Abstract

We report a new type of thermal nonlinear media (m-cresol/nylon solutions) that exhibits a giant tunable self-defocusing nonlinearity. The measured Kerr coefficient in such thermal nonlinear solutions is orders of magnitude higher than that of most previously known thermal materials. In addition, we demonstrate the generation of dark spatial solitons in these isotropic nonlocal nonlinear media, and observe to our knowledge the strongest effect of dark-soliton attraction ever reported in thermal defocusing media.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys.75(8), 086401 (2012).
    [CrossRef] [PubMed]
  2. G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett.66(12), 1583–1586 (1991).
    [CrossRef] [PubMed]
  3. Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep.298(2-3), 81–197 (1998).
    [CrossRef]
  4. B. Luther-Davies and Y. Xiaoping, “Waveguides and Y junctions formed in bulk media by using dark spatial solitons,” Opt. Lett.17(7), 496–498 (1992).
    [CrossRef] [PubMed]
  5. Z. Chen, M. Mitchell, M. F. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett.21(9), 629–631 (1996).
    [CrossRef] [PubMed]
  6. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett.21(13), 943–945 (1996).
    [CrossRef] [PubMed]
  7. G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett.69(17), 2503–2506 (1992).
    [CrossRef] [PubMed]
  8. G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett.74(11), 1978–1981 (1995).
  9. Z. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett.22(23), 1751–1753 (1997).
    [CrossRef] [PubMed]
  10. C. Barsi, W. Wan, C. Sun, and J. W. Fleischer, “Dispersive shock waves with nonlocal nonlinearity,” Opt. Lett.32(20), 2930–2932 (2007).
    [CrossRef] [PubMed]
  11. N. Ghofraniha, G. Ruocco, C. Conti, and S. Trillo, “Spatial dynamics of shock waves in nonlocal media,” Conference Paper, Nonlinear Photonics, Computational Analysis (2007).
    [CrossRef]
  12. W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys.3(1), 46–51 (2007).
    [CrossRef]
  13. N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett.109(24), 243902 (2012).
    [CrossRef] [PubMed]
  14. S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A87(5), 053811 (2013).
    [CrossRef]
  15. J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett.8(11), 596–598 (1983).
    [CrossRef] [PubMed]
  16. J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett.16(1), 15–17 (1991).
    [CrossRef] [PubMed]
  17. K. J. Blow and N. Doran, “Multiple dark soliton solutions of the nonlinear Schrodinger equation,” Phys. Lett. A107(2), 55–58 (1985).
    [CrossRef]
  18. S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett.38(18), 3585–3587 (2013).
    [CrossRef] [PubMed]
  19. A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett.96(4), 043901 (2006).
    [CrossRef] [PubMed]
  20. R. Fischer, D. N. Neshev, W. Krolikowski, Y. S. Kivshar, D. Iturbe-Castillo, S. Chavez-Cerda, M. R. Meneghetti, D. P. Caetano, and J. M. Hickman, “Oblique interaction of spatial dark-soliton stripes in nonlocal media,” Opt. Lett.31(20), 3010–3012 (2006).
    [CrossRef] [PubMed]
  21. Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A82(1), 013826 (2010).
    [CrossRef]
  22. C. Conti and E. DelRe, “Optical supercavitation in soft matter,” Phys. Rev. Lett.105(11), 118301 (2010).
    [CrossRef] [PubMed]
  23. Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
    [CrossRef] [PubMed]
  24. S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett.14(5), 2498–2504 (2014), doi:.
    [CrossRef] [PubMed]
  25. D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium,” Phys. Rev. A48(6), 4583–4587 (1993).
    [CrossRef] [PubMed]
  26. E. Stryland and M. Sheik-Bahae, “Z-Scan Measurements of Optical Nonlinearities,”Characterization techniques and tabulations for organic nonlinear materials,” Characterization Techniques and Tabulations for Organic Nonlinear Materials 655–692 (1998).
  27. X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett.74(2), 164–166 (1999).
    [CrossRef]
  28. W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett.111(21), 218302 (2013).
    [CrossRef] [PubMed]
  29. G. Assanto and M. Peccianti, “Spatial solitons in nematic liquid crystals,” IEEE J. Quantum Electron.39(1), 13–21 (2003).
    [CrossRef]
  30. Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, “Self-trapping of light in an organic photorefractive glass,” Opt. Lett.28(24), 2509–2511 (2003).
    [CrossRef] [PubMed]
  31. Y. Cheung and S. Gayen, “Optical nonlinearities of tea studied by Z-scan and four-wave mixing techniques,” J. Opt. Soc. Am. B11(4), 636–643 (1994).
    [CrossRef]
  32. R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater.31(11), 1591–1594 (2009).
    [CrossRef]
  33. V. Smith, P. Cala, W. Man, and Z. Chen, “Dark soliton attraction and optical spatial shock waves observed in m-cresol/nylon solutions,” presented at the thirty-fourth Conference on Lasers and Electro-Optics (CLEO:2014), San Jose, CA, USA, 8–13 June. Paper FW3D.1 (2014).
    [CrossRef]

2014

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett.14(5), 2498–2504 (2014), doi:.
[CrossRef] [PubMed]

2013

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett.111(21), 218302 (2013).
[CrossRef] [PubMed]

S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A87(5), 053811 (2013).
[CrossRef]

S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett.38(18), 3585–3587 (2013).
[CrossRef] [PubMed]

2012

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys.75(8), 086401 (2012).
[CrossRef] [PubMed]

N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett.109(24), 243902 (2012).
[CrossRef] [PubMed]

2010

Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A82(1), 013826 (2010).
[CrossRef]

C. Conti and E. DelRe, “Optical supercavitation in soft matter,” Phys. Rev. Lett.105(11), 118301 (2010).
[CrossRef] [PubMed]

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

2009

R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater.31(11), 1591–1594 (2009).
[CrossRef]

2007

C. Barsi, W. Wan, C. Sun, and J. W. Fleischer, “Dispersive shock waves with nonlocal nonlinearity,” Opt. Lett.32(20), 2930–2932 (2007).
[CrossRef] [PubMed]

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys.3(1), 46–51 (2007).
[CrossRef]

2006

2003

1999

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett.74(2), 164–166 (1999).
[CrossRef]

1998

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep.298(2-3), 81–197 (1998).
[CrossRef]

1997

1996

1995

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett.74(11), 1978–1981 (1995).

1994

1993

D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium,” Phys. Rev. A48(6), 4583–4587 (1993).
[CrossRef] [PubMed]

1992

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett.69(17), 2503–2506 (1992).
[CrossRef] [PubMed]

B. Luther-Davies and Y. Xiaoping, “Waveguides and Y junctions formed in bulk media by using dark spatial solitons,” Opt. Lett.17(7), 496–498 (1992).
[CrossRef] [PubMed]

1991

J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett.16(1), 15–17 (1991).
[CrossRef] [PubMed]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett.66(12), 1583–1586 (1991).
[CrossRef] [PubMed]

1985

K. J. Blow and N. Doran, “Multiple dark soliton solutions of the nonlinear Schrodinger equation,” Phys. Lett. A107(2), 55–58 (1985).
[CrossRef]

1983

Aitchison, J. S.

Alencar, M.

R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater.31(11), 1591–1594 (2009).
[CrossRef]

Andersen, D. R.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett.66(12), 1583–1586 (1991).
[CrossRef] [PubMed]

Asaro, M.

Assanto, G.

G. Assanto and M. Peccianti, “Spatial solitons in nematic liquid crystals,” IEEE J. Quantum Electron.39(1), 13–21 (2003).
[CrossRef]

Bang, O.

Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A82(1), 013826 (2010).
[CrossRef]

A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett.96(4), 043901 (2006).
[CrossRef] [PubMed]

Barak, A.

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

Barsi, C.

Bashaw, M. C.

Blasberg, T.

D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium,” Phys. Rev. A48(6), 4583–4587 (1993).
[CrossRef] [PubMed]

Blow, K. J.

K. J. Blow and N. Doran, “Multiple dark soliton solutions of the nonlinear Schrodinger equation,” Phys. Lett. A107(2), 55–58 (1985).
[CrossRef]

Caetano, D. P.

Chang, B.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett.74(2), 164–166 (1999).
[CrossRef]

Chavez-Cerda, S.

Chen, Z.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett.14(5), 2498–2504 (2014), doi:.
[CrossRef] [PubMed]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett.111(21), 218302 (2013).
[CrossRef] [PubMed]

S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett.38(18), 3585–3587 (2013).
[CrossRef] [PubMed]

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys.75(8), 086401 (2012).
[CrossRef] [PubMed]

Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, “Self-trapping of light in an organic photorefractive glass,” Opt. Lett.28(24), 2509–2511 (2003).
[CrossRef] [PubMed]

Z. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett.22(23), 1751–1753 (1997).
[CrossRef] [PubMed]

Z. Chen, M. Mitchell, M. F. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett.21(9), 629–631 (1996).
[CrossRef] [PubMed]

Cheung, Y.

Christodoulides, D. N.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett.14(5), 2498–2504 (2014), doi:.
[CrossRef] [PubMed]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett.111(21), 218302 (2013).
[CrossRef] [PubMed]

S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett.38(18), 3585–3587 (2013).
[CrossRef] [PubMed]

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys.75(8), 086401 (2012).
[CrossRef] [PubMed]

Conti, C.

S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A87(5), 053811 (2013).
[CrossRef]

N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett.109(24), 243902 (2012).
[CrossRef] [PubMed]

C. Conti and E. DelRe, “Optical supercavitation in soft matter,” Phys. Rev. Lett.105(11), 118301 (2010).
[CrossRef] [PubMed]

N. Ghofraniha, G. Ruocco, C. Conti, and S. Trillo, “Spatial dynamics of shock waves in nonlocal media,” Conference Paper, Nonlinear Photonics, Computational Analysis (2007).
[CrossRef]

Crosignani, B.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett.74(11), 1978–1981 (1995).

DelRe, E.

S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A87(5), 053811 (2013).
[CrossRef]

N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett.109(24), 243902 (2012).
[CrossRef] [PubMed]

C. Conti and E. DelRe, “Optical supercavitation in soft matter,” Phys. Rev. Lett.105(11), 118301 (2010).
[CrossRef] [PubMed]

Doran, N.

K. J. Blow and N. Doran, “Multiple dark soliton solutions of the nonlinear Schrodinger equation,” Phys. Lett. A107(2), 55–58 (1985).
[CrossRef]

Dreischuh, A.

A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett.96(4), 043901 (2006).
[CrossRef] [PubMed]

Duree, G.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett.74(11), 1978–1981 (1995).

Fan, J.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett.74(2), 164–166 (1999).
[CrossRef]

Fardad, S.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett.14(5), 2498–2504 (2014), doi:.
[CrossRef] [PubMed]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett.111(21), 218302 (2013).
[CrossRef] [PubMed]

S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett.38(18), 3585–3587 (2013).
[CrossRef] [PubMed]

Fejer, M. M.

Fischer, R.

Fleischer, J. W.

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys.3(1), 46–51 (2007).
[CrossRef]

C. Barsi, W. Wan, C. Sun, and J. W. Fleischer, “Dispersive shock waves with nonlocal nonlinearity,” Opt. Lett.32(20), 2930–2932 (2007).
[CrossRef] [PubMed]

Folli, V.

N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett.109(24), 243902 (2012).
[CrossRef] [PubMed]

Garrett, M. H.

Gayen, S.

Gentilini, S.

S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A87(5), 053811 (2013).
[CrossRef]

N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett.109(24), 243902 (2012).
[CrossRef] [PubMed]

Ghofraniha, N.

S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A87(5), 053811 (2013).
[CrossRef]

N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett.109(24), 243902 (2012).
[CrossRef] [PubMed]

N. Ghofraniha, G. Ruocco, C. Conti, and S. Trillo, “Spatial dynamics of shock waves in nonlocal media,” Conference Paper, Nonlinear Photonics, Computational Analysis (2007).
[CrossRef]

Gordon, J. P.

He, M.

Heinrich, M.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett.14(5), 2498–2504 (2014), doi:.
[CrossRef] [PubMed]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett.111(21), 218302 (2013).
[CrossRef] [PubMed]

Hickman, J. M.

Hickmann, J.

R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater.31(11), 1591–1594 (2009).
[CrossRef]

Iturbe-Castillo, D.

Jackel, J. L.

Jia, S.

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys.3(1), 46–51 (2007).
[CrossRef]

Kaplan, A. E.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett.66(12), 1583–1586 (1991).
[CrossRef] [PubMed]

Kivshar, Y. S.

Kong, Q.

Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A82(1), 013826 (2010).
[CrossRef]

Krolikowski, W.

Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A82(1), 013826 (2010).
[CrossRef]

R. Fischer, D. N. Neshev, W. Krolikowski, Y. S. Kivshar, D. Iturbe-Castillo, S. Chavez-Cerda, M. R. Meneghetti, D. P. Caetano, and J. M. Hickman, “Oblique interaction of spatial dark-soliton stripes in nonlocal media,” Opt. Lett.31(20), 3010–3012 (2006).
[CrossRef] [PubMed]

A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett.96(4), 043901 (2006).
[CrossRef] [PubMed]

Lamhot, Y.

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

Lau, M.

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett.111(21), 218302 (2013).
[CrossRef] [PubMed]

Law, C. T.

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett.69(17), 2503–2506 (1992).
[CrossRef] [PubMed]

Leaird, D. E.

Liu, X.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett.74(2), 164–166 (1999).
[CrossRef]

Luther-Davies, B.

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep.298(2-3), 81–197 (1998).
[CrossRef]

B. Luther-Davies and Y. Xiaoping, “Waveguides and Y junctions formed in bulk media by using dark spatial solitons,” Opt. Lett.17(7), 496–498 (1992).
[CrossRef] [PubMed]

Maker, P. D.

Man, W.

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett.111(21), 218302 (2013).
[CrossRef] [PubMed]

S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett.38(18), 3585–3587 (2013).
[CrossRef] [PubMed]

Meneghetti, M.

R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater.31(11), 1591–1594 (2009).
[CrossRef]

Meneghetti, M. R.

Mills, M. S.

Mitchell, M.

Moerner, W. E.

Morin, M.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett.74(11), 1978–1981 (1995).

Muller, R. E.

Neshev, D. N.

Oliver, M. K.

Ostroverkhova, O.

Pan, Z.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett.74(2), 164–166 (1999).
[CrossRef]

Peccianti, M.

G. Assanto and M. Peccianti, “Spatial solitons in nematic liquid crystals,” IEEE J. Quantum Electron.39(1), 13–21 (2003).
[CrossRef]

Peleg, O.

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

Petersen, D. E.

A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett.96(4), 043901 (2006).
[CrossRef] [PubMed]

Porto, P. D.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett.74(11), 1978–1981 (1995).

Prakash, J.

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett.111(21), 218302 (2013).
[CrossRef] [PubMed]

Regan, J. J.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett.66(12), 1583–1586 (1991).
[CrossRef] [PubMed]

Ruocco, G.

N. Ghofraniha, G. Ruocco, C. Conti, and S. Trillo, “Spatial dynamics of shock waves in nonlocal media,” Conference Paper, Nonlinear Photonics, Computational Analysis (2007).
[CrossRef]

Salamo, G.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett.74(11), 1978–1981 (1995).

Salandrino, A.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett.14(5), 2498–2504 (2014), doi:.
[CrossRef] [PubMed]

Segev, M.

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys.75(8), 086401 (2012).
[CrossRef] [PubMed]

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

Z. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett.22(23), 1751–1753 (1997).
[CrossRef] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett.21(13), 943–945 (1996).
[CrossRef] [PubMed]

Z. Chen, M. Mitchell, M. F. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett.21(9), 629–631 (1996).
[CrossRef] [PubMed]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett.74(11), 1978–1981 (1995).

Sharp, E.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett.74(11), 1978–1981 (1995).

Shih, M. F.

Si, J.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett.74(2), 164–166 (1999).
[CrossRef]

Silberberg, Y.

Smith, P. W. E.

Souza, R.

R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater.31(11), 1591–1594 (2009).
[CrossRef]

Sun, C.

Suter, D.

D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium,” Phys. Rev. A48(6), 4583–4587 (1993).
[CrossRef] [PubMed]

Swartzlander, G. A.

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett.69(17), 2503–2506 (1992).
[CrossRef] [PubMed]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett.66(12), 1583–1586 (1991).
[CrossRef] [PubMed]

Taya, M.

Trillo, S.

N. Ghofraniha, G. Ruocco, C. Conti, and S. Trillo, “Spatial dynamics of shock waves in nonlocal media,” Conference Paper, Nonlinear Photonics, Computational Analysis (2007).
[CrossRef]

Twieg, R. J.

Valley, G. C.

Wan, M.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett.74(2), 164–166 (1999).
[CrossRef]

Wan, W.

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys.3(1), 46–51 (2007).
[CrossRef]

C. Barsi, W. Wan, C. Sun, and J. W. Fleischer, “Dispersive shock waves with nonlocal nonlinearity,” Opt. Lett.32(20), 2930–2932 (2007).
[CrossRef] [PubMed]

Wang, Q.

Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A82(1), 013826 (2010).
[CrossRef]

Weiner, A. M.

Wilson, D. W.

Xiaoping, Y.

Xie, S.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett.74(2), 164–166 (1999).
[CrossRef]

Xu, G.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett.74(2), 164–166 (1999).
[CrossRef]

Yang, Q.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett.74(2), 164–166 (1999).
[CrossRef]

Yariv, A.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett.74(11), 1978–1981 (1995).

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett.74(11), 1978–1981 (1995).

Ye, P.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett.74(2), 164–166 (1999).
[CrossRef]

Yin, H.

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett.66(12), 1583–1586 (1991).
[CrossRef] [PubMed]

Zhang, P.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett.14(5), 2498–2504 (2014), doi:.
[CrossRef] [PubMed]

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett.111(21), 218302 (2013).
[CrossRef] [PubMed]

S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett.38(18), 3585–3587 (2013).
[CrossRef] [PubMed]

Zhang, Z.

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett.111(21), 218302 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett.

X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, and M. Wan, “Third-order optical nonlinearity of the carbon nanotubes,” Appl. Phys. Lett.74(2), 164–166 (1999).
[CrossRef]

IEEE J. Quantum Electron.

G. Assanto and M. Peccianti, “Spatial solitons in nematic liquid crystals,” IEEE J. Quantum Electron.39(1), 13–21 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Nano Lett.

S. Fardad, A. Salandrino, M. Heinrich, P. Zhang, Z. Chen, and D. N. Christodoulides, “Plasmonic Resonant Solitons in Metallic Nanosuspensions,” Nano Lett.14(5), 2498–2504 (2014), doi:.
[CrossRef] [PubMed]

Nat. Phys.

W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nat. Phys.3(1), 46–51 (2007).
[CrossRef]

Opt. Lett.

J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett.8(11), 596–598 (1983).
[CrossRef] [PubMed]

J. S. Aitchison, A. M. Weiner, Y. Silberberg, D. E. Leaird, M. K. Oliver, J. L. Jackel, and P. W. E. Smith, “Experimental observation of spatial soliton interactions,” Opt. Lett.16(1), 15–17 (1991).
[CrossRef] [PubMed]

B. Luther-Davies and Y. Xiaoping, “Waveguides and Y junctions formed in bulk media by using dark spatial solitons,” Opt. Lett.17(7), 496–498 (1992).
[CrossRef] [PubMed]

Z. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett.22(23), 1751–1753 (1997).
[CrossRef] [PubMed]

Z. Chen, M. Mitchell, M. F. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett.21(9), 629–631 (1996).
[CrossRef] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett.21(13), 943–945 (1996).
[CrossRef] [PubMed]

Z. Chen, M. Asaro, O. Ostroverkhova, W. E. Moerner, M. He, and R. J. Twieg, “Self-trapping of light in an organic photorefractive glass,” Opt. Lett.28(24), 2509–2511 (2003).
[CrossRef] [PubMed]

R. Fischer, D. N. Neshev, W. Krolikowski, Y. S. Kivshar, D. Iturbe-Castillo, S. Chavez-Cerda, M. R. Meneghetti, D. P. Caetano, and J. M. Hickman, “Oblique interaction of spatial dark-soliton stripes in nonlocal media,” Opt. Lett.31(20), 3010–3012 (2006).
[CrossRef] [PubMed]

C. Barsi, W. Wan, C. Sun, and J. W. Fleischer, “Dispersive shock waves with nonlocal nonlinearity,” Opt. Lett.32(20), 2930–2932 (2007).
[CrossRef] [PubMed]

S. Fardad, M. S. Mills, P. Zhang, W. Man, Z. Chen, and D. N. Christodoulides, “Interactions between self-channeled optical beams in soft-matter systems with artificial nonlinearities,” Opt. Lett.38(18), 3585–3587 (2013).
[CrossRef] [PubMed]

Opt. Mater.

R. Souza, M. Alencar, M. Meneghetti, and J. Hickmann, “Large nonlocal nonlinear optical response of castor oil,” Opt. Mater.31(11), 1591–1594 (2009).
[CrossRef]

Phys. Lett. A

K. J. Blow and N. Doran, “Multiple dark soliton solutions of the nonlinear Schrodinger equation,” Phys. Lett. A107(2), 55–58 (1985).
[CrossRef]

Phys. Rep.

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep.298(2-3), 81–197 (1998).
[CrossRef]

Phys. Rev. A

Q. Kong, Q. Wang, O. Bang, and W. Krolikowski, “Analytic theory for the dark-soliton interaction in nonlocal nonlinear materials with an arbitrary degree of nonlocality,” Phys. Rev. A82(1), 013826 (2010).
[CrossRef]

D. Suter and T. Blasberg, “Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium,” Phys. Rev. A48(6), 4583–4587 (1993).
[CrossRef] [PubMed]

S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, “Shock waves in thermal lensing,” Phys. Rev. A87(5), 053811 (2013).
[CrossRef]

Phys. Rev. Lett.

W. Man, S. Fardad, Z. Zhang, J. Prakash, M. Lau, P. Zhang, M. Heinrich, D. N. Christodoulides, and Z. Chen, “Optical nonlinearities and enhanced light transmission in soft-matter systems with tunable polarizabilities,” Phys. Rev. Lett.111(21), 218302 (2013).
[CrossRef] [PubMed]

C. Conti and E. DelRe, “Optical supercavitation in soft matter,” Phys. Rev. Lett.105(11), 118301 (2010).
[CrossRef] [PubMed]

Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010).
[CrossRef] [PubMed]

A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang, and W. Krolikowski, “Observation of attraction between dark solitons,” Phys. Rev. Lett.96(4), 043901 (2006).
[CrossRef] [PubMed]

G. A. Swartzlander and C. T. Law, “Optical vortex solitons observed in Kerr nonlinear media,” Phys. Rev. Lett.69(17), 2503–2506 (1992).
[CrossRef] [PubMed]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. D. Porto, E. Sharp, A. Yariv, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett.74(11), 1978–1981 (1995).

N. Ghofraniha, S. Gentilini, V. Folli, E. Delre, and C. Conti, “Shock waves in disordered media,” Phys. Rev. Lett.109(24), 243902 (2012).
[CrossRef] [PubMed]

G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett.66(12), 1583–1586 (1991).
[CrossRef] [PubMed]

Rep. Prog. Phys.

Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys.75(8), 086401 (2012).
[CrossRef] [PubMed]

Other

N. Ghofraniha, G. Ruocco, C. Conti, and S. Trillo, “Spatial dynamics of shock waves in nonlocal media,” Conference Paper, Nonlinear Photonics, Computational Analysis (2007).
[CrossRef]

E. Stryland and M. Sheik-Bahae, “Z-Scan Measurements of Optical Nonlinearities,”Characterization techniques and tabulations for organic nonlinear materials,” Characterization Techniques and Tabulations for Organic Nonlinear Materials 655–692 (1998).

V. Smith, P. Cala, W. Man, and Z. Chen, “Dark soliton attraction and optical spatial shock waves observed in m-cresol/nylon solutions,” presented at the thirty-fourth Conference on Lasers and Electro-Optics (CLEO:2014), San Jose, CA, USA, 8–13 June. Paper FW3D.1 (2014).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transverse intensity patterns imaged at the input or output surfaces, demonstrating the giant and isotropic self-defocusing effect in the m-cresol/nylon solution. (a) The focused Gaussian beam (12μm FWHM) at the input of the sample. (b) The output (33μm FWHM) due to normal diffraction after propagating 2mm in our sample at a power less than 1mW. (c) The output (219μm FWHM) due to strong defocusing nonlinearity at a power of 30mW. (d) The input dark cross (38 μm stripe width) created by using an amplitude mask of two thin wires. (e) Linear diffraction output after 5mm propagation in the sample at a power less than 1mW. (f) At a power of 100mW, the output profile shows that Y-junctions of diverging solitons are created with little variation between the horizontal and vertical directions.

Fig. 2
Fig. 2

Quantifying the defocusing nonlinearity of the m-cresol/nylon solutions with different concentrations. (a) The output beam diameter (after 2mm propagation) as a function of input power for different concentrations of nylon. (b) The measured |n2|, absolute values of the Kerr coefficient, as a function of nylon concentrations using the z-scan method. As seen from these figures, the strength of the nonlinearity in our thermal media can be easily turned across a large range, simply by varying the nylon concentration.

Fig. 3
Fig. 3

Transverse intensity patterns imaged at the input or output surfaces demonstrating formation of a dark soliton observed in m-cresol/nylon solution. (a) Input: a dark stripe with a width of 39 ± 2 μm created using a π-phase mask. (b) Linear output beam profile after 10 mm of propagation at power less than 1 mW. The dark stripe diffracts to a width of 100 ± 3 μm. (c) Nonlinear output beam profile after 10 mm of propagation at 50mW power. The stripe width decreases to 41 ± 2 μm.

Fig. 4
Fig. 4

Demonstration of dark soliton attraction. Transverse intensity patterns imaged at the input or output surfaces showing: (a) Interference indicating the two separate π-phase-jumps; (b) The two dark stripes at the input, separated by a distance of 100μm; (c) Linear output at power less than 1mW after 5mm of propagation. (d)-(f) Output patterns taken at different powers of 1.0, 2.0 and 3.0 W respectively. The stripe separation decreases to 64 μm in (f). (g) Plot of the stripe separation as a function of input power.

Tables (1)

Tables Icon

Table 1 Comparison of measured n2 values for various known thermal defocusing media.

Metrics