Abstract

The thermo-optic coefficient dn/dT at 632.8 nm and thermal expansion coefficient α of transparent ceramic yttrium aluminum garnet (YAG) were measured between room temperature and 600 K. The data showed that dn/dT increases with temperature and α is in good agreement with that of single-crystal YAG. To the best of our knowledge, these are the first experimental data of the thermo-optic properties of highly transparent ceramic YAG above room temperature. We also present, using previously reported values measured below room temperature, fitting parameters for dn/dT that are valid over a wide temperature range (70–600 K) with an average error of 2.0%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
    [CrossRef]
  2. T. Taira, “Re3+-ion doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 798–809 (2007).
    [CrossRef]
  3. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
    [CrossRef]
  4. R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Lets, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid-state laser,” in Conference on Advanced Solid-State Photonics (ASSP), Technical Digest (Optical Society of America, 2008), paper WC5.
    [CrossRef]
  5. H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express19(3), 2448–2455 (2011).
    [CrossRef] [PubMed]
  6. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  7. D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron.33(5), 861–873 (1997).
    [CrossRef]
  8. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98(10), 103514 (2005).
    [CrossRef]
  9. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
    [CrossRef]
  10. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
    [CrossRef]
  11. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express14(22), 10528–10536 (2006).
    [CrossRef] [PubMed]
  12. H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007).
    [CrossRef]
  13. Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater.31(5), 720–724 (2009).
    [CrossRef]
  14. Y. Sato and T. Taira, “Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials,” Opt. Mater. Express4(5), 876–888 (2014).
    [CrossRef]
  15. S. Geller, G. P. Espinosa, and P. B. Crandall, “Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets,” J. Appl. Cryst.2(2), 86–88 (1969).
    [CrossRef]
  16. K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, “Optical dispersion and thermal expansion of garnets Lu3Al5O12, Er3Al5O12, and Y3Al5O12,” Inorg. Mater.17, 308–310 (1981).
  17. T. K. Gupta and J. Valentich, “Thermal expansion of yttrium aluminum garnet,” J. Am. Ceram. Soc.54(7), 355–356 (1971).
    [CrossRef]
  18. J. D. Foster and L. M. Osterink, “Index of refraction and expansion thermal coefficients of Nd:YAG,” Appl. Opt.7(12), 2428–2429 (1968).
    [CrossRef] [PubMed]
  19. T. Y. Fan and J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt.37(9), 1635–1637 (1998).
    [CrossRef] [PubMed]
  20. R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt.38(15), 3282–3284 (1999).
    [CrossRef] [PubMed]
  21. R. Yasuhara, H. Furuse, A. Iwamoto, J. Kawanaka, and T. Yanagitani, “Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics,” Opt. Express20(28), 29531–29539 (2012).
    [CrossRef] [PubMed]
  22. V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012).
    [CrossRef]
  23. Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
    [CrossRef]
  24. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Application (Academic Press 1998).
  25. L. G. DeShazer, S. C. Rand, and B. A. Wechsler, Laser crystals, in Handbook of Laser Science and Technology, Vol. V: Optical Materials, Part 3, M. J. Weber, ed. (CRC Press, 1987).
  26. X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004).
    [CrossRef]

2014 (1)

2012 (2)

R. Yasuhara, H. Furuse, A. Iwamoto, J. Kawanaka, and T. Yanagitani, “Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics,” Opt. Express20(28), 29531–29539 (2012).
[CrossRef] [PubMed]

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012).
[CrossRef]

2011 (1)

2009 (1)

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater.31(5), 720–724 (2009).
[CrossRef]

2008 (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

2007 (4)

T. Taira, “Re3+-ion doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 798–809 (2007).
[CrossRef]

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007).
[CrossRef]

2006 (1)

2005 (2)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98(10), 103514 (2005).
[CrossRef]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
[CrossRef]

2004 (2)

Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
[CrossRef]

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron.33(5), 861–873 (1997).
[CrossRef]

1981 (1)

K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, “Optical dispersion and thermal expansion of garnets Lu3Al5O12, Er3Al5O12, and Y3Al5O12,” Inorg. Mater.17, 308–310 (1981).

1971 (1)

T. K. Gupta and J. Valentich, “Thermal expansion of yttrium aluminum garnet,” J. Am. Ceram. Soc.54(7), 355–356 (1971).
[CrossRef]

1969 (1)

S. Geller, G. P. Espinosa, and P. B. Crandall, “Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets,” J. Appl. Cryst.2(2), 86–88 (1969).
[CrossRef]

1968 (1)

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98(10), 103514 (2005).
[CrossRef]

Akiyama, J.

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater.31(5), 720–724 (2009).
[CrossRef]

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Avetisyan, A. A.

K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, “Optical dispersion and thermal expansion of garnets Lu3Al5O12, Er3Al5O12, and Y3Al5O12,” Inorg. Mater.17, 308–310 (1981).

Barabanenkov, Yu. N.

Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
[CrossRef]

Bisson, J. F.

Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
[CrossRef]

Bourdet, G.

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012).
[CrossRef]

Brown, D. C.

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
[CrossRef]

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron.33(5), 861–873 (1997).
[CrossRef]

Cardinali, V.

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012).
[CrossRef]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Crandall, P. B.

S. Geller, G. P. Espinosa, and P. B. Crandall, “Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets,” J. Appl. Cryst.2(2), 86–88 (1969).
[CrossRef]

Daneu, J. L.

Deng, P.

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004).
[CrossRef]

Espinosa, G. P.

S. Geller, G. P. Espinosa, and P. B. Crandall, “Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets,” J. Appl. Cryst.2(2), 86–88 (1969).
[CrossRef]

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98(10), 103514 (2005).
[CrossRef]

R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt.38(15), 3282–3284 (1999).
[CrossRef] [PubMed]

T. Y. Fan and J. L. Daneu, “Thermal coefficients of the optical path length and refractive index in YAG,” Appl. Opt.37(9), 1635–1637 (1998).
[CrossRef] [PubMed]

Foster, J. D.

Fujita, M.

Furuse, H.

Geller, S.

S. Geller, G. P. Espinosa, and P. B. Crandall, “Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets,” J. Appl. Cryst.2(2), 86–88 (1969).
[CrossRef]

Gupta, T. K.

T. K. Gupta and J. Valentich, “Thermal expansion of yttrium aluminum garnet,” J. Am. Ceram. Soc.54(7), 355–356 (1971).
[CrossRef]

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Imasaki, K.

Ishii, S.

Ivanov, S. N.

Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
[CrossRef]

Iwamoto, A.

Izawa, Y.

Kaminskii, A. A.

Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
[CrossRef]

Kawanaka, J.

Khazanov, E. N.

Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
[CrossRef]

Le Garrec, B.

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012).
[CrossRef]

Lu, J.

Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
[CrossRef]

Marmois, E.

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012).
[CrossRef]

Miyanaga, N.

Numazawa, T.

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007).
[CrossRef]

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98(10), 103514 (2005).
[CrossRef]

Osterink, L. M.

Ovanesyan, K. L.

K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, “Optical dispersion and thermal expansion of garnets Lu3Al5O12, Er3Al5O12, and Y3Al5O12,” Inorg. Mater.17, 308–310 (1981).

Petrosyan, A. G.

K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, “Optical dispersion and thermal expansion of garnets Lu3Al5O12, Er3Al5O12, and Y3Al5O12,” Inorg. Mater.17, 308–310 (1981).

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98(10), 103514 (2005).
[CrossRef]

Saiki, T.

Sato, Y.

Shirakawa, A.

Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
[CrossRef]

Shirinyan, G. O.

K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, “Optical dispersion and thermal expansion of garnets Lu3Al5O12, Er3Al5O12, and Y3Al5O12,” Inorg. Mater.17, 308–310 (1981).

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Taira, T.

Y. Sato and T. Taira, “Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials,” Opt. Mater. Express4(5), 876–888 (2014).
[CrossRef]

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater.31(5), 720–724 (2009).
[CrossRef]

T. Taira, “Re3+-ion doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 798–809 (2007).
[CrossRef]

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express14(22), 10528–10536 (2006).
[CrossRef] [PubMed]

Takaichi, K.

Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
[CrossRef]

Takeshita, K.

Taranov, A. V.

Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
[CrossRef]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Tsunekane, M.

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

Ueda, K.

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007).
[CrossRef]

Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
[CrossRef]

Valentich, J.

T. K. Gupta and J. Valentich, “Thermal expansion of yttrium aluminum garnet,” J. Am. Ceram. Soc.54(7), 355–356 (1971).
[CrossRef]

Wynne, R.

Xu, J.

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004).
[CrossRef]

Xu, X.

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004).
[CrossRef]

Yagi, H.

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007).
[CrossRef]

Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
[CrossRef]

Yanagitani, T.

R. Yasuhara, H. Furuse, A. Iwamoto, J. Kawanaka, and T. Yanagitani, “Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics,” Opt. Express20(28), 29531–29539 (2012).
[CrossRef] [PubMed]

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007).
[CrossRef]

Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
[CrossRef]

Yasuhara, R.

Zhao, Z.

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

Ceram. Int. (1)

H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda, “The physical properties of transparent Y3Al5O12: Elastic modulus at high temperature and thermal conductivity at low temperature,” Ceram. Int.33(5), 711–714 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron.33(5), 861–873 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 587–599 (2005).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

T. Taira, “Re3+-ion doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 798–809 (2007).
[CrossRef]

Inorg. Mater. (1)

K. L. Ovanesyan, A. G. Petrosyan, G. O. Shirinyan, and A. A. Avetisyan, “Optical dispersion and thermal expansion of garnets Lu3Al5O12, Er3Al5O12, and Y3Al5O12,” Inorg. Mater.17, 308–310 (1981).

J. Am. Ceram. Soc. (1)

T. K. Gupta and J. Valentich, “Thermal expansion of yttrium aluminum garnet,” J. Am. Ceram. Soc.54(7), 355–356 (1971).
[CrossRef]

J. Appl. Cryst. (1)

S. Geller, G. P. Espinosa, and P. B. Crandall, “Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets,” J. Appl. Cryst.2(2), 86–88 (1969).
[CrossRef]

J. Appl. Phys. (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98(10), 103514 (2005).
[CrossRef]

J. Exp. Theor. Phys. Lett. (1)

Yu. N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Nonequilibrium acoustic phonons in Y3Al5O12-based nanocrystalline ceramics,” J. Exp. Theor. Phys. Lett.79(7), 342–345 (2004).
[CrossRef]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics2(12), 721–727 (2008).
[CrossRef]

Opt. Express (3)

Opt. Mater. (2)

Y. Sato, J. Akiyama, and T. Taira, “Effects of rare-earth doping on thermal conductivity in Y3Al5O12 crystals,” Opt. Mater.31(5), 720–724 (2009).
[CrossRef]

V. Cardinali, E. Marmois, B. Le Garrec, and G. Bourdet, “Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature,” Opt. Mater.34(6), 990–994 (2012).
[CrossRef]

Opt. Mater. Express (1)

Solid State Commun. (1)

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x=0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004).
[CrossRef]

Other (4)

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Application (Academic Press 1998).

L. G. DeShazer, S. C. Rand, and B. A. Wechsler, Laser crystals, in Handbook of Laser Science and Technology, Vol. V: Optical Materials, Part 3, M. J. Weber, ed. (CRC Press, 1987).

R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Lets, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid-state laser,” in Conference on Advanced Solid-State Photonics (ASSP), Technical Digest (Optical Society of America, 2008), paper WC5.
[CrossRef]

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Photograph of the diffusion bonded ceramic YAG sample. (b) Sample configuration and optical path inside the sample. (c) Experimental setup of the interferometer.

Fig. 2
Fig. 2

Shift in the interference fringes in the vacuum path (signal A) and YAG path (signal B) over 432 to 438 K. Open symbols and solid lines represent the experimental values and sinusoidal fits, respectively.

Fig. 3
Fig. 3

Temperature dependence of the (a) thermal expansion coefficient α and (b) thermo-optic coefficient dn/dT of undoped YAG. Data is shown for our work on ceramic YAG (black circles), that reported elsewhere for ceramic YAG (red circles and blue squares) [21,22], and that reported for single-crystal YAG (green diamonds and triangles) [8,20] (up to 573 K; purple triangles) [14]. The dashed red lines are fits obtained from low-temperature data [21], the dotted black and dashed gray lines show single-crystal YAG data obtained from X-ray diffraction measurements [15,16], and the solid black line is the fit proposed in this work (Eq. (4)). All the dn/dT data shown were obtained using a 632.8 nm He-Ne laser.

Tables (1)

Tables Icon

Table 1 Fitted values of α and dn/dT for undoped ceramic YAG. The fractional change in the optical path length is also listed.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α = 1 L 1 d L 1 d T
1 n L 2 d ( n L 2 ) d T = α + 1 n d n d T
α ( T ) = A exp ( B T )
dn dT (T)= M 0 + M 1 T+ M 2 T 2 + M 3 T 3

Metrics