Abstract

Photoluminescent ZnO nanoparticles have wide applications in biolabeling. A dual phase hydrothermal method has been developed in this paper to synthesize nanoflower-shaped ZnO nanoparticles. Hydrogen peroxide was identified as a unique oxygenic source to promote the formation of ZnO nanoflowers from the organic zinc precursor. The reaction mechanism for the formation of ZnO nanoflowers was proposed and studied by Fourier transform infrared (FTIR). The as-prepared hydrophobic colloidal ZnO nanoparticles could be subsequently modified to water-soluble ZnO nanoflowers via a ligand exchange process with aminethanethiol HCl. The structure and optical properties of the ZnO nanoparticles were studied by transmission electron microscopy, X-ray diffraction, and photoluminescence measurement (PL). Both types of ZnO nanoflowers demonstrated good photoluminescent properties which could have wide applications.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. H. Zhong, Y. Y. Feng, Y. L. Zhang, I. Lieberwirth, and W. Knoll, “Nonhydrolytic alcoholysis route to morphology-controlled ZnO nanocrystals,” Small3(7), 1194–1199 (2007).
    [CrossRef] [PubMed]
  2. B. Dev Choudhury, A. Abedin, A. Dev, R. Sanatinia, and S. Anand, “Silicon micro-structure and ZnO nanowire hierarchical assortments for light management,” Opt. Mater. Express3(8), 1039–1048 (2013).
    [CrossRef]
  3. S. Chibber, S. A. Ansari, and R. Satar, “New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects,” J. Nanopart. Res.15(4), 1492–1504 (2013).
    [CrossRef]
  4. S. K. Arya, S. Saha, J. E. R. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, “Recent advances in ZnO nanostructures and thin films for biosensor applications: Review,” Anal. Chim. Acta737(1), 1–21 (2012).
    [CrossRef] [PubMed]
  5. J. Gomez and O. Tigli, “Zinc oxide nanostructures: from growth to application,” J. Mater. Sci.48(2), 612–624 (2013).
    [CrossRef]
  6. A. Moezzi, A. M. McDonagh, and M. B. Cortie, “Zinc oxide particles: synthesis, properties and applications,” Chem. Eng. J.185-186(1), 1–22 (2012).
    [CrossRef]
  7. H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008).
    [CrossRef] [PubMed]
  8. X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications,” Langmuir25(9), 5271–5275 (2009).
    [CrossRef] [PubMed]
  9. B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express1(4), 658–669 (2011).
    [CrossRef]
  10. H. J. Zhang, H. M. Xiong, Q. G. Ren, Y. Y. Xia, and J. L. Kong, “ZnO@silica core–shell nanoparticles with remarkable luminescence and stability in cell imaging,” J. Mater. Chem.22(26), 13159–13165 (2012).
    [CrossRef]
  11. F. Aldeek, C. Mustin, L. Balan, G. Medjahdi, T. Roques-Carmes, P. Arnoux, and R. Schneider, “Enhanced photostability from CdSe(S)/ZnO core/shell quantum dots and their use in biolabeling,” Eur. J. Inorg. Chem.2011(6), 794–801 (2011).
    [CrossRef]
  12. Y. Liu, K. Ai, Q. Yuan, and L. Lu, “Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging,” Biomaterials32(4), 1185–1192 (2011).
    [CrossRef] [PubMed]
  13. H. M. Xiong, “Photoluminescent ZnO nanoparticles modified by polymers,” J. Mater. Chem.20(21), 4251–4262 (2010).
    [CrossRef]
  14. L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,” J. Am. Chem. Soc.113(8), 2826–2833 (1991).
    [CrossRef]
  15. Y. Zhang, X. Wang, Y. Liu, S. Song, and D. Liu, “Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability,” J. Mater. Chem.22(24), 11971–11977 (2012).
    [CrossRef]
  16. L. H. Zhao and S. Q. Sun, “Synthesis of water-soluble ZnO nanocrystals with strong blue emission via a polyol hydrolysis route,” CrystEngComm13(6), 1864–1869 (2011).
    [CrossRef]
  17. Y. S. Fu, X. W. Du, S. A. Kulinich, J. S. Qiu, W. J. Qin, R. Li, J. Sun, and J. Liu, “Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route,” J. Am. Chem. Soc.129(51), 16029–16033 (2007).
    [CrossRef] [PubMed]
  18. X. Y. Xue, Z. H. Chen, L. L. Xing, C. H. Ma, Y. J. Chen, and T. H. Wang, “Enhanced optical and sensing properties of one-step synthesized Pt−ZnO nanoflowers,” J. Phys. Chem. C114(43), 18607–18611 (2010).
    [CrossRef]
  19. H. R. Pant, B. Pant, R. K. Sharma, A. Amarjargal, H. J. Kim, C. H. Park, L. D. Tijing, and C. S. Kim, “Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process,” Ceram. Int.39(2), 1503–1510 (2013).
    [CrossRef]
  20. A. Umar, M. S. Akhtar, A. Al-Hajry, M. S. Al-Assiri, and N. Y. Almehbad, “Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications,” Mater. Res. Bull.47(9), 2407–2414 (2012).
    [CrossRef]
  21. A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures,” Talanta78(1), 284–289 (2009).
    [CrossRef] [PubMed]
  22. S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-plasmon-enhanced band emission of ZnO nanoflowers decorated with Au nanoparticles,” Chemistry18(24), 7467–7472 (2012).
    [CrossRef] [PubMed]
  23. Z. W. Ai, Y. Wu, H. Wu, T. Wang, C. Chen, Y. Xu, and C. Liu, “Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition,” Nanoscale Res. Lett.8(1), 105–111 (2013).
    [CrossRef] [PubMed]
  24. N. Gaponik, D. V. Talapin, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, “Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents,” Nano Lett.2(8), 803–806 (2002).
    [CrossRef]
  25. R. Xie, U. Kolb, J. X. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
    [CrossRef] [PubMed]
  26. J. I. Kim and J. K. Lee, “Sub-kilogram-scale one-pot synthesis of highly luminescent and monodisperse core/shell quantum dots by the successive injection of precursors,” Adv. Funct. Mater.16(16), 2077–2082 (2006).
    [CrossRef]
  27. A. Narayanaswamy, H. Xu, N. Pradhan, M. Kim, and X. Peng, “Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis,” J. Am. Chem. Soc.128(31), 10310–10319 (2006).
    [CrossRef] [PubMed]
  28. Y. Chen, M. Kim, G. Lian, M. B. Johnson, and X. Peng, “Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals,” J. Am. Chem. Soc.127(38), 13331–13337 (2005).
    [CrossRef] [PubMed]
  29. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
    [CrossRef]
  30. Q. Wu, H. Cao, S. Zhang, X. Zhang, and D. Rabinovich, “Generation and optical properties of monodisperse wurtzite-type ZnS microspheres,” Inorg. Chem.45(18), 7316–7322 (2006).
    [CrossRef] [PubMed]
  31. B. Zhang, X. Ye, W. Hou, Y. Zhao, and Y. Xie, “Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods,” J. Phys. Chem. B110(18), 8978–8985 (2006).
    [CrossRef] [PubMed]

2013 (5)

H. R. Pant, B. Pant, R. K. Sharma, A. Amarjargal, H. J. Kim, C. H. Park, L. D. Tijing, and C. S. Kim, “Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process,” Ceram. Int.39(2), 1503–1510 (2013).
[CrossRef]

Z. W. Ai, Y. Wu, H. Wu, T. Wang, C. Chen, Y. Xu, and C. Liu, “Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition,” Nanoscale Res. Lett.8(1), 105–111 (2013).
[CrossRef] [PubMed]

S. Chibber, S. A. Ansari, and R. Satar, “New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects,” J. Nanopart. Res.15(4), 1492–1504 (2013).
[CrossRef]

J. Gomez and O. Tigli, “Zinc oxide nanostructures: from growth to application,” J. Mater. Sci.48(2), 612–624 (2013).
[CrossRef]

B. Dev Choudhury, A. Abedin, A. Dev, R. Sanatinia, and S. Anand, “Silicon micro-structure and ZnO nanowire hierarchical assortments for light management,” Opt. Mater. Express3(8), 1039–1048 (2013).
[CrossRef]

2012 (6)

A. Moezzi, A. M. McDonagh, and M. B. Cortie, “Zinc oxide particles: synthesis, properties and applications,” Chem. Eng. J.185-186(1), 1–22 (2012).
[CrossRef]

S. K. Arya, S. Saha, J. E. R. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, “Recent advances in ZnO nanostructures and thin films for biosensor applications: Review,” Anal. Chim. Acta737(1), 1–21 (2012).
[CrossRef] [PubMed]

S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-plasmon-enhanced band emission of ZnO nanoflowers decorated with Au nanoparticles,” Chemistry18(24), 7467–7472 (2012).
[CrossRef] [PubMed]

A. Umar, M. S. Akhtar, A. Al-Hajry, M. S. Al-Assiri, and N. Y. Almehbad, “Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications,” Mater. Res. Bull.47(9), 2407–2414 (2012).
[CrossRef]

Y. Zhang, X. Wang, Y. Liu, S. Song, and D. Liu, “Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability,” J. Mater. Chem.22(24), 11971–11977 (2012).
[CrossRef]

H. J. Zhang, H. M. Xiong, Q. G. Ren, Y. Y. Xia, and J. L. Kong, “ZnO@silica core–shell nanoparticles with remarkable luminescence and stability in cell imaging,” J. Mater. Chem.22(26), 13159–13165 (2012).
[CrossRef]

2011 (4)

F. Aldeek, C. Mustin, L. Balan, G. Medjahdi, T. Roques-Carmes, P. Arnoux, and R. Schneider, “Enhanced photostability from CdSe(S)/ZnO core/shell quantum dots and their use in biolabeling,” Eur. J. Inorg. Chem.2011(6), 794–801 (2011).
[CrossRef]

Y. Liu, K. Ai, Q. Yuan, and L. Lu, “Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging,” Biomaterials32(4), 1185–1192 (2011).
[CrossRef] [PubMed]

L. H. Zhao and S. Q. Sun, “Synthesis of water-soluble ZnO nanocrystals with strong blue emission via a polyol hydrolysis route,” CrystEngComm13(6), 1864–1869 (2011).
[CrossRef]

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express1(4), 658–669 (2011).
[CrossRef]

2010 (2)

H. M. Xiong, “Photoluminescent ZnO nanoparticles modified by polymers,” J. Mater. Chem.20(21), 4251–4262 (2010).
[CrossRef]

X. Y. Xue, Z. H. Chen, L. L. Xing, C. H. Ma, Y. J. Chen, and T. H. Wang, “Enhanced optical and sensing properties of one-step synthesized Pt−ZnO nanoflowers,” J. Phys. Chem. C114(43), 18607–18611 (2010).
[CrossRef]

2009 (2)

A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures,” Talanta78(1), 284–289 (2009).
[CrossRef] [PubMed]

X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications,” Langmuir25(9), 5271–5275 (2009).
[CrossRef] [PubMed]

2008 (1)

H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008).
[CrossRef] [PubMed]

2007 (2)

X. H. Zhong, Y. Y. Feng, Y. L. Zhang, I. Lieberwirth, and W. Knoll, “Nonhydrolytic alcoholysis route to morphology-controlled ZnO nanocrystals,” Small3(7), 1194–1199 (2007).
[CrossRef] [PubMed]

Y. S. Fu, X. W. Du, S. A. Kulinich, J. S. Qiu, W. J. Qin, R. Li, J. Sun, and J. Liu, “Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route,” J. Am. Chem. Soc.129(51), 16029–16033 (2007).
[CrossRef] [PubMed]

2006 (4)

J. I. Kim and J. K. Lee, “Sub-kilogram-scale one-pot synthesis of highly luminescent and monodisperse core/shell quantum dots by the successive injection of precursors,” Adv. Funct. Mater.16(16), 2077–2082 (2006).
[CrossRef]

A. Narayanaswamy, H. Xu, N. Pradhan, M. Kim, and X. Peng, “Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis,” J. Am. Chem. Soc.128(31), 10310–10319 (2006).
[CrossRef] [PubMed]

Q. Wu, H. Cao, S. Zhang, X. Zhang, and D. Rabinovich, “Generation and optical properties of monodisperse wurtzite-type ZnS microspheres,” Inorg. Chem.45(18), 7316–7322 (2006).
[CrossRef] [PubMed]

B. Zhang, X. Ye, W. Hou, Y. Zhao, and Y. Xie, “Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods,” J. Phys. Chem. B110(18), 8978–8985 (2006).
[CrossRef] [PubMed]

2005 (2)

R. Xie, U. Kolb, J. X. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
[CrossRef] [PubMed]

Y. Chen, M. Kim, G. Lian, M. B. Johnson, and X. Peng, “Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals,” J. Am. Chem. Soc.127(38), 13331–13337 (2005).
[CrossRef] [PubMed]

2002 (1)

N. Gaponik, D. V. Talapin, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, “Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents,” Nano Lett.2(8), 803–806 (2002).
[CrossRef]

1997 (1)

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

1991 (1)

L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,” J. Am. Chem. Soc.113(8), 2826–2833 (1991).
[CrossRef]

Abedin, A.

Ai, K.

Y. Liu, K. Ai, Q. Yuan, and L. Lu, “Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging,” Biomaterials32(4), 1185–1192 (2011).
[CrossRef] [PubMed]

Ai, Z. W.

Z. W. Ai, Y. Wu, H. Wu, T. Wang, C. Chen, Y. Xu, and C. Liu, “Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition,” Nanoscale Res. Lett.8(1), 105–111 (2013).
[CrossRef] [PubMed]

Akhtar, M. S.

A. Umar, M. S. Akhtar, A. Al-Hajry, M. S. Al-Assiri, and N. Y. Almehbad, “Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications,” Mater. Res. Bull.47(9), 2407–2414 (2012).
[CrossRef]

Al-Assiri, M. S.

A. Umar, M. S. Akhtar, A. Al-Hajry, M. S. Al-Assiri, and N. Y. Almehbad, “Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications,” Mater. Res. Bull.47(9), 2407–2414 (2012).
[CrossRef]

Aldeek, F.

F. Aldeek, C. Mustin, L. Balan, G. Medjahdi, T. Roques-Carmes, P. Arnoux, and R. Schneider, “Enhanced photostability from CdSe(S)/ZnO core/shell quantum dots and their use in biolabeling,” Eur. J. Inorg. Chem.2011(6), 794–801 (2011).
[CrossRef]

Al-Hajry, A.

A. Umar, M. S. Akhtar, A. Al-Hajry, M. S. Al-Assiri, and N. Y. Almehbad, “Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications,” Mater. Res. Bull.47(9), 2407–2414 (2012).
[CrossRef]

A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures,” Talanta78(1), 284–289 (2009).
[CrossRef] [PubMed]

Alivisatos, A. P.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

Almehbad, N. Y.

A. Umar, M. S. Akhtar, A. Al-Hajry, M. S. Al-Assiri, and N. Y. Almehbad, “Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications,” Mater. Res. Bull.47(9), 2407–2414 (2012).
[CrossRef]

Amarjargal, A.

H. R. Pant, B. Pant, R. K. Sharma, A. Amarjargal, H. J. Kim, C. H. Park, L. D. Tijing, and C. S. Kim, “Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process,” Ceram. Int.39(2), 1503–1510 (2013).
[CrossRef]

Anand, S.

Anderson, M. A.

L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,” J. Am. Chem. Soc.113(8), 2826–2833 (1991).
[CrossRef]

Ansari, S. A.

S. Chibber, S. A. Ansari, and R. Satar, “New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects,” J. Nanopart. Res.15(4), 1492–1504 (2013).
[CrossRef]

Arnoux, P.

F. Aldeek, C. Mustin, L. Balan, G. Medjahdi, T. Roques-Carmes, P. Arnoux, and R. Schneider, “Enhanced photostability from CdSe(S)/ZnO core/shell quantum dots and their use in biolabeling,” Eur. J. Inorg. Chem.2011(6), 794–801 (2011).
[CrossRef]

Arya, S. K.

S. K. Arya, S. Saha, J. E. R. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, “Recent advances in ZnO nanostructures and thin films for biosensor applications: Review,” Anal. Chim. Acta737(1), 1–21 (2012).
[CrossRef] [PubMed]

Balan, L.

F. Aldeek, C. Mustin, L. Balan, G. Medjahdi, T. Roques-Carmes, P. Arnoux, and R. Schneider, “Enhanced photostability from CdSe(S)/ZnO core/shell quantum dots and their use in biolabeling,” Eur. J. Inorg. Chem.2011(6), 794–801 (2011).
[CrossRef]

Basché, T.

R. Xie, U. Kolb, J. X. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
[CrossRef] [PubMed]

Bhansali, S.

S. K. Arya, S. Saha, J. E. R. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, “Recent advances in ZnO nanostructures and thin films for biosensor applications: Review,” Anal. Chim. Acta737(1), 1–21 (2012).
[CrossRef] [PubMed]

Cao, H.

Q. Wu, H. Cao, S. Zhang, X. Zhang, and D. Rabinovich, “Generation and optical properties of monodisperse wurtzite-type ZnS microspheres,” Inorg. Chem.45(18), 7316–7322 (2006).
[CrossRef] [PubMed]

Chen, C.

Z. W. Ai, Y. Wu, H. Wu, T. Wang, C. Chen, Y. Xu, and C. Liu, “Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition,” Nanoscale Res. Lett.8(1), 105–111 (2013).
[CrossRef] [PubMed]

Chen, Y.

Y. Chen, M. Kim, G. Lian, M. B. Johnson, and X. Peng, “Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals,” J. Am. Chem. Soc.127(38), 13331–13337 (2005).
[CrossRef] [PubMed]

Chen, Y. J.

X. Y. Xue, Z. H. Chen, L. L. Xing, C. H. Ma, Y. J. Chen, and T. H. Wang, “Enhanced optical and sensing properties of one-step synthesized Pt−ZnO nanoflowers,” J. Phys. Chem. C114(43), 18607–18611 (2010).
[CrossRef]

Chen, Z. H.

X. Y. Xue, Z. H. Chen, L. L. Xing, C. H. Ma, Y. J. Chen, and T. H. Wang, “Enhanced optical and sensing properties of one-step synthesized Pt−ZnO nanoflowers,” J. Phys. Chem. C114(43), 18607–18611 (2010).
[CrossRef]

Chibber, S.

S. Chibber, S. A. Ansari, and R. Satar, “New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects,” J. Nanopart. Res.15(4), 1492–1504 (2013).
[CrossRef]

Choo, E. S. G.

X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications,” Langmuir25(9), 5271–5275 (2009).
[CrossRef] [PubMed]

Cortie, M. B.

A. Moezzi, A. M. McDonagh, and M. B. Cortie, “Zinc oxide particles: synthesis, properties and applications,” Chem. Eng. J.185-186(1), 1–22 (2012).
[CrossRef]

Dev, A.

Dev Choudhury, B.

Ding, J.

X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications,” Langmuir25(9), 5271–5275 (2009).
[CrossRef] [PubMed]

Do, Y. R.

S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-plasmon-enhanced band emission of ZnO nanoflowers decorated with Au nanoparticles,” Chemistry18(24), 7467–7472 (2012).
[CrossRef] [PubMed]

Du, X. W.

Y. S. Fu, X. W. Du, S. A. Kulinich, J. S. Qiu, W. J. Qin, R. Li, J. Sun, and J. Liu, “Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route,” J. Am. Chem. Soc.129(51), 16029–16033 (2007).
[CrossRef] [PubMed]

Eychmüller, A.

N. Gaponik, D. V. Talapin, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, “Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents,” Nano Lett.2(8), 803–806 (2002).
[CrossRef]

Feng, Y. Y.

X. H. Zhong, Y. Y. Feng, Y. L. Zhang, I. Lieberwirth, and W. Knoll, “Nonhydrolytic alcoholysis route to morphology-controlled ZnO nanocrystals,” Small3(7), 1194–1199 (2007).
[CrossRef] [PubMed]

Fu, Y. S.

Y. S. Fu, X. W. Du, S. A. Kulinich, J. S. Qiu, W. J. Qin, R. Li, J. Sun, and J. Liu, “Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route,” J. Am. Chem. Soc.129(51), 16029–16033 (2007).
[CrossRef] [PubMed]

Fujita, Y.

Gaponik, N.

N. Gaponik, D. V. Talapin, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, “Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents,” Nano Lett.2(8), 803–806 (2002).
[CrossRef]

Gomez, J.

J. Gomez and O. Tigli, “Zinc oxide nanostructures: from growth to application,” J. Mater. Sci.48(2), 612–624 (2013).
[CrossRef]

Gupta, V.

S. K. Arya, S. Saha, J. E. R. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, “Recent advances in ZnO nanostructures and thin films for biosensor applications: Review,” Anal. Chim. Acta737(1), 1–21 (2012).
[CrossRef] [PubMed]

Hahn, Y. B.

A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures,” Talanta78(1), 284–289 (2009).
[CrossRef] [PubMed]

Hou, W.

B. Zhang, X. Ye, W. Hou, Y. Zhao, and Y. Xie, “Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods,” J. Phys. Chem. B110(18), 8978–8985 (2006).
[CrossRef] [PubMed]

Johnson, M. B.

Y. Chen, M. Kim, G. Lian, M. B. Johnson, and X. Peng, “Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals,” J. Am. Chem. Soc.127(38), 13331–13337 (2005).
[CrossRef] [PubMed]

Kadavanich, A. V.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

Kim, C. S.

H. R. Pant, B. Pant, R. K. Sharma, A. Amarjargal, H. J. Kim, C. H. Park, L. D. Tijing, and C. S. Kim, “Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process,” Ceram. Int.39(2), 1503–1510 (2013).
[CrossRef]

Kim, D. H.

S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-plasmon-enhanced band emission of ZnO nanoflowers decorated with Au nanoparticles,” Chemistry18(24), 7467–7472 (2012).
[CrossRef] [PubMed]

Kim, H. J.

H. R. Pant, B. Pant, R. K. Sharma, A. Amarjargal, H. J. Kim, C. H. Park, L. D. Tijing, and C. S. Kim, “Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process,” Ceram. Int.39(2), 1503–1510 (2013).
[CrossRef]

Kim, J. I.

J. I. Kim and J. K. Lee, “Sub-kilogram-scale one-pot synthesis of highly luminescent and monodisperse core/shell quantum dots by the successive injection of precursors,” Adv. Funct. Mater.16(16), 2077–2082 (2006).
[CrossRef]

Kim, M.

A. Narayanaswamy, H. Xu, N. Pradhan, M. Kim, and X. Peng, “Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis,” J. Am. Chem. Soc.128(31), 10310–10319 (2006).
[CrossRef] [PubMed]

Y. Chen, M. Kim, G. Lian, M. B. Johnson, and X. Peng, “Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals,” J. Am. Chem. Soc.127(38), 13331–13337 (2005).
[CrossRef] [PubMed]

Knoll, W.

X. H. Zhong, Y. Y. Feng, Y. L. Zhang, I. Lieberwirth, and W. Knoll, “Nonhydrolytic alcoholysis route to morphology-controlled ZnO nanocrystals,” Small3(7), 1194–1199 (2007).
[CrossRef] [PubMed]

Kochuveedu, S. T.

S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-plasmon-enhanced band emission of ZnO nanoflowers decorated with Au nanoparticles,” Chemistry18(24), 7467–7472 (2012).
[CrossRef] [PubMed]

Kolb, U.

R. Xie, U. Kolb, J. X. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
[CrossRef] [PubMed]

Kong, J. L.

H. J. Zhang, H. M. Xiong, Q. G. Ren, Y. Y. Xia, and J. L. Kong, “ZnO@silica core–shell nanoparticles with remarkable luminescence and stability in cell imaging,” J. Mater. Chem.22(26), 13159–13165 (2012).
[CrossRef]

Kornowski, A.

N. Gaponik, D. V. Talapin, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, “Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents,” Nano Lett.2(8), 803–806 (2002).
[CrossRef]

Kulinich, S. A.

Y. S. Fu, X. W. Du, S. A. Kulinich, J. S. Qiu, W. J. Qin, R. Li, J. Sun, and J. Liu, “Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route,” J. Am. Chem. Soc.129(51), 16029–16033 (2007).
[CrossRef] [PubMed]

Kumar, O.

Lee, J. K.

J. I. Kim and J. K. Lee, “Sub-kilogram-scale one-pot synthesis of highly luminescent and monodisperse core/shell quantum dots by the successive injection of precursors,” Adv. Funct. Mater.16(16), 2077–2082 (2006).
[CrossRef]

Li, J. X.

R. Xie, U. Kolb, J. X. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
[CrossRef] [PubMed]

Li, L.

X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications,” Langmuir25(9), 5271–5275 (2009).
[CrossRef] [PubMed]

Li, R.

Y. S. Fu, X. W. Du, S. A. Kulinich, J. S. Qiu, W. J. Qin, R. Li, J. Sun, and J. Liu, “Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route,” J. Am. Chem. Soc.129(51), 16029–16033 (2007).
[CrossRef] [PubMed]

Lian, G.

Y. Chen, M. Kim, G. Lian, M. B. Johnson, and X. Peng, “Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals,” J. Am. Chem. Soc.127(38), 13331–13337 (2005).
[CrossRef] [PubMed]

Lieberwirth, I.

X. H. Zhong, Y. Y. Feng, Y. L. Zhang, I. Lieberwirth, and W. Knoll, “Nonhydrolytic alcoholysis route to morphology-controlled ZnO nanocrystals,” Small3(7), 1194–1199 (2007).
[CrossRef] [PubMed]

Lin, J.

Liu, C.

Z. W. Ai, Y. Wu, H. Wu, T. Wang, C. Chen, Y. Xu, and C. Liu, “Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition,” Nanoscale Res. Lett.8(1), 105–111 (2013).
[CrossRef] [PubMed]

Liu, D.

Y. Zhang, X. Wang, Y. Liu, S. Song, and D. Liu, “Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability,” J. Mater. Chem.22(24), 11971–11977 (2012).
[CrossRef]

Liu, J.

Y. S. Fu, X. W. Du, S. A. Kulinich, J. S. Qiu, W. J. Qin, R. Li, J. Sun, and J. Liu, “Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route,” J. Am. Chem. Soc.129(51), 16029–16033 (2007).
[CrossRef] [PubMed]

Liu, Y.

Y. Zhang, X. Wang, Y. Liu, S. Song, and D. Liu, “Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability,” J. Mater. Chem.22(24), 11971–11977 (2012).
[CrossRef]

Y. Liu, K. Ai, Q. Yuan, and L. Lu, “Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging,” Biomaterials32(4), 1185–1192 (2011).
[CrossRef] [PubMed]

Lu, L.

Y. Liu, K. Ai, Q. Yuan, and L. Lu, “Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging,” Biomaterials32(4), 1185–1192 (2011).
[CrossRef] [PubMed]

Ma, C. H.

X. Y. Xue, Z. H. Chen, L. L. Xing, C. H. Ma, Y. J. Chen, and T. H. Wang, “Enhanced optical and sensing properties of one-step synthesized Pt−ZnO nanoflowers,” J. Phys. Chem. C114(43), 18607–18611 (2010).
[CrossRef]

McDonagh, A. M.

A. Moezzi, A. M. McDonagh, and M. B. Cortie, “Zinc oxide particles: synthesis, properties and applications,” Chem. Eng. J.185-186(1), 1–22 (2012).
[CrossRef]

Medjahdi, G.

F. Aldeek, C. Mustin, L. Balan, G. Medjahdi, T. Roques-Carmes, P. Arnoux, and R. Schneider, “Enhanced photostability from CdSe(S)/ZnO core/shell quantum dots and their use in biolabeling,” Eur. J. Inorg. Chem.2011(6), 794–801 (2011).
[CrossRef]

Mews, A.

R. Xie, U. Kolb, J. X. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
[CrossRef] [PubMed]

Moezzi, A.

A. Moezzi, A. M. McDonagh, and M. B. Cortie, “Zinc oxide particles: synthesis, properties and applications,” Chem. Eng. J.185-186(1), 1–22 (2012).
[CrossRef]

Mustin, C.

F. Aldeek, C. Mustin, L. Balan, G. Medjahdi, T. Roques-Carmes, P. Arnoux, and R. Schneider, “Enhanced photostability from CdSe(S)/ZnO core/shell quantum dots and their use in biolabeling,” Eur. J. Inorg. Chem.2011(6), 794–801 (2011).
[CrossRef]

Narayanaswamy, A.

A. Narayanaswamy, H. Xu, N. Pradhan, M. Kim, and X. Peng, “Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis,” J. Am. Chem. Soc.128(31), 10310–10319 (2006).
[CrossRef] [PubMed]

Neogi, A.

Oh, J. H.

S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-plasmon-enhanced band emission of ZnO nanoflowers decorated with Au nanoparticles,” Chemistry18(24), 7467–7472 (2012).
[CrossRef] [PubMed]

Pant, B.

H. R. Pant, B. Pant, R. K. Sharma, A. Amarjargal, H. J. Kim, C. H. Park, L. D. Tijing, and C. S. Kim, “Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process,” Ceram. Int.39(2), 1503–1510 (2013).
[CrossRef]

Pant, H. R.

H. R. Pant, B. Pant, R. K. Sharma, A. Amarjargal, H. J. Kim, C. H. Park, L. D. Tijing, and C. S. Kim, “Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process,” Ceram. Int.39(2), 1503–1510 (2013).
[CrossRef]

Park, C. H.

H. R. Pant, B. Pant, R. K. Sharma, A. Amarjargal, H. J. Kim, C. H. Park, L. D. Tijing, and C. S. Kim, “Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process,” Ceram. Int.39(2), 1503–1510 (2013).
[CrossRef]

Peng, X.

A. Narayanaswamy, H. Xu, N. Pradhan, M. Kim, and X. Peng, “Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis,” J. Am. Chem. Soc.128(31), 10310–10319 (2006).
[CrossRef] [PubMed]

Y. Chen, M. Kim, G. Lian, M. B. Johnson, and X. Peng, “Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals,” J. Am. Chem. Soc.127(38), 13331–13337 (2005).
[CrossRef] [PubMed]

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

Pradhan, N.

A. Narayanaswamy, H. Xu, N. Pradhan, M. Kim, and X. Peng, “Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis,” J. Am. Chem. Soc.128(31), 10310–10319 (2006).
[CrossRef] [PubMed]

Qin, W. J.

Y. S. Fu, X. W. Du, S. A. Kulinich, J. S. Qiu, W. J. Qin, R. Li, J. Sun, and J. Liu, “Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route,” J. Am. Chem. Soc.129(51), 16029–16033 (2007).
[CrossRef] [PubMed]

Qiu, J. S.

Y. S. Fu, X. W. Du, S. A. Kulinich, J. S. Qiu, W. J. Qin, R. Li, J. Sun, and J. Liu, “Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route,” J. Am. Chem. Soc.129(51), 16029–16033 (2007).
[CrossRef] [PubMed]

Rabinovich, D.

Q. Wu, H. Cao, S. Zhang, X. Zhang, and D. Rabinovich, “Generation and optical properties of monodisperse wurtzite-type ZnS microspheres,” Inorg. Chem.45(18), 7316–7322 (2006).
[CrossRef] [PubMed]

Rahman, M. M.

A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures,” Talanta78(1), 284–289 (2009).
[CrossRef] [PubMed]

Ramirez-Vick, J. E. R.

S. K. Arya, S. Saha, J. E. R. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, “Recent advances in ZnO nanostructures and thin films for biosensor applications: Review,” Anal. Chim. Acta737(1), 1–21 (2012).
[CrossRef] [PubMed]

Ren, Q. G.

H. J. Zhang, H. M. Xiong, Q. G. Ren, Y. Y. Xia, and J. L. Kong, “ZnO@silica core–shell nanoparticles with remarkable luminescence and stability in cell imaging,” J. Mater. Chem.22(26), 13159–13165 (2012).
[CrossRef]

H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008).
[CrossRef] [PubMed]

Rogach, A. L.

N. Gaponik, D. V. Talapin, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, “Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents,” Nano Lett.2(8), 803–806 (2002).
[CrossRef]

Roques-Carmes, T.

F. Aldeek, C. Mustin, L. Balan, G. Medjahdi, T. Roques-Carmes, P. Arnoux, and R. Schneider, “Enhanced photostability from CdSe(S)/ZnO core/shell quantum dots and their use in biolabeling,” Eur. J. Inorg. Chem.2011(6), 794–801 (2011).
[CrossRef]

Saha, S.

S. K. Arya, S. Saha, J. E. R. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, “Recent advances in ZnO nanostructures and thin films for biosensor applications: Review,” Anal. Chim. Acta737(1), 1–21 (2012).
[CrossRef] [PubMed]

Sanatinia, R.

Satar, R.

S. Chibber, S. A. Ansari, and R. Satar, “New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects,” J. Nanopart. Res.15(4), 1492–1504 (2013).
[CrossRef]

Schlamp, M. C.

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

Schneider, R.

F. Aldeek, C. Mustin, L. Balan, G. Medjahdi, T. Roques-Carmes, P. Arnoux, and R. Schneider, “Enhanced photostability from CdSe(S)/ZnO core/shell quantum dots and their use in biolabeling,” Eur. J. Inorg. Chem.2011(6), 794–801 (2011).
[CrossRef]

Senthilkumar, K.

Sharma, R. K.

H. R. Pant, B. Pant, R. K. Sharma, A. Amarjargal, H. J. Kim, C. H. Park, L. D. Tijing, and C. S. Kim, “Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process,” Ceram. Int.39(2), 1503–1510 (2013).
[CrossRef]

Singh, S. P.

S. K. Arya, S. Saha, J. E. R. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, “Recent advances in ZnO nanostructures and thin films for biosensor applications: Review,” Anal. Chim. Acta737(1), 1–21 (2012).
[CrossRef] [PubMed]

Song, S.

Y. Zhang, X. Wang, Y. Liu, S. Song, and D. Liu, “Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability,” J. Mater. Chem.22(24), 11971–11977 (2012).
[CrossRef]

Spanhel, L.

L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,” J. Am. Chem. Soc.113(8), 2826–2833 (1991).
[CrossRef]

Sun, J.

Y. S. Fu, X. W. Du, S. A. Kulinich, J. S. Qiu, W. J. Qin, R. Li, J. Sun, and J. Liu, “Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route,” J. Am. Chem. Soc.129(51), 16029–16033 (2007).
[CrossRef] [PubMed]

Sun, S. Q.

L. H. Zhao and S. Q. Sun, “Synthesis of water-soluble ZnO nanocrystals with strong blue emission via a polyol hydrolysis route,” CrystEngComm13(6), 1864–1869 (2011).
[CrossRef]

Talapin, D. V.

N. Gaponik, D. V. Talapin, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, “Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents,” Nano Lett.2(8), 803–806 (2002).
[CrossRef]

Tang, X.

X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications,” Langmuir25(9), 5271–5275 (2009).
[CrossRef] [PubMed]

Tigli, O.

J. Gomez and O. Tigli, “Zinc oxide nanostructures: from growth to application,” J. Mater. Sci.48(2), 612–624 (2013).
[CrossRef]

Tijing, L. D.

H. R. Pant, B. Pant, R. K. Sharma, A. Amarjargal, H. J. Kim, C. H. Park, L. D. Tijing, and C. S. Kim, “Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process,” Ceram. Int.39(2), 1503–1510 (2013).
[CrossRef]

Umar, A.

A. Umar, M. S. Akhtar, A. Al-Hajry, M. S. Al-Assiri, and N. Y. Almehbad, “Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications,” Mater. Res. Bull.47(9), 2407–2414 (2012).
[CrossRef]

A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures,” Talanta78(1), 284–289 (2009).
[CrossRef] [PubMed]

Urban, B. E.

Wang, T.

Z. W. Ai, Y. Wu, H. Wu, T. Wang, C. Chen, Y. Xu, and C. Liu, “Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition,” Nanoscale Res. Lett.8(1), 105–111 (2013).
[CrossRef] [PubMed]

Wang, T. H.

X. Y. Xue, Z. H. Chen, L. L. Xing, C. H. Ma, Y. J. Chen, and T. H. Wang, “Enhanced optical and sensing properties of one-step synthesized Pt−ZnO nanoflowers,” J. Phys. Chem. C114(43), 18607–18611 (2010).
[CrossRef]

Wang, X.

Y. Zhang, X. Wang, Y. Liu, S. Song, and D. Liu, “Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability,” J. Mater. Chem.22(24), 11971–11977 (2012).
[CrossRef]

Weller, H.

N. Gaponik, D. V. Talapin, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, “Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents,” Nano Lett.2(8), 803–806 (2002).
[CrossRef]

Wu, H.

Z. W. Ai, Y. Wu, H. Wu, T. Wang, C. Chen, Y. Xu, and C. Liu, “Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition,” Nanoscale Res. Lett.8(1), 105–111 (2013).
[CrossRef] [PubMed]

Wu, Q.

Q. Wu, H. Cao, S. Zhang, X. Zhang, and D. Rabinovich, “Generation and optical properties of monodisperse wurtzite-type ZnS microspheres,” Inorg. Chem.45(18), 7316–7322 (2006).
[CrossRef] [PubMed]

Wu, Y.

Z. W. Ai, Y. Wu, H. Wu, T. Wang, C. Chen, Y. Xu, and C. Liu, “Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition,” Nanoscale Res. Lett.8(1), 105–111 (2013).
[CrossRef] [PubMed]

Xia, Y. Y.

H. J. Zhang, H. M. Xiong, Q. G. Ren, Y. Y. Xia, and J. L. Kong, “ZnO@silica core–shell nanoparticles with remarkable luminescence and stability in cell imaging,” J. Mater. Chem.22(26), 13159–13165 (2012).
[CrossRef]

H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008).
[CrossRef] [PubMed]

Xie, R.

R. Xie, U. Kolb, J. X. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
[CrossRef] [PubMed]

Xie, Y.

B. Zhang, X. Ye, W. Hou, Y. Zhao, and Y. Xie, “Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods,” J. Phys. Chem. B110(18), 8978–8985 (2006).
[CrossRef] [PubMed]

Xing, L. L.

X. Y. Xue, Z. H. Chen, L. L. Xing, C. H. Ma, Y. J. Chen, and T. H. Wang, “Enhanced optical and sensing properties of one-step synthesized Pt−ZnO nanoflowers,” J. Phys. Chem. C114(43), 18607–18611 (2010).
[CrossRef]

Xiong, H. M.

H. J. Zhang, H. M. Xiong, Q. G. Ren, Y. Y. Xia, and J. L. Kong, “ZnO@silica core–shell nanoparticles with remarkable luminescence and stability in cell imaging,” J. Mater. Chem.22(26), 13159–13165 (2012).
[CrossRef]

H. M. Xiong, “Photoluminescent ZnO nanoparticles modified by polymers,” J. Mater. Chem.20(21), 4251–4262 (2010).
[CrossRef]

H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008).
[CrossRef] [PubMed]

Xu, H.

A. Narayanaswamy, H. Xu, N. Pradhan, M. Kim, and X. Peng, “Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis,” J. Am. Chem. Soc.128(31), 10310–10319 (2006).
[CrossRef] [PubMed]

Xu, Y.

Z. W. Ai, Y. Wu, H. Wu, T. Wang, C. Chen, Y. Xu, and C. Liu, “Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition,” Nanoscale Res. Lett.8(1), 105–111 (2013).
[CrossRef] [PubMed]

H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008).
[CrossRef] [PubMed]

Xue, J.

X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications,” Langmuir25(9), 5271–5275 (2009).
[CrossRef] [PubMed]

Xue, X. Y.

X. Y. Xue, Z. H. Chen, L. L. Xing, C. H. Ma, Y. J. Chen, and T. H. Wang, “Enhanced optical and sensing properties of one-step synthesized Pt−ZnO nanoflowers,” J. Phys. Chem. C114(43), 18607–18611 (2010).
[CrossRef]

Ye, X.

B. Zhang, X. Ye, W. Hou, Y. Zhao, and Y. Xie, “Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods,” J. Phys. Chem. B110(18), 8978–8985 (2006).
[CrossRef] [PubMed]

Yuan, Q.

Y. Liu, K. Ai, Q. Yuan, and L. Lu, “Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging,” Biomaterials32(4), 1185–1192 (2011).
[CrossRef] [PubMed]

Zhang, B.

B. Zhang, X. Ye, W. Hou, Y. Zhao, and Y. Xie, “Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods,” J. Phys. Chem. B110(18), 8978–8985 (2006).
[CrossRef] [PubMed]

Zhang, H. J.

H. J. Zhang, H. M. Xiong, Q. G. Ren, Y. Y. Xia, and J. L. Kong, “ZnO@silica core–shell nanoparticles with remarkable luminescence and stability in cell imaging,” J. Mater. Chem.22(26), 13159–13165 (2012).
[CrossRef]

Zhang, S.

Q. Wu, H. Cao, S. Zhang, X. Zhang, and D. Rabinovich, “Generation and optical properties of monodisperse wurtzite-type ZnS microspheres,” Inorg. Chem.45(18), 7316–7322 (2006).
[CrossRef] [PubMed]

Zhang, X.

Q. Wu, H. Cao, S. Zhang, X. Zhang, and D. Rabinovich, “Generation and optical properties of monodisperse wurtzite-type ZnS microspheres,” Inorg. Chem.45(18), 7316–7322 (2006).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, X. Wang, Y. Liu, S. Song, and D. Liu, “Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability,” J. Mater. Chem.22(24), 11971–11977 (2012).
[CrossRef]

Zhang, Y. L.

X. H. Zhong, Y. Y. Feng, Y. L. Zhang, I. Lieberwirth, and W. Knoll, “Nonhydrolytic alcoholysis route to morphology-controlled ZnO nanocrystals,” Small3(7), 1194–1199 (2007).
[CrossRef] [PubMed]

Zhao, L. H.

L. H. Zhao and S. Q. Sun, “Synthesis of water-soluble ZnO nanocrystals with strong blue emission via a polyol hydrolysis route,” CrystEngComm13(6), 1864–1869 (2011).
[CrossRef]

Zhao, Y.

B. Zhang, X. Ye, W. Hou, Y. Zhao, and Y. Xie, “Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods,” J. Phys. Chem. B110(18), 8978–8985 (2006).
[CrossRef] [PubMed]

Zhong, X. H.

X. H. Zhong, Y. Y. Feng, Y. L. Zhang, I. Lieberwirth, and W. Knoll, “Nonhydrolytic alcoholysis route to morphology-controlled ZnO nanocrystals,” Small3(7), 1194–1199 (2007).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

J. I. Kim and J. K. Lee, “Sub-kilogram-scale one-pot synthesis of highly luminescent and monodisperse core/shell quantum dots by the successive injection of precursors,” Adv. Funct. Mater.16(16), 2077–2082 (2006).
[CrossRef]

Anal. Chim. Acta (1)

S. K. Arya, S. Saha, J. E. R. Ramirez-Vick, V. Gupta, S. Bhansali, and S. P. Singh, “Recent advances in ZnO nanostructures and thin films for biosensor applications: Review,” Anal. Chim. Acta737(1), 1–21 (2012).
[CrossRef] [PubMed]

Biomaterials (1)

Y. Liu, K. Ai, Q. Yuan, and L. Lu, “Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging,” Biomaterials32(4), 1185–1192 (2011).
[CrossRef] [PubMed]

Ceram. Int. (1)

H. R. Pant, B. Pant, R. K. Sharma, A. Amarjargal, H. J. Kim, C. H. Park, L. D. Tijing, and C. S. Kim, “Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process,” Ceram. Int.39(2), 1503–1510 (2013).
[CrossRef]

Chem. Eng. J. (1)

A. Moezzi, A. M. McDonagh, and M. B. Cortie, “Zinc oxide particles: synthesis, properties and applications,” Chem. Eng. J.185-186(1), 1–22 (2012).
[CrossRef]

Chemistry (1)

S. T. Kochuveedu, J. H. Oh, Y. R. Do, and D. H. Kim, “Surface-plasmon-enhanced band emission of ZnO nanoflowers decorated with Au nanoparticles,” Chemistry18(24), 7467–7472 (2012).
[CrossRef] [PubMed]

CrystEngComm (1)

L. H. Zhao and S. Q. Sun, “Synthesis of water-soluble ZnO nanocrystals with strong blue emission via a polyol hydrolysis route,” CrystEngComm13(6), 1864–1869 (2011).
[CrossRef]

Eur. J. Inorg. Chem. (1)

F. Aldeek, C. Mustin, L. Balan, G. Medjahdi, T. Roques-Carmes, P. Arnoux, and R. Schneider, “Enhanced photostability from CdSe(S)/ZnO core/shell quantum dots and their use in biolabeling,” Eur. J. Inorg. Chem.2011(6), 794–801 (2011).
[CrossRef]

Inorg. Chem. (1)

Q. Wu, H. Cao, S. Zhang, X. Zhang, and D. Rabinovich, “Generation and optical properties of monodisperse wurtzite-type ZnS microspheres,” Inorg. Chem.45(18), 7316–7322 (2006).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (7)

R. Xie, U. Kolb, J. X. Li, T. Basché, and A. Mews, “Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals,” J. Am. Chem. Soc.127(20), 7480–7488 (2005).
[CrossRef] [PubMed]

H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, “Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging,” J. Am. Chem. Soc.130(24), 7522–7523 (2008).
[CrossRef] [PubMed]

Y. S. Fu, X. W. Du, S. A. Kulinich, J. S. Qiu, W. J. Qin, R. Li, J. Sun, and J. Liu, “Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route,” J. Am. Chem. Soc.129(51), 16029–16033 (2007).
[CrossRef] [PubMed]

L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,” J. Am. Chem. Soc.113(8), 2826–2833 (1991).
[CrossRef]

A. Narayanaswamy, H. Xu, N. Pradhan, M. Kim, and X. Peng, “Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis,” J. Am. Chem. Soc.128(31), 10310–10319 (2006).
[CrossRef] [PubMed]

Y. Chen, M. Kim, G. Lian, M. B. Johnson, and X. Peng, “Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals,” J. Am. Chem. Soc.127(38), 13331–13337 (2005).
[CrossRef] [PubMed]

X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility,” J. Am. Chem. Soc.119(30), 7019–7029 (1997).
[CrossRef]

J. Mater. Chem. (3)

Y. Zhang, X. Wang, Y. Liu, S. Song, and D. Liu, “Highly transparent bulk PMMA/ZnO nanocomposites with bright visible luminescence and efficient UV-shielding capability,” J. Mater. Chem.22(24), 11971–11977 (2012).
[CrossRef]

H. J. Zhang, H. M. Xiong, Q. G. Ren, Y. Y. Xia, and J. L. Kong, “ZnO@silica core–shell nanoparticles with remarkable luminescence and stability in cell imaging,” J. Mater. Chem.22(26), 13159–13165 (2012).
[CrossRef]

H. M. Xiong, “Photoluminescent ZnO nanoparticles modified by polymers,” J. Mater. Chem.20(21), 4251–4262 (2010).
[CrossRef]

J. Mater. Sci. (1)

J. Gomez and O. Tigli, “Zinc oxide nanostructures: from growth to application,” J. Mater. Sci.48(2), 612–624 (2013).
[CrossRef]

J. Nanopart. Res. (1)

S. Chibber, S. A. Ansari, and R. Satar, “New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects,” J. Nanopart. Res.15(4), 1492–1504 (2013).
[CrossRef]

J. Phys. Chem. B (1)

B. Zhang, X. Ye, W. Hou, Y. Zhao, and Y. Xie, “Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods,” J. Phys. Chem. B110(18), 8978–8985 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

X. Y. Xue, Z. H. Chen, L. L. Xing, C. H. Ma, Y. J. Chen, and T. H. Wang, “Enhanced optical and sensing properties of one-step synthesized Pt−ZnO nanoflowers,” J. Phys. Chem. C114(43), 18607–18611 (2010).
[CrossRef]

Langmuir (1)

X. Tang, E. S. G. Choo, L. Li, J. Ding, and J. Xue, “One-pot synthesis of water-stable ZnO nanoparticles via a polyol hydrolysis route and their cell labeling applications,” Langmuir25(9), 5271–5275 (2009).
[CrossRef] [PubMed]

Mater. Res. Bull. (1)

A. Umar, M. S. Akhtar, A. Al-Hajry, M. S. Al-Assiri, and N. Y. Almehbad, “Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications,” Mater. Res. Bull.47(9), 2407–2414 (2012).
[CrossRef]

Nano Lett. (1)

N. Gaponik, D. V. Talapin, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, “Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents,” Nano Lett.2(8), 803–806 (2002).
[CrossRef]

Nanoscale Res. Lett. (1)

Z. W. Ai, Y. Wu, H. Wu, T. Wang, C. Chen, Y. Xu, and C. Liu, “Enhanced band-edge photoluminescence from ZnO-passivated ZnO nanoflowers by atomic layer deposition,” Nanoscale Res. Lett.8(1), 105–111 (2013).
[CrossRef] [PubMed]

Opt. Mater. Express (2)

Small (1)

X. H. Zhong, Y. Y. Feng, Y. L. Zhang, I. Lieberwirth, and W. Knoll, “Nonhydrolytic alcoholysis route to morphology-controlled ZnO nanocrystals,” Small3(7), 1194–1199 (2007).
[CrossRef] [PubMed]

Talanta (1)

A. Umar, M. M. Rahman, A. Al-Hajry, and Y. B. Hahn, “Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures,” Talanta78(1), 284–289 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics