Abstract

We report on the operational parameters that are required to fabricate buried, microstructured waveguides in a z-cut lithium niobate crystal by the method of direct femtosecond laser inscription using a high-repetition-rate, chirped-pulse oscillator system. Refractive index contrasts as high as −0.0127 have been achieved for individual modification tracks. The results pave the way for developing microstructured WGs with low-loss operation across a wide spectral range, extending into the mid-infrared region up to the end of the transparency range of the host material.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Osellame, G. Cerullo, and R. Ramponi, eds., Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer-Verlag, 2012).
    [CrossRef]
  2. H. Misawa and S. Juodkazis, eds., 3D Laser Microfabrication: Principles and Applications (John Wiley & Sons, 2006).
    [CrossRef]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Appl. Phys. Lett.21, 1729–1731 (1996).
  4. K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
    [CrossRef]
  5. A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” in Conference on Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, ed., Proc. SPIE4941, 51–57 (2003).
    [CrossRef]
  6. I. Bennion, M. Dubov, I. Khruschev, A. Okhrimchuck, and A. Shestakov, “Laser inscription of optical structures in crystals,” Patent WO 2005040874 A2 (2005).
  7. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30, 2248–2250 (2005).
    [CrossRef] [PubMed]
  8. N. Dong, F. Chen, and J. R. Vàsquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides,” Phys. Status Solidi (RRL)6, 306–308 (2012).
    [CrossRef]
  9. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon.1, 58–106 (2009).
    [CrossRef]
  10. H. Karakuzu, M. Dubov, and S. Boscolo, “Control of the properties of micro-structured waveguides in lithium niobate crystal,” Opt. Express21, 17122–17130 (2013).
    [CrossRef] [PubMed]
  11. H. Karakuzu, M. Dubov, S. Boscolo, L. A. Melnikov, and Y. A. Mazhirina, “Optimisation of microstructured waveguides in z-cut LiNbO3 crystals,” Opt. Mater. Express4, 541–552 (2014).
    [CrossRef]
  12. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express16, 9443–9458 (2008).
    [CrossRef] [PubMed]
  13. S. M. Eaton, M. L. Ng, J. Bonse, A. Mermillod-Blondin, H. Zhang, A. Rosenfeld, and P. R. Herman, “Low-loss waveguides fabricated in BK7 glass by high repetition rate femtosecond fiber laser,” Appl. Opt.47, 2098–2102 (2008).
    [CrossRef] [PubMed]
  14. M. Dubov, “Direct femtosecond laser inscription in transparent dielectrics,” PhD thesis, Aston University (2011).
  15. T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt.49, 1938–1950 (2010).
    [CrossRef] [PubMed]
  16. S. Gross, M. Ams, D. G. Lancaster, T. M. Monro, A. Fuerbach, and M. J. Withford, “Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN,” Opt. Lett.37, 3999–4001 (2012).
    [CrossRef] [PubMed]
  17. S. Gross, M. Alberich, A. Arriola, M. J. Withford, and A. Fuerbach, “Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique,” Opt. Lett.38, 1872–1874 (2013).
    [CrossRef] [PubMed]
  18. F. Chen and J. R. Vàsquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Reviews8, 251–275 (2014).
    [CrossRef]
  19. A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: Lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett.31, 2987–2989 (2006).
    [CrossRef] [PubMed]
  20. A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett.29, 1366–1368 (2004).
    [CrossRef] [PubMed]
  21. R. Graf, A. Fernandez, M. Dubov, H. Brueckner, B. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Applied Physics B: Lasers and Optics87, 21–27 (2007).
    [CrossRef]
  22. A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
    [CrossRef]
  23. V. Mezentsev, J. Petrovic, M. Dubov, I. Bennion, J. Dreher, H. Schmitz, and R. Grauer, “Femtosecond laser microfabrication of subwavelength structures in photonics,” Proc. SPIE6459, 64590B (2007).
    [CrossRef]
  24. V. Mezentsev, M. Dubov, J. S. Petrovic, I. Bennion, J. Dreher, and R. Grauer, “Role of plasma in femtosecond laser pulse propagation,” Physics of Ionized Gases876, 169–180 (2006).
  25. A. Turchin, M. Dubov, and J. A. R. Williams, “3d reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. Quantum Electron.42, 873–886 (2011).
    [CrossRef]
  26. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19, 9419–9425 (2011).
    [CrossRef] [PubMed]
  27. M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
    [CrossRef]
  28. M. Dubov, I. Bennion, D. Nikogosyan, P. Bolger, and A. Zayats, “Point-by-point inscription of 250nm period structure in bulk fused silica by tightly focused femtosecond uv pulses,” J. Opt. A: Pure Appl. Opt.10, 025305 (2008).
    [CrossRef]
  29. M. Dubov, V. Mezentsev, I. Bennion, and D. N. Nikogosyan, “UV femtosecond laser inscribes a 300nm period nanostructure in a pure fused silica,” Meas. Sci. Technol.18, L15 (2007).
    [CrossRef]
  30. K. Nugent, “Wave field determination using 3-dimensional intensity information,” Phys. Rev. Lett.68, 2261–2264 (1992).
    [CrossRef] [PubMed]
  31. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett.23, 817–819 (1998).
    [CrossRef]
  32. A. Roberts, E. Ampem-Lassen, A. Barty, K. Nugent, G. Baxter, N. Dragomir, and S. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett.27, 2061–2063 (2002).
    [CrossRef]
  33. E. Ampem-Lassen, S. Huntington, N. Dragomir, K. Nugent, and A. Roberts, “Refractive index profiling of axially symmetric optical fibers: a new technique,” Opt. Express13, 3277–3282 (2005).
    [CrossRef] [PubMed]
  34. J. S. Petrovic, V. Mezentsev, H. Schmitz, and I. Bennion, “Model of the femtosecond laser inscription by a single pulse,” Opt. Quantum Electron.39, 939–946 (2007).
    [CrossRef]
  35. W. Yang, P.G. Kazansky, and Yu.P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photon.2, 99–104 (2008).
    [CrossRef]

2014 (2)

H. Karakuzu, M. Dubov, S. Boscolo, L. A. Melnikov, and Y. A. Mazhirina, “Optimisation of microstructured waveguides in z-cut LiNbO3 crystals,” Opt. Mater. Express4, 541–552 (2014).
[CrossRef]

F. Chen and J. R. Vàsquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Reviews8, 251–275 (2014).
[CrossRef]

2013 (2)

2012 (2)

N. Dong, F. Chen, and J. R. Vàsquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides,” Phys. Status Solidi (RRL)6, 306–308 (2012).
[CrossRef]

S. Gross, M. Ams, D. G. Lancaster, T. M. Monro, A. Fuerbach, and M. J. Withford, “Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN,” Opt. Lett.37, 3999–4001 (2012).
[CrossRef] [PubMed]

2011 (2)

A. Turchin, M. Dubov, and J. A. R. Williams, “3d reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. Quantum Electron.42, 873–886 (2011).
[CrossRef]

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19, 9419–9425 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (2)

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photon.1, 58–106 (2009).
[CrossRef]

2008 (4)

2007 (4)

M. Dubov, V. Mezentsev, I. Bennion, and D. N. Nikogosyan, “UV femtosecond laser inscribes a 300nm period nanostructure in a pure fused silica,” Meas. Sci. Technol.18, L15 (2007).
[CrossRef]

J. S. Petrovic, V. Mezentsev, H. Schmitz, and I. Bennion, “Model of the femtosecond laser inscription by a single pulse,” Opt. Quantum Electron.39, 939–946 (2007).
[CrossRef]

V. Mezentsev, J. Petrovic, M. Dubov, I. Bennion, J. Dreher, H. Schmitz, and R. Grauer, “Femtosecond laser microfabrication of subwavelength structures in photonics,” Proc. SPIE6459, 64590B (2007).
[CrossRef]

R. Graf, A. Fernandez, M. Dubov, H. Brueckner, B. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Applied Physics B: Lasers and Optics87, 21–27 (2007).
[CrossRef]

2006 (3)

V. Mezentsev, M. Dubov, J. S. Petrovic, I. Bennion, J. Dreher, and R. Grauer, “Role of plasma in femtosecond laser pulse propagation,” Physics of Ionized Gases876, 169–180 (2006).

A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: Lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett.31, 2987–2989 (2006).
[CrossRef] [PubMed]

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

2005 (2)

2004 (1)

2002 (1)

1998 (1)

1997 (1)

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

1996 (1)

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Appl. Phys. Lett.21, 1729–1731 (1996).

1992 (1)

K. Nugent, “Wave field determination using 3-dimensional intensity information,” Phys. Rev. Lett.68, 2261–2264 (1992).
[CrossRef] [PubMed]

Alberich, M.

Allsop, T.

Ampem-Lassen, E.

Ams, M.

Apolonski, A.

R. Graf, A. Fernandez, M. Dubov, H. Brueckner, B. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Applied Physics B: Lasers and Optics87, 21–27 (2007).
[CrossRef]

A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett.29, 1366–1368 (2004).
[CrossRef] [PubMed]

Arriola, A.

Barty, A.

Baxter, G.

Bennion, I.

T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt.49, 1938–1950 (2010).
[CrossRef] [PubMed]

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

M. Dubov, I. Bennion, D. Nikogosyan, P. Bolger, and A. Zayats, “Point-by-point inscription of 250nm period structure in bulk fused silica by tightly focused femtosecond uv pulses,” J. Opt. A: Pure Appl. Opt.10, 025305 (2008).
[CrossRef]

M. Dubov, V. Mezentsev, I. Bennion, and D. N. Nikogosyan, “UV femtosecond laser inscribes a 300nm period nanostructure in a pure fused silica,” Meas. Sci. Technol.18, L15 (2007).
[CrossRef]

J. S. Petrovic, V. Mezentsev, H. Schmitz, and I. Bennion, “Model of the femtosecond laser inscription by a single pulse,” Opt. Quantum Electron.39, 939–946 (2007).
[CrossRef]

V. Mezentsev, J. Petrovic, M. Dubov, I. Bennion, J. Dreher, H. Schmitz, and R. Grauer, “Femtosecond laser microfabrication of subwavelength structures in photonics,” Proc. SPIE6459, 64590B (2007).
[CrossRef]

V. Mezentsev, M. Dubov, J. S. Petrovic, I. Bennion, J. Dreher, and R. Grauer, “Role of plasma in femtosecond laser pulse propagation,” Physics of Ionized Gases876, 169–180 (2006).

I. Bennion, M. Dubov, I. Khruschev, A. Okhrimchuck, and A. Shestakov, “Laser inscription of optical structures in crystals,” Patent WO 2005040874 A2 (2005).

Bolger, P.

M. Dubov, I. Bennion, D. Nikogosyan, P. Bolger, and A. Zayats, “Point-by-point inscription of 250nm period structure in bulk fused silica by tightly focused femtosecond uv pulses,” J. Opt. A: Pure Appl. Opt.10, 025305 (2008).
[CrossRef]

Bonse, J.

Booth, M. J.

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19, 9419–9425 (2011).
[CrossRef] [PubMed]

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Boscolo, S.

Brueckner, H.

R. Graf, A. Fernandez, M. Dubov, H. Brueckner, B. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Applied Physics B: Lasers and Optics87, 21–27 (2007).
[CrossRef]

Chen, F.

F. Chen and J. R. Vàsquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Reviews8, 251–275 (2014).
[CrossRef]

N. Dong, F. Chen, and J. R. Vàsquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides,” Phys. Status Solidi (RRL)6, 306–308 (2012).
[CrossRef]

Chen, W.-J.

Chichkov, B.

R. Graf, A. Fernandez, M. Dubov, H. Brueckner, B. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Applied Physics B: Lasers and Optics87, 21–27 (2007).
[CrossRef]

Cumming, B. P.

Davis, K. M.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Appl. Phys. Lett.21, 1729–1731 (1996).

Dong, N.

N. Dong, F. Chen, and J. R. Vàsquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides,” Phys. Status Solidi (RRL)6, 306–308 (2012).
[CrossRef]

Dragomir, N.

Dreher, J.

V. Mezentsev, J. Petrovic, M. Dubov, I. Bennion, J. Dreher, H. Schmitz, and R. Grauer, “Femtosecond laser microfabrication of subwavelength structures in photonics,” Proc. SPIE6459, 64590B (2007).
[CrossRef]

V. Mezentsev, M. Dubov, J. S. Petrovic, I. Bennion, J. Dreher, and R. Grauer, “Role of plasma in femtosecond laser pulse propagation,” Physics of Ionized Gases876, 169–180 (2006).

Dubov, M.

H. Karakuzu, M. Dubov, S. Boscolo, L. A. Melnikov, and Y. A. Mazhirina, “Optimisation of microstructured waveguides in z-cut LiNbO3 crystals,” Opt. Mater. Express4, 541–552 (2014).
[CrossRef]

H. Karakuzu, M. Dubov, and S. Boscolo, “Control of the properties of micro-structured waveguides in lithium niobate crystal,” Opt. Express21, 17122–17130 (2013).
[CrossRef] [PubMed]

A. Turchin, M. Dubov, and J. A. R. Williams, “3d reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. Quantum Electron.42, 873–886 (2011).
[CrossRef]

T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt.49, 1938–1950 (2010).
[CrossRef] [PubMed]

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

M. Dubov, I. Bennion, D. Nikogosyan, P. Bolger, and A. Zayats, “Point-by-point inscription of 250nm period structure in bulk fused silica by tightly focused femtosecond uv pulses,” J. Opt. A: Pure Appl. Opt.10, 025305 (2008).
[CrossRef]

M. Dubov, V. Mezentsev, I. Bennion, and D. N. Nikogosyan, “UV femtosecond laser inscribes a 300nm period nanostructure in a pure fused silica,” Meas. Sci. Technol.18, L15 (2007).
[CrossRef]

R. Graf, A. Fernandez, M. Dubov, H. Brueckner, B. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Applied Physics B: Lasers and Optics87, 21–27 (2007).
[CrossRef]

V. Mezentsev, J. Petrovic, M. Dubov, I. Bennion, J. Dreher, H. Schmitz, and R. Grauer, “Femtosecond laser microfabrication of subwavelength structures in photonics,” Proc. SPIE6459, 64590B (2007).
[CrossRef]

V. Mezentsev, M. Dubov, J. S. Petrovic, I. Bennion, J. Dreher, and R. Grauer, “Role of plasma in femtosecond laser pulse propagation,” Physics of Ionized Gases876, 169–180 (2006).

M. Dubov, “Direct femtosecond laser inscription in transparent dielectrics,” PhD thesis, Aston University (2011).

I. Bennion, M. Dubov, I. Khruschev, A. Okhrimchuck, and A. Shestakov, “Laser inscription of optical structures in crystals,” Patent WO 2005040874 A2 (2005).

Eaton, S. M.

Fernandez, A.

R. Graf, A. Fernandez, M. Dubov, H. Brueckner, B. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Applied Physics B: Lasers and Optics87, 21–27 (2007).
[CrossRef]

A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett.29, 1366–1368 (2004).
[CrossRef] [PubMed]

Fuerbach, A.

Fuji, T.

Furbach, A.

Graf, R.

R. Graf, A. Fernandez, M. Dubov, H. Brueckner, B. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Applied Physics B: Lasers and Optics87, 21–27 (2007).
[CrossRef]

Grauer, R.

V. Mezentsev, J. Petrovic, M. Dubov, I. Bennion, J. Dreher, H. Schmitz, and R. Grauer, “Femtosecond laser microfabrication of subwavelength structures in photonics,” Proc. SPIE6459, 64590B (2007).
[CrossRef]

V. Mezentsev, M. Dubov, J. S. Petrovic, I. Bennion, J. Dreher, and R. Grauer, “Role of plasma in femtosecond laser pulse propagation,” Physics of Ionized Gases876, 169–180 (2006).

Gross, S.

Gu, M.

Herman, P. R.

Hirao, K.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Appl. Phys. Lett.21, 1729–1731 (1996).

Ho, S.

Hu, J.

Huntington, S.

Inouye, H.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

Jesacher, A.

Karakuzu, H.

Kawata, Y.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Kazansky, P.G.

W. Yang, P.G. Kazansky, and Yu.P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photon.2, 99–104 (2008).
[CrossRef]

Khruschev, I.

I. Bennion, M. Dubov, I. Khruschev, A. Okhrimchuck, and A. Shestakov, “Laser inscription of optical structures in crystals,” Patent WO 2005040874 A2 (2005).

Khrushchev, I.

Krausz, F.

Lancaster, D. G.

Li, J.

Mazhirina, Y. A.

Melnikov, L. A.

Menyuk, C. R.

Mermillod-Blondin, A.

Mezentsev, V.

T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt.49, 1938–1950 (2010).
[CrossRef] [PubMed]

J. S. Petrovic, V. Mezentsev, H. Schmitz, and I. Bennion, “Model of the femtosecond laser inscription by a single pulse,” Opt. Quantum Electron.39, 939–946 (2007).
[CrossRef]

M. Dubov, V. Mezentsev, I. Bennion, and D. N. Nikogosyan, “UV femtosecond laser inscribes a 300nm period nanostructure in a pure fused silica,” Meas. Sci. Technol.18, L15 (2007).
[CrossRef]

V. Mezentsev, J. Petrovic, M. Dubov, I. Bennion, J. Dreher, H. Schmitz, and R. Grauer, “Femtosecond laser microfabrication of subwavelength structures in photonics,” Proc. SPIE6459, 64590B (2007).
[CrossRef]

V. Mezentsev, M. Dubov, J. S. Petrovic, I. Bennion, J. Dreher, and R. Grauer, “Role of plasma in femtosecond laser pulse propagation,” Physics of Ionized Gases876, 169–180 (2006).

Mezentsev, V. K.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

Mitchell, J.

Mitsuyu, T.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

Miura, K.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Appl. Phys. Lett.21, 1729–1731 (1996).

Miyata, S.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Monro, T. M.

Nakabayashi, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Nakano, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Nejadmalayeri, A. H.

Ng, M. L.

Nikogosyan, D.

M. Dubov, I. Bennion, D. Nikogosyan, P. Bolger, and A. Zayats, “Point-by-point inscription of 250nm period structure in bulk fused silica by tightly focused femtosecond uv pulses,” J. Opt. A: Pure Appl. Opt.10, 025305 (2008).
[CrossRef]

Nikogosyan, D. N.

M. Dubov, V. Mezentsev, I. Bennion, and D. N. Nikogosyan, “UV femtosecond laser inscribes a 300nm period nanostructure in a pure fused silica,” Meas. Sci. Technol.18, L15 (2007).
[CrossRef]

Nugent, K.

Nugent, K. A.

Okhrimchuck, A.

I. Bennion, M. Dubov, I. Khruschev, A. Okhrimchuck, and A. Shestakov, “Laser inscription of optical structures in crystals,” Patent WO 2005040874 A2 (2005).

Okhrimchuk, A. G.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30, 2248–2250 (2005).
[CrossRef] [PubMed]

Paganin, D.

Petrovic, J.

V. Mezentsev, J. Petrovic, M. Dubov, I. Bennion, J. Dreher, H. Schmitz, and R. Grauer, “Femtosecond laser microfabrication of subwavelength structures in photonics,” Proc. SPIE6459, 64590B (2007).
[CrossRef]

Petrovic, J. S.

J. S. Petrovic, V. Mezentsev, H. Schmitz, and I. Bennion, “Model of the femtosecond laser inscription by a single pulse,” Opt. Quantum Electron.39, 939–946 (2007).
[CrossRef]

V. Mezentsev, M. Dubov, J. S. Petrovic, I. Bennion, J. Dreher, and R. Grauer, “Role of plasma in femtosecond laser pulse propagation,” Physics of Ionized Gases876, 169–180 (2006).

Poppe, A.

Qiu, J. R.

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

Roberts, A.

Rosenfeld, A.

Schmitz, H.

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

V. Mezentsev, J. Petrovic, M. Dubov, I. Bennion, J. Dreher, H. Schmitz, and R. Grauer, “Femtosecond laser microfabrication of subwavelength structures in photonics,” Proc. SPIE6459, 64590B (2007).
[CrossRef]

J. S. Petrovic, V. Mezentsev, H. Schmitz, and I. Bennion, “Model of the femtosecond laser inscription by a single pulse,” Opt. Quantum Electron.39, 939–946 (2007).
[CrossRef]

Schwertner, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Shestakov, A.

I. Bennion, M. Dubov, I. Khruschev, A. Okhrimchuck, and A. Shestakov, “Laser inscription of optical structures in crystals,” Patent WO 2005040874 A2 (2005).

Shestakov, A. V.

Streltsov, A. M.

A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” in Conference on Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, ed., Proc. SPIE4941, 51–57 (2003).
[CrossRef]

Sugimoto, N.

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Appl. Phys. Lett.21, 1729–1731 (1996).

Svirko, Yu.P.

W. Yang, P.G. Kazansky, and Yu.P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photon.2, 99–104 (2008).
[CrossRef]

Turchin, A.

A. Turchin, M. Dubov, and J. A. R. Williams, “3d reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. Quantum Electron.42, 873–886 (2011).
[CrossRef]

Vàsquez de Aldana, J. R.

F. Chen and J. R. Vàsquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Reviews8, 251–275 (2014).
[CrossRef]

N. Dong, F. Chen, and J. R. Vàsquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides,” Phys. Status Solidi (RRL)6, 306–308 (2012).
[CrossRef]

Williams, J. A. R.

A. Turchin, M. Dubov, and J. A. R. Williams, “3d reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. Quantum Electron.42, 873–886 (2011).
[CrossRef]

Wilson, T.

B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express19, 9419–9425 (2011).
[CrossRef] [PubMed]

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Withford, M. J.

Yang, W.

W. Yang, P.G. Kazansky, and Yu.P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photon.2, 99–104 (2008).
[CrossRef]

Zayats, A.

M. Dubov, I. Bennion, D. Nikogosyan, P. Bolger, and A. Zayats, “Point-by-point inscription of 250nm period structure in bulk fused silica by tightly focused femtosecond uv pulses,” J. Opt. A: Pure Appl. Opt.10, 025305 (2008).
[CrossRef]

Zhang, H.

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (3)

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Appl. Phys. Lett.21, 1729–1731 (1996).

K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett.88, 031109 (2006).
[CrossRef]

Applied Physics B: Lasers and Optics (1)

R. Graf, A. Fernandez, M. Dubov, H. Brueckner, B. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Applied Physics B: Lasers and Optics87, 21–27 (2007).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

M. Dubov, I. Bennion, D. Nikogosyan, P. Bolger, and A. Zayats, “Point-by-point inscription of 250nm period structure in bulk fused silica by tightly focused femtosecond uv pulses,” J. Opt. A: Pure Appl. Opt.10, 025305 (2008).
[CrossRef]

Laser Photon. Reviews (1)

F. Chen and J. R. Vàsquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Reviews8, 251–275 (2014).
[CrossRef]

Laser Phys. (1)

A. G. Okhrimchuk, V. K. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys.19, 1415–1422 (2009).
[CrossRef]

Meas. Sci. Technol. (1)

M. Dubov, V. Mezentsev, I. Bennion, and D. N. Nikogosyan, “UV femtosecond laser inscribes a 300nm period nanostructure in a pure fused silica,” Meas. Sci. Technol.18, L15 (2007).
[CrossRef]

Nat. Photon. (1)

W. Yang, P.G. Kazansky, and Yu.P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photon.2, 99–104 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: Lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett.31, 2987–2989 (2006).
[CrossRef] [PubMed]

A. Fernandez, T. Fuji, A. Poppe, A. Furbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett.29, 1366–1368 (2004).
[CrossRef] [PubMed]

S. Gross, M. Ams, D. G. Lancaster, T. M. Monro, A. Fuerbach, and M. J. Withford, “Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN,” Opt. Lett.37, 3999–4001 (2012).
[CrossRef] [PubMed]

S. Gross, M. Alberich, A. Arriola, M. J. Withford, and A. Fuerbach, “Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique,” Opt. Lett.38, 1872–1874 (2013).
[CrossRef] [PubMed]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett.30, 2248–2250 (2005).
[CrossRef] [PubMed]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett.23, 817–819 (1998).
[CrossRef]

A. Roberts, E. Ampem-Lassen, A. Barty, K. Nugent, G. Baxter, N. Dragomir, and S. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett.27, 2061–2063 (2002).
[CrossRef]

Opt. Mater. Express (1)

Opt. Quantum Electron. (2)

A. Turchin, M. Dubov, and J. A. R. Williams, “3d reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Opt. Quantum Electron.42, 873–886 (2011).
[CrossRef]

J. S. Petrovic, V. Mezentsev, H. Schmitz, and I. Bennion, “Model of the femtosecond laser inscription by a single pulse,” Opt. Quantum Electron.39, 939–946 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

K. Nugent, “Wave field determination using 3-dimensional intensity information,” Phys. Rev. Lett.68, 2261–2264 (1992).
[CrossRef] [PubMed]

Phys. Status Solidi (RRL) (1)

N. Dong, F. Chen, and J. R. Vàsquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond-laser-inscribed KTP cladding waveguides,” Phys. Status Solidi (RRL)6, 306–308 (2012).
[CrossRef]

Physics of Ionized Gases (1)

V. Mezentsev, M. Dubov, J. S. Petrovic, I. Bennion, J. Dreher, and R. Grauer, “Role of plasma in femtosecond laser pulse propagation,” Physics of Ionized Gases876, 169–180 (2006).

Proc. SPIE (1)

V. Mezentsev, J. Petrovic, M. Dubov, I. Bennion, J. Dreher, H. Schmitz, and R. Grauer, “Femtosecond laser microfabrication of subwavelength structures in photonics,” Proc. SPIE6459, 64590B (2007).
[CrossRef]

Other (5)

R. Osellame, G. Cerullo, and R. Ramponi, eds., Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer-Verlag, 2012).
[CrossRef]

H. Misawa and S. Juodkazis, eds., 3D Laser Microfabrication: Principles and Applications (John Wiley & Sons, 2006).
[CrossRef]

A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” in Conference on Laser Micromachining for Optoelectronic Device Fabrication, A. Ostendorf, ed., Proc. SPIE4941, 51–57 (2003).
[CrossRef]

I. Bennion, M. Dubov, I. Khruschev, A. Okhrimchuck, and A. Shestakov, “Laser inscription of optical structures in crystals,” Patent WO 2005040874 A2 (2005).

M. Dubov, “Direct femtosecond laser inscription in transparent dielectrics,” PhD thesis, Aston University (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical schematic and photograph of the experimental setup. The insert on the photo presents the oil-immersed MO used for inscription in lithium niobate crystals. WP stands for: wave plate, PBS: polarization-beam splitter, M: folding mirror, MO: micro-objective, CCD: charge-couple device camera.

Fig. 2
Fig. 2

(a) DIC microscope overhead views of two pairs of tracks with the same inscription energy of 58nJ and with scanning speeds of 40mm/s (left pair) and 60mm/s (right pair) inscribed at an approximate depth of 200μm. The tracks of each pair were inscribed with opposite scan directions. (b) Radial RI profile of a track reconstructed from the cumulative phase data obtained from QPM. Writing conditions for this track were inscription energy 58nJ, scan velocity 12mm/s and inscription depth ≈ 200μm.

Fig. 3
Fig. 3

(a) Radius and (b) reconstructed peak RI contrast of the tracks as a function of inscription energy at an inscription scanning velocity of 12mm/s and an approximate inscription depth of 250μm. Also shown is the energy dependence of the peak-to-peak index contrast (crosses).

Fig. 4
Fig. 4

Microscope (a) overhead view, and (b) cross section of an example fabricated microstructured WG with two rings of tracks. Fabrication conditions for this WG were inscription energy 48nJ, scan velocity 15mm/s, and inscription depth ≈ 400μm. The left inset in panel (b) highlights the inscription depth, and the right inset in (b) shows the WG design scaled by the ellipticity factor ε.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r = 9.65 × 10 2 ( E E th ) , δ n = 4.46 × 10 4 ( E E th ) ,

Metrics