNy films with controlled oxygen partial pressure,” Surf. Coat. Tech.171(1-3), 71–74 (2002).
[CrossRef]

C. Rousselot and N. Martin, “Influence of two reactive gases on the instabilities of the reactive sputtering process,” Surf. Coat. Tech.142–144, 206–210 (2001).
[CrossRef]

Thin Solid Films (2)

J. M. Chappé, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, and J. Takadoum, “Water as reactive gas to prepare titanium oxynitride thin films by reactive sputtering,” Thin Solid Films440(1-2), 66–73 (2003).
[CrossRef]

F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, and J. de Rijk, “Structural, optical and mechanical properties of coloured TiNxOy thin films,” Thin Solid Films447–448, 449–454 (2004).
[CrossRef]

Other (1)

M. Radecka, E. Pamula, A. Trenczek-Zajac, K. Zakrzewska, A. Brudnik, E. Kusior, N.-T. H. Kim-Ngan, and A. G. Balogh, “Chemical composition, crystallographic structure and impedance spectroscopy of titanium oxynitride TiNxOy thin films,” Solid State Ionics 192, 693–698, 267–269 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Hysteresis loops of the TiN target sputtering voltage at power of 1 KW with frequency of 30 KHz. The argon flow rate is kept unchanged at 30.0 sccm whereas the oxygen flow rate is changed.

Fig. 2
Fig. 2

RBS spectra obtained with 3.5 MeV He+ beam for TiNxOy films with oxygen flow rate from 0 sccm to 3.5 sccm.

Fig. 3
Fig. 3

Dependence of the nitrogen-oxygen (N/O) ratio in TiNxOy films on the oxygen flow rate.

Fig. 4
Fig. 4

Measured and fitted (a) transmittance and (b) reflectance spectra of the TiNxOy film on K9 glass at different O2 flow rates. (Measured data are plotted by symbols and fitted data by solid lines).

Fig. 5
Fig. 5

Refractive index n (a) and extinction coefficient k (b) of TiNxOy films at different oxygen flow rate.

Fig. 6
Fig. 6

Effect of the oxygen flow rate on (a) refractive index n and (b) extinction coefficient k at 0.5 μm and 2.5 μm.

Fig. 7
Fig. 7

Dependence of the resistivity of TiNxOy films on O2 flow rate.

Fig. 8
Fig. 8

Measured transmittance (a) and reflectance (b) spectra of three repeated samples at O2 flow rates of 3.3 sccm.

Fig. 9
Fig. 9

Calculated optical absorption spectra (a) and solar absorbance (b) of TiNxOy films on Cu substrate at optimized thicknesses for different O2 flow rates.

Fig. 10
Fig. 10

Experimental reflection and absorption spectra of TiNxOy (at O2 flow rate of 3.3 sccm and thickness of 78 nm) single layer on Cu substrate, as well as normalized solar radiation (AM1.5) and thermal radiation spectra (T = 373 K) for reference. The corresponding solar absorbance is 81.7% while the emissivity is 2.5% at 100 °C.

Fig. 11
Fig. 11

(a) The bright field cross-sectional transmission electron microscopy (TEM) micrograph of the multilayer absorber and the corresponding electron diffraction pattern of (b) TiNxOy, (c) TiO2, (d) Si3N4 and (e) SiO2.

Fig. 12
Fig. 12

Designed and experimental reflection and absorption spectra for TiNxOy (83nm)/TiO2 (20nm)/Si3N4 (42nm)/SiO2 (86nm) mutilayer absorber on Cu substrate, as well as normalized solar radiation (AM1.5) and thermal radiation spectra (at temperature of 373 K) for reference. The solar absorbance is 97.5% while the emissivity is 4.3% at 100 °C for the fabricated sample.

Fig. 13
Fig. 13

Calculated distributions of energy absorbed along the profile of the single layer and multilayers at 0.58 μm and 2.5 μm.

Fig. 14
Fig. 14

Calculated distributions of electric field along the profile of the single layer and multilayers at 0.58 μm and 2.5 μm.

Fig. 15
Fig. 15

Dependence of the solar absorbance of the multilayer absorber on the incident angle.

Tables (2)

Tables Icon

Table 1 The detailed process parameters for the deposition of TiNxOy thin films

Tables Icon

Table 2 The atomic concentration and stoichiometry of TiNxOy thin films in different oxygen flow rate.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α= 0.3 2.5 A( λ ) I S ( λ )dλ 0.3 2.5 I S ( λ )dλ .
ε= 2.5 25 A( λ ) I b ( λ,T )dλ 2.5 25 I b ( λ,T )dλ .
I b ( λ,T )= 2πh c 2 λ 5 ( e hc / kλT 1) .
ε ˜ = ε ˜ + ε ˜ OJL + ε ˜ Drude + ε ˜ Lorentz

Metrics