Abstract

Red fluorescence lamellae in prismatic layers of Pinctada vulgaris shell were investigated. SEM-EDS, XRD, and TG-DTA were utilized to characterize prismatic layers. We found that prismatic layers are calcitic prismatic (CP) layers with rich organic substances. Excitation spectrum for red fluorescence determined by a spectrophotometer indicates that the fluorescent matter in the organic substances is porphyrin compound derivatives. By using a fluorescence microspectroscope, the cross section of CP layers shows red fluorescence forming lamellar pattern. The lamellar pattern consists of red and black parallel zones with a modulation of emission intensity. Elemental mapping show a correlation of the fluorescence intensity decay with sulphur-rich zones occupying the CP layers in the black zones.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. D. Deheyn and N. G. Wilson, “Bioluminescent signals spatially amplified by wavelength-specific diffusion through the shell of a marine snail,” Proc. Biol. Sci.278(1715), 2112–2121 (2011).
    [CrossRef] [PubMed]
  2. Y. Ohmiya, S. Kojima, M. Nakamura, and H. Niwa, “Bioluminescence in the Limpet-Like Snail, Latia neritoides,” Bull. Chem. Soc. Jpn.78(7), 1197–1205 (2005).
    [CrossRef]
  3. T. Tan, D. Wong, and P. Lee, “Iridescence of a shell of mollusk Haliotis Glabra,” Opt. Express12(20), 4847–4854 (2004).
    [CrossRef] [PubMed]
  4. D. J. Brink, N. G. van der Berg, and A. J. Botha, “Iridescent colors on seashells: an optical and structural investigation of Helcion pruinosus,” Appl. Opt.41(4), 717–722 (2002).
    [CrossRef] [PubMed]
  5. Y. Liu, J. E. Shigley, and K. N. Hurwit, “Iridescent color of a shell of the mollusk Pinctada Margaritifera caused by diffraction,” Opt. Express4(5), 177–182 (1999).
    [CrossRef] [PubMed]
  6. K. Wada, “Crystal growth of molluscan shell,” Bull. Natl. Pearl Res. Lab.7, 703–828 (1961).
  7. I. Kobayashi and T. Samata, “Bivalve shell structure and organic matrix,” Mater. Sci. Eng. C26(4), 692–698 (2006).
    [CrossRef]
  8. B. Farre, A. Brunelle, O. Laprévote, J. P. Cuif, C. T. Williams, and Y. Dauphin, “Shell layers of the black-lip pearl oyster Pinctada Margaritifera: Matching microstructure and composition,” Comp. Biochem. Physiol. B Biochem. Mol. Biol.159(3), 131–139 (2011).
    [CrossRef] [PubMed]
  9. Y. Iwahashi and S. Akamatsu, “Porphyrin pigment in black-lip pearls and its application to pearl identification,” Fish. Sci.60, 69–71 (1994).
  10. T. Miyoshi, Y. Matsuda, and H. Komatsu, “Fluorescence from pearl to distinguish mother oyster used in pearl culture,” Jpn. J. Appl. Phys.26(1), 578–581 (1987).
    [CrossRef]
  11. A. Comfort, “The pigmentation of molluscan shell,” Biol. Rev. Camb. Philos. Soc.26(3), 285–301 (1951).
    [CrossRef]
  12. A. Comfort, “Molluscan shells as a practical source of uroporphyrin I,” Science112(2906), 279–280 (1950).
    [CrossRef] [PubMed]
  13. W. Zheng, N. Shan, L. Yu, and X. Wang, “UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins,” Dyes Pigments77(1), 153–157 (2008).
    [CrossRef]
  14. Y. Dauphin, A. Brunelle, M. Cotte, J. P. Cuif, B. Farre, O. Laprévote, A. Meibom, M. Salomé, and C. T. Williams, “A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (mollusca, bivalvia),” Microsc. Microanal.16(01), 91–98 (2010).
    [CrossRef] [PubMed]
  15. Y. Dauphin, “Comparison of the soluble matrices of the calcitic prismatic layer of Pinna nobilis (mollusca, bivalvia, Pteriomorpha),” Comp. Biochem. Physiol. A Mol. Integr. Physiol.132(3), 577–590 (2002).
    [CrossRef] [PubMed]
  16. A. G. Checa, A. B. Rodríguez-Navarro, and F. J. Esteban-Delgado, “The nature and formation of calcitic columnar prismatic shell layers in pteriomorphian bivalves,” Biomaterials26(32), 6404–6414 (2005).
    [CrossRef] [PubMed]
  17. E. M. Harper, A. G. Checa, and A. B. R. Navarro, “Organization and mode of secretion of the granular prismatic microstructure of Entodesma navila (Bivalve: Mollusca),” Acta Zool. Stockholm.90(2), 132–141 (2009).
    [CrossRef]
  18. A. Comfort, “The distribution of porphyrin fluorescence in molluscan shells,” Biochem. J.44, 112–117 (1949).
  19. M. Gouterman, “Optical spectra and electronic structure of porphyrins and related rings,” in The porphyrins, III, D. Dolphin, Ed. (Academic Press, New York, 1978).
  20. M. Uttamlal and A. S. H. Smith, “The excitation wavelength dependent fluorescence of porphyrins,” Chem. Phys. Lett.454(4-6), 223–228 (2008).
    [CrossRef]
  21. J. S. Lindsey, V. Chandrashaker, M. Taniguchi, and M. Ptaszek, “Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants,” New J. Chem.35(1), 65–75 (2011).
    [CrossRef]
  22. A. Checa, “A new model for periostracum and shell formation in Unionidae (bivalvia, Mollusca),” Tissue Cell32(5), 405–416 (2000).
    [CrossRef] [PubMed]
  23. H. Nakahara and G. Bevelander, “The formation and growth of the prismatic layer of Pinctada radiata,” Calcif. Tissue Res.7(1), 31–45 (1971).
    [CrossRef] [PubMed]
  24. Y. Dauphin, J. P. Cuif, J. Doucet, M. Salome, J. Susini, and C. T. Williams, “In situ mapping of growth lines in the calcitic prismatic layers of mollusk shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur K-edge,” Mar. Biol.142, 299–304 (2003).

2011 (3)

D. D. Deheyn and N. G. Wilson, “Bioluminescent signals spatially amplified by wavelength-specific diffusion through the shell of a marine snail,” Proc. Biol. Sci.278(1715), 2112–2121 (2011).
[CrossRef] [PubMed]

B. Farre, A. Brunelle, O. Laprévote, J. P. Cuif, C. T. Williams, and Y. Dauphin, “Shell layers of the black-lip pearl oyster Pinctada Margaritifera: Matching microstructure and composition,” Comp. Biochem. Physiol. B Biochem. Mol. Biol.159(3), 131–139 (2011).
[CrossRef] [PubMed]

J. S. Lindsey, V. Chandrashaker, M. Taniguchi, and M. Ptaszek, “Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants,” New J. Chem.35(1), 65–75 (2011).
[CrossRef]

2010 (1)

Y. Dauphin, A. Brunelle, M. Cotte, J. P. Cuif, B. Farre, O. Laprévote, A. Meibom, M. Salomé, and C. T. Williams, “A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (mollusca, bivalvia),” Microsc. Microanal.16(01), 91–98 (2010).
[CrossRef] [PubMed]

2009 (1)

E. M. Harper, A. G. Checa, and A. B. R. Navarro, “Organization and mode of secretion of the granular prismatic microstructure of Entodesma navila (Bivalve: Mollusca),” Acta Zool. Stockholm.90(2), 132–141 (2009).
[CrossRef]

2008 (2)

M. Uttamlal and A. S. H. Smith, “The excitation wavelength dependent fluorescence of porphyrins,” Chem. Phys. Lett.454(4-6), 223–228 (2008).
[CrossRef]

W. Zheng, N. Shan, L. Yu, and X. Wang, “UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins,” Dyes Pigments77(1), 153–157 (2008).
[CrossRef]

2006 (1)

I. Kobayashi and T. Samata, “Bivalve shell structure and organic matrix,” Mater. Sci. Eng. C26(4), 692–698 (2006).
[CrossRef]

2005 (2)

A. G. Checa, A. B. Rodríguez-Navarro, and F. J. Esteban-Delgado, “The nature and formation of calcitic columnar prismatic shell layers in pteriomorphian bivalves,” Biomaterials26(32), 6404–6414 (2005).
[CrossRef] [PubMed]

Y. Ohmiya, S. Kojima, M. Nakamura, and H. Niwa, “Bioluminescence in the Limpet-Like Snail, Latia neritoides,” Bull. Chem. Soc. Jpn.78(7), 1197–1205 (2005).
[CrossRef]

2004 (1)

2003 (1)

Y. Dauphin, J. P. Cuif, J. Doucet, M. Salome, J. Susini, and C. T. Williams, “In situ mapping of growth lines in the calcitic prismatic layers of mollusk shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur K-edge,” Mar. Biol.142, 299–304 (2003).

2002 (2)

D. J. Brink, N. G. van der Berg, and A. J. Botha, “Iridescent colors on seashells: an optical and structural investigation of Helcion pruinosus,” Appl. Opt.41(4), 717–722 (2002).
[CrossRef] [PubMed]

Y. Dauphin, “Comparison of the soluble matrices of the calcitic prismatic layer of Pinna nobilis (mollusca, bivalvia, Pteriomorpha),” Comp. Biochem. Physiol. A Mol. Integr. Physiol.132(3), 577–590 (2002).
[CrossRef] [PubMed]

2000 (1)

A. Checa, “A new model for periostracum and shell formation in Unionidae (bivalvia, Mollusca),” Tissue Cell32(5), 405–416 (2000).
[CrossRef] [PubMed]

1999 (1)

1994 (1)

Y. Iwahashi and S. Akamatsu, “Porphyrin pigment in black-lip pearls and its application to pearl identification,” Fish. Sci.60, 69–71 (1994).

1987 (1)

T. Miyoshi, Y. Matsuda, and H. Komatsu, “Fluorescence from pearl to distinguish mother oyster used in pearl culture,” Jpn. J. Appl. Phys.26(1), 578–581 (1987).
[CrossRef]

1971 (1)

H. Nakahara and G. Bevelander, “The formation and growth of the prismatic layer of Pinctada radiata,” Calcif. Tissue Res.7(1), 31–45 (1971).
[CrossRef] [PubMed]

1961 (1)

K. Wada, “Crystal growth of molluscan shell,” Bull. Natl. Pearl Res. Lab.7, 703–828 (1961).

1951 (1)

A. Comfort, “The pigmentation of molluscan shell,” Biol. Rev. Camb. Philos. Soc.26(3), 285–301 (1951).
[CrossRef]

1950 (1)

A. Comfort, “Molluscan shells as a practical source of uroporphyrin I,” Science112(2906), 279–280 (1950).
[CrossRef] [PubMed]

1949 (1)

A. Comfort, “The distribution of porphyrin fluorescence in molluscan shells,” Biochem. J.44, 112–117 (1949).

Akamatsu, S.

Y. Iwahashi and S. Akamatsu, “Porphyrin pigment in black-lip pearls and its application to pearl identification,” Fish. Sci.60, 69–71 (1994).

Bevelander, G.

H. Nakahara and G. Bevelander, “The formation and growth of the prismatic layer of Pinctada radiata,” Calcif. Tissue Res.7(1), 31–45 (1971).
[CrossRef] [PubMed]

Botha, A. J.

Brink, D. J.

Brunelle, A.

B. Farre, A. Brunelle, O. Laprévote, J. P. Cuif, C. T. Williams, and Y. Dauphin, “Shell layers of the black-lip pearl oyster Pinctada Margaritifera: Matching microstructure and composition,” Comp. Biochem. Physiol. B Biochem. Mol. Biol.159(3), 131–139 (2011).
[CrossRef] [PubMed]

Y. Dauphin, A. Brunelle, M. Cotte, J. P. Cuif, B. Farre, O. Laprévote, A. Meibom, M. Salomé, and C. T. Williams, “A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (mollusca, bivalvia),” Microsc. Microanal.16(01), 91–98 (2010).
[CrossRef] [PubMed]

Chandrashaker, V.

J. S. Lindsey, V. Chandrashaker, M. Taniguchi, and M. Ptaszek, “Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants,” New J. Chem.35(1), 65–75 (2011).
[CrossRef]

Checa, A.

A. Checa, “A new model for periostracum and shell formation in Unionidae (bivalvia, Mollusca),” Tissue Cell32(5), 405–416 (2000).
[CrossRef] [PubMed]

Checa, A. G.

E. M. Harper, A. G. Checa, and A. B. R. Navarro, “Organization and mode of secretion of the granular prismatic microstructure of Entodesma navila (Bivalve: Mollusca),” Acta Zool. Stockholm.90(2), 132–141 (2009).
[CrossRef]

A. G. Checa, A. B. Rodríguez-Navarro, and F. J. Esteban-Delgado, “The nature and formation of calcitic columnar prismatic shell layers in pteriomorphian bivalves,” Biomaterials26(32), 6404–6414 (2005).
[CrossRef] [PubMed]

Comfort, A.

A. Comfort, “The pigmentation of molluscan shell,” Biol. Rev. Camb. Philos. Soc.26(3), 285–301 (1951).
[CrossRef]

A. Comfort, “Molluscan shells as a practical source of uroporphyrin I,” Science112(2906), 279–280 (1950).
[CrossRef] [PubMed]

A. Comfort, “The distribution of porphyrin fluorescence in molluscan shells,” Biochem. J.44, 112–117 (1949).

Cotte, M.

Y. Dauphin, A. Brunelle, M. Cotte, J. P. Cuif, B. Farre, O. Laprévote, A. Meibom, M. Salomé, and C. T. Williams, “A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (mollusca, bivalvia),” Microsc. Microanal.16(01), 91–98 (2010).
[CrossRef] [PubMed]

Cuif, J. P.

B. Farre, A. Brunelle, O. Laprévote, J. P. Cuif, C. T. Williams, and Y. Dauphin, “Shell layers of the black-lip pearl oyster Pinctada Margaritifera: Matching microstructure and composition,” Comp. Biochem. Physiol. B Biochem. Mol. Biol.159(3), 131–139 (2011).
[CrossRef] [PubMed]

Y. Dauphin, A. Brunelle, M. Cotte, J. P. Cuif, B. Farre, O. Laprévote, A. Meibom, M. Salomé, and C. T. Williams, “A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (mollusca, bivalvia),” Microsc. Microanal.16(01), 91–98 (2010).
[CrossRef] [PubMed]

Y. Dauphin, J. P. Cuif, J. Doucet, M. Salome, J. Susini, and C. T. Williams, “In situ mapping of growth lines in the calcitic prismatic layers of mollusk shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur K-edge,” Mar. Biol.142, 299–304 (2003).

Dauphin, Y.

B. Farre, A. Brunelle, O. Laprévote, J. P. Cuif, C. T. Williams, and Y. Dauphin, “Shell layers of the black-lip pearl oyster Pinctada Margaritifera: Matching microstructure and composition,” Comp. Biochem. Physiol. B Biochem. Mol. Biol.159(3), 131–139 (2011).
[CrossRef] [PubMed]

Y. Dauphin, A. Brunelle, M. Cotte, J. P. Cuif, B. Farre, O. Laprévote, A. Meibom, M. Salomé, and C. T. Williams, “A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (mollusca, bivalvia),” Microsc. Microanal.16(01), 91–98 (2010).
[CrossRef] [PubMed]

Y. Dauphin, J. P. Cuif, J. Doucet, M. Salome, J. Susini, and C. T. Williams, “In situ mapping of growth lines in the calcitic prismatic layers of mollusk shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur K-edge,” Mar. Biol.142, 299–304 (2003).

Y. Dauphin, “Comparison of the soluble matrices of the calcitic prismatic layer of Pinna nobilis (mollusca, bivalvia, Pteriomorpha),” Comp. Biochem. Physiol. A Mol. Integr. Physiol.132(3), 577–590 (2002).
[CrossRef] [PubMed]

Deheyn, D. D.

D. D. Deheyn and N. G. Wilson, “Bioluminescent signals spatially amplified by wavelength-specific diffusion through the shell of a marine snail,” Proc. Biol. Sci.278(1715), 2112–2121 (2011).
[CrossRef] [PubMed]

Doucet, J.

Y. Dauphin, J. P. Cuif, J. Doucet, M. Salome, J. Susini, and C. T. Williams, “In situ mapping of growth lines in the calcitic prismatic layers of mollusk shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur K-edge,” Mar. Biol.142, 299–304 (2003).

Esteban-Delgado, F. J.

A. G. Checa, A. B. Rodríguez-Navarro, and F. J. Esteban-Delgado, “The nature and formation of calcitic columnar prismatic shell layers in pteriomorphian bivalves,” Biomaterials26(32), 6404–6414 (2005).
[CrossRef] [PubMed]

Farre, B.

B. Farre, A. Brunelle, O. Laprévote, J. P. Cuif, C. T. Williams, and Y. Dauphin, “Shell layers of the black-lip pearl oyster Pinctada Margaritifera: Matching microstructure and composition,” Comp. Biochem. Physiol. B Biochem. Mol. Biol.159(3), 131–139 (2011).
[CrossRef] [PubMed]

Y. Dauphin, A. Brunelle, M. Cotte, J. P. Cuif, B. Farre, O. Laprévote, A. Meibom, M. Salomé, and C. T. Williams, “A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (mollusca, bivalvia),” Microsc. Microanal.16(01), 91–98 (2010).
[CrossRef] [PubMed]

Harper, E. M.

E. M. Harper, A. G. Checa, and A. B. R. Navarro, “Organization and mode of secretion of the granular prismatic microstructure of Entodesma navila (Bivalve: Mollusca),” Acta Zool. Stockholm.90(2), 132–141 (2009).
[CrossRef]

Hurwit, K. N.

Iwahashi, Y.

Y. Iwahashi and S. Akamatsu, “Porphyrin pigment in black-lip pearls and its application to pearl identification,” Fish. Sci.60, 69–71 (1994).

Kobayashi, I.

I. Kobayashi and T. Samata, “Bivalve shell structure and organic matrix,” Mater. Sci. Eng. C26(4), 692–698 (2006).
[CrossRef]

Kojima, S.

Y. Ohmiya, S. Kojima, M. Nakamura, and H. Niwa, “Bioluminescence in the Limpet-Like Snail, Latia neritoides,” Bull. Chem. Soc. Jpn.78(7), 1197–1205 (2005).
[CrossRef]

Komatsu, H.

T. Miyoshi, Y. Matsuda, and H. Komatsu, “Fluorescence from pearl to distinguish mother oyster used in pearl culture,” Jpn. J. Appl. Phys.26(1), 578–581 (1987).
[CrossRef]

Laprévote, O.

B. Farre, A. Brunelle, O. Laprévote, J. P. Cuif, C. T. Williams, and Y. Dauphin, “Shell layers of the black-lip pearl oyster Pinctada Margaritifera: Matching microstructure and composition,” Comp. Biochem. Physiol. B Biochem. Mol. Biol.159(3), 131–139 (2011).
[CrossRef] [PubMed]

Y. Dauphin, A. Brunelle, M. Cotte, J. P. Cuif, B. Farre, O. Laprévote, A. Meibom, M. Salomé, and C. T. Williams, “A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (mollusca, bivalvia),” Microsc. Microanal.16(01), 91–98 (2010).
[CrossRef] [PubMed]

Lee, P.

Lindsey, J. S.

J. S. Lindsey, V. Chandrashaker, M. Taniguchi, and M. Ptaszek, “Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants,” New J. Chem.35(1), 65–75 (2011).
[CrossRef]

Liu, Y.

Matsuda, Y.

T. Miyoshi, Y. Matsuda, and H. Komatsu, “Fluorescence from pearl to distinguish mother oyster used in pearl culture,” Jpn. J. Appl. Phys.26(1), 578–581 (1987).
[CrossRef]

Meibom, A.

Y. Dauphin, A. Brunelle, M. Cotte, J. P. Cuif, B. Farre, O. Laprévote, A. Meibom, M. Salomé, and C. T. Williams, “A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (mollusca, bivalvia),” Microsc. Microanal.16(01), 91–98 (2010).
[CrossRef] [PubMed]

Miyoshi, T.

T. Miyoshi, Y. Matsuda, and H. Komatsu, “Fluorescence from pearl to distinguish mother oyster used in pearl culture,” Jpn. J. Appl. Phys.26(1), 578–581 (1987).
[CrossRef]

Nakahara, H.

H. Nakahara and G. Bevelander, “The formation and growth of the prismatic layer of Pinctada radiata,” Calcif. Tissue Res.7(1), 31–45 (1971).
[CrossRef] [PubMed]

Nakamura, M.

Y. Ohmiya, S. Kojima, M. Nakamura, and H. Niwa, “Bioluminescence in the Limpet-Like Snail, Latia neritoides,” Bull. Chem. Soc. Jpn.78(7), 1197–1205 (2005).
[CrossRef]

Navarro, A. B. R.

E. M. Harper, A. G. Checa, and A. B. R. Navarro, “Organization and mode of secretion of the granular prismatic microstructure of Entodesma navila (Bivalve: Mollusca),” Acta Zool. Stockholm.90(2), 132–141 (2009).
[CrossRef]

Niwa, H.

Y. Ohmiya, S. Kojima, M. Nakamura, and H. Niwa, “Bioluminescence in the Limpet-Like Snail, Latia neritoides,” Bull. Chem. Soc. Jpn.78(7), 1197–1205 (2005).
[CrossRef]

Ohmiya, Y.

Y. Ohmiya, S. Kojima, M. Nakamura, and H. Niwa, “Bioluminescence in the Limpet-Like Snail, Latia neritoides,” Bull. Chem. Soc. Jpn.78(7), 1197–1205 (2005).
[CrossRef]

Ptaszek, M.

J. S. Lindsey, V. Chandrashaker, M. Taniguchi, and M. Ptaszek, “Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants,” New J. Chem.35(1), 65–75 (2011).
[CrossRef]

Rodríguez-Navarro, A. B.

A. G. Checa, A. B. Rodríguez-Navarro, and F. J. Esteban-Delgado, “The nature and formation of calcitic columnar prismatic shell layers in pteriomorphian bivalves,” Biomaterials26(32), 6404–6414 (2005).
[CrossRef] [PubMed]

Salome, M.

Y. Dauphin, J. P. Cuif, J. Doucet, M. Salome, J. Susini, and C. T. Williams, “In situ mapping of growth lines in the calcitic prismatic layers of mollusk shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur K-edge,” Mar. Biol.142, 299–304 (2003).

Salomé, M.

Y. Dauphin, A. Brunelle, M. Cotte, J. P. Cuif, B. Farre, O. Laprévote, A. Meibom, M. Salomé, and C. T. Williams, “A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (mollusca, bivalvia),” Microsc. Microanal.16(01), 91–98 (2010).
[CrossRef] [PubMed]

Samata, T.

I. Kobayashi and T. Samata, “Bivalve shell structure and organic matrix,” Mater. Sci. Eng. C26(4), 692–698 (2006).
[CrossRef]

Shan, N.

W. Zheng, N. Shan, L. Yu, and X. Wang, “UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins,” Dyes Pigments77(1), 153–157 (2008).
[CrossRef]

Shigley, J. E.

Smith, A. S. H.

M. Uttamlal and A. S. H. Smith, “The excitation wavelength dependent fluorescence of porphyrins,” Chem. Phys. Lett.454(4-6), 223–228 (2008).
[CrossRef]

Susini, J.

Y. Dauphin, J. P. Cuif, J. Doucet, M. Salome, J. Susini, and C. T. Williams, “In situ mapping of growth lines in the calcitic prismatic layers of mollusk shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur K-edge,” Mar. Biol.142, 299–304 (2003).

Tan, T.

Taniguchi, M.

J. S. Lindsey, V. Chandrashaker, M. Taniguchi, and M. Ptaszek, “Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants,” New J. Chem.35(1), 65–75 (2011).
[CrossRef]

Uttamlal, M.

M. Uttamlal and A. S. H. Smith, “The excitation wavelength dependent fluorescence of porphyrins,” Chem. Phys. Lett.454(4-6), 223–228 (2008).
[CrossRef]

van der Berg, N. G.

Wada, K.

K. Wada, “Crystal growth of molluscan shell,” Bull. Natl. Pearl Res. Lab.7, 703–828 (1961).

Wang, X.

W. Zheng, N. Shan, L. Yu, and X. Wang, “UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins,” Dyes Pigments77(1), 153–157 (2008).
[CrossRef]

Williams, C. T.

B. Farre, A. Brunelle, O. Laprévote, J. P. Cuif, C. T. Williams, and Y. Dauphin, “Shell layers of the black-lip pearl oyster Pinctada Margaritifera: Matching microstructure and composition,” Comp. Biochem. Physiol. B Biochem. Mol. Biol.159(3), 131–139 (2011).
[CrossRef] [PubMed]

Y. Dauphin, A. Brunelle, M. Cotte, J. P. Cuif, B. Farre, O. Laprévote, A. Meibom, M. Salomé, and C. T. Williams, “A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (mollusca, bivalvia),” Microsc. Microanal.16(01), 91–98 (2010).
[CrossRef] [PubMed]

Y. Dauphin, J. P. Cuif, J. Doucet, M. Salome, J. Susini, and C. T. Williams, “In situ mapping of growth lines in the calcitic prismatic layers of mollusk shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur K-edge,” Mar. Biol.142, 299–304 (2003).

Wilson, N. G.

D. D. Deheyn and N. G. Wilson, “Bioluminescent signals spatially amplified by wavelength-specific diffusion through the shell of a marine snail,” Proc. Biol. Sci.278(1715), 2112–2121 (2011).
[CrossRef] [PubMed]

Wong, D.

Yu, L.

W. Zheng, N. Shan, L. Yu, and X. Wang, “UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins,” Dyes Pigments77(1), 153–157 (2008).
[CrossRef]

Zheng, W.

W. Zheng, N. Shan, L. Yu, and X. Wang, “UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins,” Dyes Pigments77(1), 153–157 (2008).
[CrossRef]

Acta Zool. Stockholm. (1)

E. M. Harper, A. G. Checa, and A. B. R. Navarro, “Organization and mode of secretion of the granular prismatic microstructure of Entodesma navila (Bivalve: Mollusca),” Acta Zool. Stockholm.90(2), 132–141 (2009).
[CrossRef]

Appl. Opt. (1)

Biochem. J. (1)

A. Comfort, “The distribution of porphyrin fluorescence in molluscan shells,” Biochem. J.44, 112–117 (1949).

Biol. Rev. Camb. Philos. Soc. (1)

A. Comfort, “The pigmentation of molluscan shell,” Biol. Rev. Camb. Philos. Soc.26(3), 285–301 (1951).
[CrossRef]

Biomaterials (1)

A. G. Checa, A. B. Rodríguez-Navarro, and F. J. Esteban-Delgado, “The nature and formation of calcitic columnar prismatic shell layers in pteriomorphian bivalves,” Biomaterials26(32), 6404–6414 (2005).
[CrossRef] [PubMed]

Bull. Chem. Soc. Jpn. (1)

Y. Ohmiya, S. Kojima, M. Nakamura, and H. Niwa, “Bioluminescence in the Limpet-Like Snail, Latia neritoides,” Bull. Chem. Soc. Jpn.78(7), 1197–1205 (2005).
[CrossRef]

Bull. Natl. Pearl Res. Lab. (1)

K. Wada, “Crystal growth of molluscan shell,” Bull. Natl. Pearl Res. Lab.7, 703–828 (1961).

Calcif. Tissue Res. (1)

H. Nakahara and G. Bevelander, “The formation and growth of the prismatic layer of Pinctada radiata,” Calcif. Tissue Res.7(1), 31–45 (1971).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

M. Uttamlal and A. S. H. Smith, “The excitation wavelength dependent fluorescence of porphyrins,” Chem. Phys. Lett.454(4-6), 223–228 (2008).
[CrossRef]

Comp. Biochem. Physiol. A Mol. Integr. Physiol. (1)

Y. Dauphin, “Comparison of the soluble matrices of the calcitic prismatic layer of Pinna nobilis (mollusca, bivalvia, Pteriomorpha),” Comp. Biochem. Physiol. A Mol. Integr. Physiol.132(3), 577–590 (2002).
[CrossRef] [PubMed]

Comp. Biochem. Physiol. B Biochem. Mol. Biol. (1)

B. Farre, A. Brunelle, O. Laprévote, J. P. Cuif, C. T. Williams, and Y. Dauphin, “Shell layers of the black-lip pearl oyster Pinctada Margaritifera: Matching microstructure and composition,” Comp. Biochem. Physiol. B Biochem. Mol. Biol.159(3), 131–139 (2011).
[CrossRef] [PubMed]

Dyes Pigments (1)

W. Zheng, N. Shan, L. Yu, and X. Wang, “UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins,” Dyes Pigments77(1), 153–157 (2008).
[CrossRef]

Fish. Sci. (1)

Y. Iwahashi and S. Akamatsu, “Porphyrin pigment in black-lip pearls and its application to pearl identification,” Fish. Sci.60, 69–71 (1994).

Jpn. J. Appl. Phys. (1)

T. Miyoshi, Y. Matsuda, and H. Komatsu, “Fluorescence from pearl to distinguish mother oyster used in pearl culture,” Jpn. J. Appl. Phys.26(1), 578–581 (1987).
[CrossRef]

Mar. Biol. (1)

Y. Dauphin, J. P. Cuif, J. Doucet, M. Salome, J. Susini, and C. T. Williams, “In situ mapping of growth lines in the calcitic prismatic layers of mollusk shells using X-ray absorption near-edge structure (XANES) spectroscopy at the sulphur K-edge,” Mar. Biol.142, 299–304 (2003).

Mater. Sci. Eng. C (1)

I. Kobayashi and T. Samata, “Bivalve shell structure and organic matrix,” Mater. Sci. Eng. C26(4), 692–698 (2006).
[CrossRef]

Microsc. Microanal. (1)

Y. Dauphin, A. Brunelle, M. Cotte, J. P. Cuif, B. Farre, O. Laprévote, A. Meibom, M. Salomé, and C. T. Williams, “A layered structure in the organic envelopes of the prismatic layer of the shell of the pearl oyster Pinctada margaritifera (mollusca, bivalvia),” Microsc. Microanal.16(01), 91–98 (2010).
[CrossRef] [PubMed]

New J. Chem. (1)

J. S. Lindsey, V. Chandrashaker, M. Taniguchi, and M. Ptaszek, “Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants,” New J. Chem.35(1), 65–75 (2011).
[CrossRef]

Opt. Express (2)

Proc. Biol. Sci. (1)

D. D. Deheyn and N. G. Wilson, “Bioluminescent signals spatially amplified by wavelength-specific diffusion through the shell of a marine snail,” Proc. Biol. Sci.278(1715), 2112–2121 (2011).
[CrossRef] [PubMed]

Science (1)

A. Comfort, “Molluscan shells as a practical source of uroporphyrin I,” Science112(2906), 279–280 (1950).
[CrossRef] [PubMed]

Tissue Cell (1)

A. Checa, “A new model for periostracum and shell formation in Unionidae (bivalvia, Mollusca),” Tissue Cell32(5), 405–416 (2000).
[CrossRef] [PubMed]

Other (1)

M. Gouterman, “Optical spectra and electronic structure of porphyrins and related rings,” in The porphyrins, III, D. Dolphin, Ed. (Academic Press, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Cross section of shell showing prismatic layers and nacre layers.

Fig. 2
Fig. 2

Microstructure of calcitic prism (CP) layer. GL is a growth line among parallel growth lines. OM are inter-prismatic organic membranes.

Fig. 3
Fig. 3

X-ray diffraction pattern. (a) CP powdered sample. (b) calcium carbonate from ICSD powder diffraction file database. Peaks indicate calcite phase.

Fig. 4
Fig. 4

Thermal decomposition of prismatic layer and calcium carbonate reagent. (a) Weight loss of CP powdered sample and CaCO3 reagent (inset). (b). Five weight losses of CP powdered sample (magnified).

Fig. 5
Fig. 5

Thermal decomposition of prismatic layer and calcium carbonate reagent. (a). Exothermic reaction of CP powdered sample. (b) Exothermic reaction of CaCO3 reagent.

Fig. 6
Fig. 6

Excitation and emission spectra of as-grinded and heated CP powdered samples.

Fig. 7
Fig. 7

Shell of Pinctada vulgaris after being cleaned from oceanic living organism. (a). Outer side of shell shielded by CP layers irradiated by daylight (left side) and commercial UV LED (right side). (b) and (c) are close up of ventral side of shell under daylight irradiation and commercial UV LED, respectively. The circles show areas where the brownish CP layers turn to red whereas pale white unchanged.

Fig. 8
Fig. 8

An inner side of shell (Pinctada vulgaris). (a) Inner shell irradiated by commercial UV LED (left side) and daylight (right side). (b) and (c) Area 1 and 2 respectively, that turn to pale blue and red, under commercial UV LED irradation. Irradiated area size is ~1 mm.

Fig. 9
Fig. 9

Emission spectra of CP powdered sample and inner CP layer. (a) Emission spectrum of CP powdered sample excited at 405 nm. (b) Emission spectrum of inner CP layer on the area 2 in the Fig. 8(c) excited at 404.7 nm. Detection spot size is ~50 µm.

Fig. 10
Fig. 10

Cross section of shell and CP layers under 404.7 nm irradiation showing lamellar pattern formed by red fluorescence and black lamellae. (a) Nacre as inner side of shell fully covered by the calcitic prism in the outer side. (b) Area 1 on CP layers showing red parallel lines and organic membrane. (c) Area 2 on CP layers. (d) Area 3 on CP layers selected for measuring emission from red and black lamellae. Irradiated area size is ~200 µm–1 mm

Fig. 11
Fig. 11

Emission spectra of CP powdered and CP thin cross section sample. (a) Emission spectrum of CP powdered sample excited at 405 nm. (b) Emission spectra measured on A, B, C and D spots in lamellar pattern of area 3 as shown in Fig. 10(d). Red lamellae are the lamellae occupied by organic substance related porphyrin structure. Detection spot size is ~1 µm.

Fig. 12
Fig. 12

Marked area and Elemental mapping on CP layers. (a) Marked area in CP shell sample. The arrows show location of black zone. (b) The marked area, under 404.7 nm irradiation, shows the most black and wider zone between red fluorescent zones. (c) Calcium map of marked area showing calcium is not concentrated on the black zone. (d) Sulphur map of marked area showing rich sulphur concentrated on the black zone than on the adjacent area.

Fig. 13
Fig. 13

Emission spectra of CP powdered and CP thin cross section sample. (a) Emission spectrum of CP powdered sample excited at 405 nm. (b) Emission spectra measured on E, F, and G points in lamellar pattern as shown in Fig. 12(b). Detection spot size is ~10 µm.

Metrics