Abstract

Transparent Y3Al5O12 (YAG) ceramics haze in annealing and thermal-bonding because of second phase exsolution. To address this problem, SiO2 and fluorides co-doped transparent ceramics were prepared from YAG powders by slip casting and vacuum sintering method. 0~0.18 wt% of fluorides were doped into YAG ceramics as sintering aids along with 0~1.5 wt% of SiO2. Fluorides prompted sintering process and improved optical properties of sintered samples. SiO2 lightly doped (0.027 wt%) YAG transparent ceramics were obtained by co-doping with fluorides. Composition analysis showed that fluorides decreased Si content in sintered YAG ceramics and as a result, the formation of Si-riched second phase was successfully suppressed in annealing process.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).
  2. N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, “Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm,” Opt. Lett.35(7), 922–924 (2010).
    [CrossRef] [PubMed]
  3. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
    [CrossRef]
  4. T. Yanagitani, H. Yagi, and Y. Yamasaki, “Production of fine powder of yttrium aluminum garnet,” Japanese patent 10–101411, 1998.
  5. T. Yanagitani, H. Yagi, and M. Ichikawa, “Production of yttrium-aluminum-garnet fine powder,” Japanese patent 10–101333, 1998.
  6. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
    [CrossRef]
  7. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
    [CrossRef]
  8. H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett.36(9), 1575–1577 (2011).
    [CrossRef] [PubMed]
  9. K. Ueda, “Recent progress of high-power ceramic lasers,” presented at the Third International Conference on Ultrahigh Intensity Lasers Tongli, China, 27–31 Oct. 2008.
  10. S. Jiang, T. Lu, and J. Chen, “Ab initio study the effects of Si and Mg dopants on point defects and Y diffusion in YAG,” Comput. Mater. Sci.69(0), 261–266 (2013).
    [CrossRef]
  11. A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc.94(5), 1380–1387 (2011).
    [CrossRef]
  12. F. Tang, J. Huang, W. Guo, W. Wang, B. Fei, and Y. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater.34(5), 757–760 (2012).
    [CrossRef]
  13. S.-H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis-Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(7), 1456–1463 (2009).
    [CrossRef]
  14. K. Fujioka, A. Sugiyama, Y. Fujimoto, K. Kawanaka, and N. Miyanaga, “Ion diffusion at bonding interface of composite ceramic YAG,” presented at the Ninth Laser Ceramics Symposium, Daejeon, Korea, 2–3 Dec. 2013.
  15. A. J. Stevenson, E. R. Kupp, and G. L. Messing, “Low temperature, transient liquid phase sintering of B2O3-SiO2-doped Nd:YAG transparent ceramics,” J. Mater. Res.26(9), 1151–1158 (2011).
    [CrossRef]
  16. R. Boulesteix, A. Maître, L. Chrétien, Y. Rabinovitch, and C. Sallé, “Microstructural evolution during vacuum sintering of yttrium aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc.96(6), 1724–1731 (2013).
    [CrossRef]
  17. M. Suárez, A. Fernández, J. L. Menéndez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc.30(6), 1489–1494 (2010).
    [CrossRef]
  18. A. Ikesue and K. Kamata, “Role of Si on Nd solid-solution of YAG ceramics,” J. Ceram. Soc. Jpn.103(1197), 489–493 (1995).
    [CrossRef]
  19. G. Lambotte and P. Chartrand, “Thermodynamic evaluation and optimization of the Al2O3–SiO2–AlF3–SiF4 reciprocal system using the modified quasichemical model,” J. Am. Ceram. Soc.94(11), 4000–4008 (2011).
    [CrossRef]

2013

S. Jiang, T. Lu, and J. Chen, “Ab initio study the effects of Si and Mg dopants on point defects and Y diffusion in YAG,” Comput. Mater. Sci.69(0), 261–266 (2013).
[CrossRef]

R. Boulesteix, A. Maître, L. Chrétien, Y. Rabinovitch, and C. Sallé, “Microstructural evolution during vacuum sintering of yttrium aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc.96(6), 1724–1731 (2013).
[CrossRef]

2012

F. Tang, J. Huang, W. Guo, W. Wang, B. Fei, and Y. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater.34(5), 757–760 (2012).
[CrossRef]

2011

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc.94(5), 1380–1387 (2011).
[CrossRef]

G. Lambotte and P. Chartrand, “Thermodynamic evaluation and optimization of the Al2O3–SiO2–AlF3–SiF4 reciprocal system using the modified quasichemical model,” J. Am. Ceram. Soc.94(11), 4000–4008 (2011).
[CrossRef]

A. J. Stevenson, E. R. Kupp, and G. L. Messing, “Low temperature, transient liquid phase sintering of B2O3-SiO2-doped Nd:YAG transparent ceramics,” J. Mater. Res.26(9), 1151–1158 (2011).
[CrossRef]

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett.36(9), 1575–1577 (2011).
[CrossRef] [PubMed]

2010

N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, “Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm,” Opt. Lett.35(7), 922–924 (2010).
[CrossRef] [PubMed]

M. Suárez, A. Fernández, J. L. Menéndez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc.30(6), 1489–1494 (2010).
[CrossRef]

2009

S.-H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis-Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(7), 1456–1463 (2009).
[CrossRef]

2007

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

2006

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).

2001

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
[CrossRef]

1995

A. Ikesue and K. Kamata, “Role of Si on Nd solid-solution of YAG ceramics,” J. Ceram. Soc. Jpn.103(1197), 489–493 (1995).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Anderson, J. M.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc.94(5), 1380–1387 (2011).
[CrossRef]

S.-H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis-Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(7), 1456–1463 (2009).
[CrossRef]

Boulesteix, R.

R. Boulesteix, A. Maître, L. Chrétien, Y. Rabinovitch, and C. Sallé, “Microstructural evolution during vacuum sintering of yttrium aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc.96(6), 1724–1731 (2013).
[CrossRef]

Cao, Y.

F. Tang, J. Huang, W. Guo, W. Wang, B. Fei, and Y. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater.34(5), 757–760 (2012).
[CrossRef]

Chartrand, P.

G. Lambotte and P. Chartrand, “Thermodynamic evaluation and optimization of the Al2O3–SiO2–AlF3–SiF4 reciprocal system using the modified quasichemical model,” J. Am. Ceram. Soc.94(11), 4000–4008 (2011).
[CrossRef]

Chen, H.

Chen, J.

S. Jiang, T. Lu, and J. Chen, “Ab initio study the effects of Si and Mg dopants on point defects and Y diffusion in YAG,” Comput. Mater. Sci.69(0), 261–266 (2013).
[CrossRef]

Chrétien, L.

R. Boulesteix, A. Maître, L. Chrétien, Y. Rabinovitch, and C. Sallé, “Microstructural evolution during vacuum sintering of yttrium aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc.96(6), 1724–1731 (2013).
[CrossRef]

Dickey, E. C.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc.94(5), 1380–1387 (2011).
[CrossRef]

S.-H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis-Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(7), 1456–1463 (2009).
[CrossRef]

Dong, J.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).

Dubinskii, M.

Dumm, J. Q.

S.-H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis-Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(7), 1456–1463 (2009).
[CrossRef]

Fei, B.

F. Tang, J. Huang, W. Guo, W. Wang, B. Fei, and Y. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater.34(5), 757–760 (2012).
[CrossRef]

Fernández, A.

M. Suárez, A. Fernández, J. L. Menéndez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc.30(6), 1489–1494 (2010).
[CrossRef]

Guo, W.

F. Tang, J. Huang, W. Guo, W. Wang, B. Fei, and Y. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater.34(5), 757–760 (2012).
[CrossRef]

Huang, J.

F. Tang, J. Huang, W. Guo, W. Wang, B. Fei, and Y. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater.34(5), 757–760 (2012).
[CrossRef]

Ikesue, A.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

A. Ikesue and K. Kamata, “Role of Si on Nd solid-solution of YAG ceramics,” J. Ceram. Soc. Jpn.103(1197), 489–493 (1995).
[CrossRef]

Jiang, S.

S. Jiang, T. Lu, and J. Chen, “Ab initio study the effects of Si and Mg dopants on point defects and Y diffusion in YAG,” Comput. Mater. Sci.69(0), 261–266 (2013).
[CrossRef]

Kamata, K.

A. Ikesue and K. Kamata, “Role of Si on Nd solid-solution of YAG ceramics,” J. Ceram. Soc. Jpn.103(1197), 489–493 (1995).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Kaminskii, A. A.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
[CrossRef]

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Kudryashov, A.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
[CrossRef]

Kupp, E. R.

A. J. Stevenson, E. R. Kupp, and G. L. Messing, “Low temperature, transient liquid phase sintering of B2O3-SiO2-doped Nd:YAG transparent ceramics,” J. Mater. Res.26(9), 1151–1158 (2011).
[CrossRef]

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc.94(5), 1380–1387 (2011).
[CrossRef]

N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, “Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm,” Opt. Lett.35(7), 922–924 (2010).
[CrossRef] [PubMed]

S.-H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis-Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(7), 1456–1463 (2009).
[CrossRef]

Lambotte, G.

G. Lambotte and P. Chartrand, “Thermodynamic evaluation and optimization of the Al2O3–SiO2–AlF3–SiF4 reciprocal system using the modified quasichemical model,” J. Am. Ceram. Soc.94(11), 4000–4008 (2011).
[CrossRef]

Lee, S.-H.

S.-H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis-Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(7), 1456–1463 (2009).
[CrossRef]

Li, X.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc.94(5), 1380–1387 (2011).
[CrossRef]

S.-H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis-Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(7), 1456–1463 (2009).
[CrossRef]

Lu, J.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
[CrossRef]

Lu, T.

S. Jiang, T. Lu, and J. Chen, “Ab initio study the effects of Si and Mg dopants on point defects and Y diffusion in YAG,” Comput. Mater. Sci.69(0), 261–266 (2013).
[CrossRef]

Maître, A.

R. Boulesteix, A. Maître, L. Chrétien, Y. Rabinovitch, and C. Sallé, “Microstructural evolution during vacuum sintering of yttrium aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc.96(6), 1724–1731 (2013).
[CrossRef]

Martinez, M. A.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc.94(5), 1380–1387 (2011).
[CrossRef]

Menéndez, J. L.

M. Suárez, A. Fernández, J. L. Menéndez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc.30(6), 1489–1494 (2010).
[CrossRef]

Merkle, L. D.

Messing, G. L.

A. J. Stevenson, E. R. Kupp, and G. L. Messing, “Low temperature, transient liquid phase sintering of B2O3-SiO2-doped Nd:YAG transparent ceramics,” J. Mater. Res.26(9), 1151–1158 (2011).
[CrossRef]

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc.94(5), 1380–1387 (2011).
[CrossRef]

N. Ter-Gabrielyan, L. D. Merkle, E. R. Kupp, G. L. Messing, and M. Dubinskii, “Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm,” Opt. Lett.35(7), 922–924 (2010).
[CrossRef] [PubMed]

S.-H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis-Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(7), 1456–1463 (2009).
[CrossRef]

Misawa, K.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
[CrossRef]

Mueller, K. T.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc.94(5), 1380–1387 (2011).
[CrossRef]

Murai, T.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
[CrossRef]

Nygren, M.

M. Suárez, A. Fernández, J. L. Menéndez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc.30(6), 1489–1494 (2010).
[CrossRef]

Prabhu, M.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
[CrossRef]

Quarles, G. J.

S.-H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis-Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(7), 1456–1463 (2009).
[CrossRef]

Rabinovitch, Y.

R. Boulesteix, A. Maître, L. Chrétien, Y. Rabinovitch, and C. Sallé, “Microstructural evolution during vacuum sintering of yttrium aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc.96(6), 1724–1731 (2013).
[CrossRef]

Sallé, C.

R. Boulesteix, A. Maître, L. Chrétien, Y. Rabinovitch, and C. Sallé, “Microstructural evolution during vacuum sintering of yttrium aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc.96(6), 1724–1731 (2013).
[CrossRef]

Shen, D.

Shirakawa, A.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).

Simonaitis-Castillo, V. K.

S.-H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis-Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(7), 1456–1463 (2009).
[CrossRef]

Stevenson, A. J.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc.94(5), 1380–1387 (2011).
[CrossRef]

A. J. Stevenson, E. R. Kupp, and G. L. Messing, “Low temperature, transient liquid phase sintering of B2O3-SiO2-doped Nd:YAG transparent ceramics,” J. Mater. Res.26(9), 1151–1158 (2011).
[CrossRef]

S.-H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis-Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(7), 1456–1463 (2009).
[CrossRef]

Suárez, M.

M. Suárez, A. Fernández, J. L. Menéndez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc.30(6), 1489–1494 (2010).
[CrossRef]

Suchy, D. L.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc.94(5), 1380–1387 (2011).
[CrossRef]

Taira, T.

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

Takaichi, K.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
[CrossRef]

Tang, D.

Tang, F.

F. Tang, J. Huang, W. Guo, W. Wang, B. Fei, and Y. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater.34(5), 757–760 (2012).
[CrossRef]

Ter-Gabrielyan, N.

Torrecillas, R.

M. Suárez, A. Fernández, J. L. Menéndez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc.30(6), 1489–1494 (2010).
[CrossRef]

Tsunekane, M.

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

Ueda, K.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
[CrossRef]

Uematsu, T.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
[CrossRef]

Wang, W.

F. Tang, J. Huang, W. Guo, W. Wang, B. Fei, and Y. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater.34(5), 757–760 (2012).
[CrossRef]

Xu, J.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
[CrossRef]

Yagi, H.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
[CrossRef]

Yanagitani, T.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
[CrossRef]

Yang, H.

Yang, X.

Yoshida, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Zhang, J.

Zhao, T.

Zhao, Z.

M. Suárez, A. Fernández, J. L. Menéndez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc.30(6), 1489–1494 (2010).
[CrossRef]

Appl. Phys. Lett.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, and A. Kudryashov, “72 W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett.78(23), 3586–3588 (2001).
[CrossRef]

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett.89(9), 091114 (2006).

Comput. Mater. Sci.

S. Jiang, T. Lu, and J. Chen, “Ab initio study the effects of Si and Mg dopants on point defects and Y diffusion in YAG,” Comput. Mater. Sci.69(0), 261–266 (2013).
[CrossRef]

J. Am. Ceram. Soc.

A. J. Stevenson, X. Li, M. A. Martinez, J. M. Anderson, D. L. Suchy, E. R. Kupp, E. C. Dickey, K. T. Mueller, and G. L. Messing, “Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics,” J. Am. Ceram. Soc.94(5), 1380–1387 (2011).
[CrossRef]

S.-H. Lee, E. R. Kupp, A. J. Stevenson, J. M. Anderson, G. L. Messing, X. Li, E. C. Dickey, J. Q. Dumm, V. K. Simonaitis-Castillo, and G. J. Quarles, “Hot isostatic pressing of transparent Nd:YAG ceramics,” J. Am. Ceram. Soc.92(7), 1456–1463 (2009).
[CrossRef]

R. Boulesteix, A. Maître, L. Chrétien, Y. Rabinovitch, and C. Sallé, “Microstructural evolution during vacuum sintering of yttrium aluminum garnet transparent ceramics: toward the origin of residual porosity affecting the transparency,” J. Am. Ceram. Soc.96(6), 1724–1731 (2013).
[CrossRef]

G. Lambotte and P. Chartrand, “Thermodynamic evaluation and optimization of the Al2O3–SiO2–AlF3–SiF4 reciprocal system using the modified quasichemical model,” J. Am. Ceram. Soc.94(11), 4000–4008 (2011).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

J. Ceram. Soc. Jpn.

A. Ikesue and K. Kamata, “Role of Si on Nd solid-solution of YAG ceramics,” J. Ceram. Soc. Jpn.103(1197), 489–493 (1995).
[CrossRef]

J. Eur. Ceram. Soc.

M. Suárez, A. Fernández, J. L. Menéndez, M. Nygren, R. Torrecillas, and Z. Zhao, “Hot isostatic pressing of optically active Nd:YAG powders doped by a colloidal processing route,” J. Eur. Ceram. Soc.30(6), 1489–1494 (2010).
[CrossRef]

J. Mater. Res.

A. J. Stevenson, E. R. Kupp, and G. L. Messing, “Low temperature, transient liquid phase sintering of B2O3-SiO2-doped Nd:YAG transparent ceramics,” J. Mater. Res.26(9), 1151–1158 (2011).
[CrossRef]

Opt. Lett.

Opt. Mater.

F. Tang, J. Huang, W. Guo, W. Wang, B. Fei, and Y. Cao, “Photoluminescence and laser behavior of Yb:YAG ceramic,” Opt. Mater.34(5), 757–760 (2012).
[CrossRef]

Other

K. Fujioka, A. Sugiyama, Y. Fujimoto, K. Kawanaka, and N. Miyanaga, “Ion diffusion at bonding interface of composite ceramic YAG,” presented at the Ninth Laser Ceramics Symposium, Daejeon, Korea, 2–3 Dec. 2013.

K. Ueda, “Recent progress of high-power ceramic lasers,” presented at the Third International Conference on Ultrahigh Intensity Lasers Tongli, China, 27–31 Oct. 2008.

T. Yanagitani, H. Yagi, and Y. Yamasaki, “Production of fine powder of yttrium aluminum garnet,” Japanese patent 10–101411, 1998.

T. Yanagitani, H. Yagi, and M. Ichikawa, “Production of yttrium-aluminum-garnet fine powder,” Japanese patent 10–101333, 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fracture morphology of A1(a), A2(b), A3(c) and A4(d) before annealing.

Fig. 2
Fig. 2

In-line transmittance of A series samples before (a) and after (b) annealing.

Fig. 3
Fig. 3

Fracture morphology of A1(a), A2(b), A3(c) and B2(d) after annealing.

Fig. 4
Fig. 4

In-line transmittance of B series samples before (a) and after (b) annealing.

Tables (2)

Tables Icon

Table 1 Sample compositions

Tables Icon

Table 2 Si, F, Y, and Al content in A3 and B1 after sintering

Metrics