Abstract

The electro-optical properties of vertically aligned in-plane switching (VA-IPS) liquid crystal (LC) cells are transformed by polymer networks. Three kinds of monomer materials are separately mixed with nematic E7 LC. The threshold voltage behavior reveals the strongest anchoring effect from the cross-linking TA-9164 polymer cell, which sustains good light transmittance at higher voltages and significantly improves the display responses. Without overdrive, the rising-time response of the TA-9164 polymer cell is comparable to that of the pure cell under overdrive. This paper demonstrates that a suitable monomer material applied to VA-IPS LC cells can boost their electro-optical performance.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Lee, D. N. Liu, and S. T. Wu, Introduction to Flat Panel Displays (Wiley, 2008).
  2. S. M. Jung, J. U. Park, S. C. Lee, W. S. Kim, M. S. Yang, I. B. Kang, and I. J. Chung, “A novel polarizer glasses-type 3D displays with an active retarder,” SID Symp. Dig. Tech. Pap. 40(1), 348–351 (2009).
  3. H. K. Shin, J. H. Lee, J. W. Kim, T. H. Yoon, and J. C. Kim, “Fast polarization switching panel with high brightness and contrast ratio for three-dimensional display,” Appl. Phys. Lett.98(6), 063505 (2011).
    [CrossRef] [PubMed]
  4. M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett.69(5), 623–625 (1996).
    [CrossRef]
  5. J. I. Baek, K. H. Kim, J. C. Kim, T. H. Yoon, H. S. Woo, S. T. Shin, and J. H. Souk, “Fast switching of vertical alignment liquid crystal cells with liquid crystalline polymer networks,” Jpn. J. Appl. Phys.48(55R), 056507 (2009).
    [CrossRef]
  6. C. Y. Xiang, X. W. Sun, and X. J. Yin, “The electro-optic properties of a vertically aligned fast response liquid crystal display with three-electrode driving,” J. Phys. D Appl. Phys.37(7), 994–997 (2004).
    [CrossRef]
  7. C. Y. Xiang, J. X. Guo, X. W. Sun, X. J. Yin, and G. J. Qi, “A fast response, three-electrode liquid crystal device,” Jpn. J. Appl. Phys.42(7), 763–765 (2003).
    [CrossRef]
  8. H. K. Shin, K. H. Kim, T. H. Yoon, and J. C. Kim, “Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal,” J. Appl. Phys.104(8), 084515 (2008).
    [CrossRef]
  9. J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett.86(3), 031111 (2005).
    [CrossRef]
  10. J. S. Gwag, J. C. Kim, and T. H. Yoon, “Electrically tilted liquid crystal display mode for high speed operation,” Jpn. J. Appl. Phys.45(9A), 7047–7049 (2006).
    [CrossRef]
  11. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
    [CrossRef]
  12. Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006).
    [CrossRef]
  13. R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst.33(7), 829–832 (2006).
    [CrossRef]
  14. Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp.18(2), 134–140 (2010).
    [CrossRef]
  15. H. K. Hong and H. H. Shin, “Effects of rubbing angle on maximum transmittance of in‐plane switching liquid crystal display,” Liq. Cryst.35(2), 173–177 (2008).
    [CrossRef]
  16. X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
    [CrossRef]
  17. C. Y. Huang, W. Y. Jhuang, and C. T. Hsieh, “Switching of polymer-stabilized vertical alignment liquid crystal cell,” Opt. Express16(6), 3859–3864 (2008).
    [CrossRef] [PubMed]
  18. J. K. Song, K. E. Lee, H. S. Chang, S. M. Hong, M. B. Jun, B. Y. Park, S. S. Seomun, K. H. Kim, and S. S. Kim, “Novel method for fast response time in PVA mode,” SID Symp. Dig. Tech. Pap. 35(1), 1344–1347 (2004).
  19. S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett.71(19), 2851–2853 (1997).
    [CrossRef]
  20. G. Yang and Y. Sun, “Fast-response vertical alignment liquid crystal display driven by in-plane switching,” Liq. Cryst.38(4), 507–510 (2011).
    [CrossRef]
  21. G. Yang and Y. Sun, “A high-transmittance vertical alignment liquid crystal display using a fringe and in-plane electrical field,” Liq. Cryst.38(4), 469–473 (2011).
    [CrossRef]
  22. K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig. Tech. Pap. 35(1), 1200–1203 (2004).
    [CrossRef]
  23. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
    [CrossRef]
  24. S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys.48(3), 032405 (2009).
    [CrossRef]
  25. S. H. Lee, S. M. Kim, and S. T. Wu, “Review paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp.17(7), 551–559 (2009).
    [CrossRef]
  26. J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys.44(32), 325104 (2011).
    [CrossRef]
  27. S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys.43(11A), 7643–7647 (2004).
    [CrossRef]
  28. Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express22(9), 10634–10641 (2014).
    [CrossRef] [PubMed]
  29. S. H. Lim, D. H. Kim, S. J. Shin, W. C. Woo, H. S. Jin, S. H. Lee, E. Y. Kim, and S. E. Lee, “Polymer stabilized in-plane field driven vertical alignment liquid crystal device,” SID Symp. Dig. Tech. Pap. 42(1), 1645–1647 (2011).
    [CrossRef]
  30. S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst.41(4), 552–557 (2014).
    [CrossRef]
  31. Y. Kim, J. Francl, B. Taheri, and J. L. West, “A method for the formation of polymer walls in liquid crystal/polymer mixtures,” Appl. Phys. Lett.72(18), 2253–2255 (1998).
    [CrossRef]
  32. Y. Kim, J. Francl, B. Taheri, and J. L. West, “A novel method for the formation of polymer walls in liquid crystal/polymer displays,” SID Symp. Dig. Tech. Pap. 29(1), 397–400 (1998).
    [CrossRef]
  33. J. B. Nephew, T. C. Nihei, and S. A. Carter, “Reaction-induced phase separation dynamics: a polymer in a liquid crystal solvent,” Phys. Rev. Lett.80(15), 3276–3279 (1998).
    [CrossRef]
  34. R. Benmouna and B. Benyoucef, “Thermophysical and thermomechanical properties of norland optical adhesives and liquid crystal composites,” J. Appl. Polym. Sci.108(6), 4072–4079 (2008).
    [CrossRef]
  35. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
    [CrossRef]
  36. J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp.13(12), 1017–1026 (2005).
    [CrossRef]
  37. J. W. Goodman, Introduction to Fourier Optics (Roberts & Co., 2005), Chap. 4.
  38. Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006).
    [CrossRef]
  39. A. D. Garbo and M. Nobili, “Order parameter dependence of the nematic liquid crystal anchoring energy: A numerical approach,” Liq. Cryst.19(2), 269–276 (1995).
    [CrossRef]
  40. F. Akkurt, N. Kaya, and A. Alicilar, “Phase transitions, order parameters and threshold voltages in liquid crystal systems doped with disperse orange dye and carbon nanoparticles,” Fuller. Nanotube. Car. N.17(6), 616–624 (2009).
    [CrossRef]
  41. A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(6), 061707 (2005).
    [CrossRef] [PubMed]
  42. W. Maier and A. Saupe, “A simple molecular statistical theory of the nematic crystalline-liquid phase, Part I,” Z. Naturforsh. Teil.14(a), 882–889 (1959).
  43. W. Maier and A. Saupe, “A simple molecular statistical theory for nematic crystalline-liquid phase, PartII,” Z. Naturforsh. Teil15(a), 287–292 (1960).
  44. W. Maier and G. Meier, “A simple theory of the dielectric characteristics of homogeneous oriented crystalline-liquid phases of the nematic type,” Z. Naturforsch. Teil.16, 262–267 (1961).
  45. H. Wang, T. X. Wu, X. Zhu, and S.-T. Wu, “Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell,” J. Appl. Phys.95(10), 5502–5508 (2004).
    [CrossRef]
  46. I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).
  47. L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett.94(7), 071112 (2009).
    [CrossRef]
  48. X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
    [CrossRef]
  49. M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst.33(1), 67–73 (2006).
    [CrossRef]

2014 (2)

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst.41(4), 552–557 (2014).
[CrossRef]

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express22(9), 10634–10641 (2014).
[CrossRef] [PubMed]

2011 (4)

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys.44(32), 325104 (2011).
[CrossRef]

H. K. Shin, J. H. Lee, J. W. Kim, T. H. Yoon, and J. C. Kim, “Fast polarization switching panel with high brightness and contrast ratio for three-dimensional display,” Appl. Phys. Lett.98(6), 063505 (2011).
[CrossRef] [PubMed]

G. Yang and Y. Sun, “Fast-response vertical alignment liquid crystal display driven by in-plane switching,” Liq. Cryst.38(4), 507–510 (2011).
[CrossRef]

G. Yang and Y. Sun, “A high-transmittance vertical alignment liquid crystal display using a fringe and in-plane electrical field,” Liq. Cryst.38(4), 469–473 (2011).
[CrossRef]

2010 (1)

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp.18(2), 134–140 (2010).
[CrossRef]

2009 (5)

J. I. Baek, K. H. Kim, J. C. Kim, T. H. Yoon, H. S. Woo, S. T. Shin, and J. H. Souk, “Fast switching of vertical alignment liquid crystal cells with liquid crystalline polymer networks,” Jpn. J. Appl. Phys.48(55R), 056507 (2009).
[CrossRef]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys.48(3), 032405 (2009).
[CrossRef]

S. H. Lee, S. M. Kim, and S. T. Wu, “Review paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp.17(7), 551–559 (2009).
[CrossRef]

F. Akkurt, N. Kaya, and A. Alicilar, “Phase transitions, order parameters and threshold voltages in liquid crystal systems doped with disperse orange dye and carbon nanoparticles,” Fuller. Nanotube. Car. N.17(6), 616–624 (2009).
[CrossRef]

L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett.94(7), 071112 (2009).
[CrossRef]

2008 (4)

C. Y. Huang, W. Y. Jhuang, and C. T. Hsieh, “Switching of polymer-stabilized vertical alignment liquid crystal cell,” Opt. Express16(6), 3859–3864 (2008).
[CrossRef] [PubMed]

R. Benmouna and B. Benyoucef, “Thermophysical and thermomechanical properties of norland optical adhesives and liquid crystal composites,” J. Appl. Polym. Sci.108(6), 4072–4079 (2008).
[CrossRef]

H. K. Shin, K. H. Kim, T. H. Yoon, and J. C. Kim, “Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal,” J. Appl. Phys.104(8), 084515 (2008).
[CrossRef]

H. K. Hong and H. H. Shin, “Effects of rubbing angle on maximum transmittance of in‐plane switching liquid crystal display,” Liq. Cryst.35(2), 173–177 (2008).
[CrossRef]

2007 (3)

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
[CrossRef]

2006 (5)

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst.33(1), 67–73 (2006).
[CrossRef]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006).
[CrossRef]

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst.33(7), 829–832 (2006).
[CrossRef]

J. S. Gwag, J. C. Kim, and T. H. Yoon, “Electrically tilted liquid crystal display mode for high speed operation,” Jpn. J. Appl. Phys.45(9A), 7047–7049 (2006).
[CrossRef]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006).
[CrossRef]

2005 (3)

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(6), 061707 (2005).
[CrossRef] [PubMed]

J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp.13(12), 1017–1026 (2005).
[CrossRef]

J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett.86(3), 031111 (2005).
[CrossRef]

2004 (4)

C. Y. Xiang, X. W. Sun, and X. J. Yin, “The electro-optic properties of a vertically aligned fast response liquid crystal display with three-electrode driving,” J. Phys. D Appl. Phys.37(7), 994–997 (2004).
[CrossRef]

H. Wang, T. X. Wu, X. Zhu, and S.-T. Wu, “Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell,” J. Appl. Phys.95(10), 5502–5508 (2004).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
[CrossRef]

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys.43(11A), 7643–7647 (2004).
[CrossRef]

2003 (1)

C. Y. Xiang, J. X. Guo, X. W. Sun, X. J. Yin, and G. J. Qi, “A fast response, three-electrode liquid crystal device,” Jpn. J. Appl. Phys.42(7), 763–765 (2003).
[CrossRef]

1998 (2)

Y. Kim, J. Francl, B. Taheri, and J. L. West, “A method for the formation of polymer walls in liquid crystal/polymer mixtures,” Appl. Phys. Lett.72(18), 2253–2255 (1998).
[CrossRef]

J. B. Nephew, T. C. Nihei, and S. A. Carter, “Reaction-induced phase separation dynamics: a polymer in a liquid crystal solvent,” Phys. Rev. Lett.80(15), 3276–3279 (1998).
[CrossRef]

1997 (1)

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett.71(19), 2851–2853 (1997).
[CrossRef]

1996 (1)

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett.69(5), 623–625 (1996).
[CrossRef]

1995 (2)

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
[CrossRef]

A. D. Garbo and M. Nobili, “Order parameter dependence of the nematic liquid crystal anchoring energy: A numerical approach,” Liq. Cryst.19(2), 269–276 (1995).
[CrossRef]

1961 (1)

W. Maier and G. Meier, “A simple theory of the dielectric characteristics of homogeneous oriented crystalline-liquid phases of the nematic type,” Z. Naturforsch. Teil.16, 262–267 (1961).

1960 (1)

W. Maier and A. Saupe, “A simple molecular statistical theory for nematic crystalline-liquid phase, PartII,” Z. Naturforsh. Teil15(a), 287–292 (1960).

1959 (1)

W. Maier and A. Saupe, “A simple molecular statistical theory of the nematic crystalline-liquid phase, Part I,” Z. Naturforsh. Teil.14(a), 882–889 (1959).

Akkurt, F.

F. Akkurt, N. Kaya, and A. Alicilar, “Phase transitions, order parameters and threshold voltages in liquid crystal systems doped with disperse orange dye and carbon nanoparticles,” Fuller. Nanotube. Car. N.17(6), 616–624 (2009).
[CrossRef]

Alicilar, A.

F. Akkurt, N. Kaya, and A. Alicilar, “Phase transitions, order parameters and threshold voltages in liquid crystal systems doped with disperse orange dye and carbon nanoparticles,” Fuller. Nanotube. Car. N.17(6), 616–624 (2009).
[CrossRef]

Baek, J. I.

J. I. Baek, K. H. Kim, J. C. Kim, T. H. Yoon, H. S. Woo, S. T. Shin, and J. H. Souk, “Fast switching of vertical alignment liquid crystal cells with liquid crystalline polymer networks,” Jpn. J. Appl. Phys.48(55R), 056507 (2009).
[CrossRef]

Baird, G.

J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp.13(12), 1017–1026 (2005).
[CrossRef]

Benmouna, R.

R. Benmouna and B. Benyoucef, “Thermophysical and thermomechanical properties of norland optical adhesives and liquid crystal composites,” J. Appl. Polym. Sci.108(6), 4072–4079 (2008).
[CrossRef]

Benyoucef, B.

R. Benmouna and B. Benyoucef, “Thermophysical and thermomechanical properties of norland optical adhesives and liquid crystal composites,” J. Appl. Polym. Sci.108(6), 4072–4079 (2008).
[CrossRef]

Carter, S. A.

J. B. Nephew, T. C. Nihei, and S. A. Carter, “Reaction-induced phase separation dynamics: a polymer in a liquid crystal solvent,” Phys. Rev. Lett.80(15), 3276–3279 (1998).
[CrossRef]

Chien, L. C.

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys.43(11A), 7643–7647 (2004).
[CrossRef]

Chigrinov, V.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(6), 061707 (2005).
[CrossRef] [PubMed]

Cho, I. Y.

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys.48(3), 032405 (2009).
[CrossRef]

Choi, Y. E.

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express22(9), 10634–10641 (2014).
[CrossRef] [PubMed]

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst.41(4), 552–557 (2014).
[CrossRef]

Dark, M. L.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst.33(1), 67–73 (2006).
[CrossRef]

Fan, Y. H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
[CrossRef]

Francl, J.

Y. Kim, J. Francl, B. Taheri, and J. L. West, “A method for the formation of polymer walls in liquid crystal/polymer mixtures,” Appl. Phys. Lett.72(18), 2253–2255 (1998).
[CrossRef]

Furuta, K.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp.18(2), 134–140 (2010).
[CrossRef]

Garbo, A. D.

A. D. Garbo and M. Nobili, “Order parameter dependence of the nematic liquid crystal anchoring energy: A numerical approach,” Liq. Cryst.19(2), 269–276 (1995).
[CrossRef]

Gauza, S.

L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett.94(7), 071112 (2009).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
[CrossRef]

Ge, Z.

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006).
[CrossRef]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006).
[CrossRef]

Glushchenko, A.

J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett.86(3), 031111 (2005).
[CrossRef]

Guan, R. H.

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst.33(7), 829–832 (2006).
[CrossRef]

Guo, J. X.

C. Y. Xiang, J. X. Guo, X. W. Sun, X. J. Yin, and G. J. Qi, “A fast response, three-electrode liquid crystal device,” Jpn. J. Appl. Phys.42(7), 763–765 (2003).
[CrossRef]

Gwag, J. S.

J. S. Gwag, J. C. Kim, and T. H. Yoon, “Electrically tilted liquid crystal display mode for high speed operation,” Jpn. J. Appl. Phys.45(9A), 7047–7049 (2006).
[CrossRef]

Higuchi, H.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys.44(32), 325104 (2011).
[CrossRef]

Ho, J.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(6), 061707 (2005).
[CrossRef] [PubMed]

Hong, H. K.

H. K. Hong and H. H. Shin, “Effects of rubbing angle on maximum transmittance of in‐plane switching liquid crystal display,” Liq. Cryst.35(2), 173–177 (2008).
[CrossRef]

Hsieh, C. T.

Huang, C. Y.

Jeong, K. U.

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys.48(3), 032405 (2009).
[CrossRef]

Jhuang, W. Y.

Jin, H. S.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst.41(4), 552–557 (2014).
[CrossRef]

Kang, S. W.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst.41(4), 552–557 (2014).
[CrossRef]

Kang, W. X.

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst.33(7), 829–832 (2006).
[CrossRef]

Kaya, N.

F. Akkurt, N. Kaya, and A. Alicilar, “Phase transitions, order parameters and threshold voltages in liquid crystal systems doped with disperse orange dye and carbon nanoparticles,” Fuller. Nanotube. Car. N.17(6), 616–624 (2009).
[CrossRef]

Kikuchi, H.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys.44(32), 325104 (2011).
[CrossRef]

Kim, D. H.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys.44(32), 325104 (2011).
[CrossRef]

Kim, H. Y.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett.71(19), 2851–2853 (1997).
[CrossRef]

Kim, J. C.

H. K. Shin, J. H. Lee, J. W. Kim, T. H. Yoon, and J. C. Kim, “Fast polarization switching panel with high brightness and contrast ratio for three-dimensional display,” Appl. Phys. Lett.98(6), 063505 (2011).
[CrossRef] [PubMed]

J. I. Baek, K. H. Kim, J. C. Kim, T. H. Yoon, H. S. Woo, S. T. Shin, and J. H. Souk, “Fast switching of vertical alignment liquid crystal cells with liquid crystalline polymer networks,” Jpn. J. Appl. Phys.48(55R), 056507 (2009).
[CrossRef]

H. K. Shin, K. H. Kim, T. H. Yoon, and J. C. Kim, “Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal,” J. Appl. Phys.104(8), 084515 (2008).
[CrossRef]

J. S. Gwag, J. C. Kim, and T. H. Yoon, “Electrically tilted liquid crystal display mode for high speed operation,” Jpn. J. Appl. Phys.45(9A), 7047–7049 (2006).
[CrossRef]

Kim, J. W.

H. K. Shin, J. H. Lee, J. W. Kim, T. H. Yoon, and J. C. Kim, “Fast polarization switching panel with high brightness and contrast ratio for three-dimensional display,” Appl. Phys. Lett.98(6), 063505 (2011).
[CrossRef] [PubMed]

Kim, K. H.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys.44(32), 325104 (2011).
[CrossRef]

J. I. Baek, K. H. Kim, J. C. Kim, T. H. Yoon, H. S. Woo, S. T. Shin, and J. H. Souk, “Fast switching of vertical alignment liquid crystal cells with liquid crystalline polymer networks,” Jpn. J. Appl. Phys.48(55R), 056507 (2009).
[CrossRef]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys.48(3), 032405 (2009).
[CrossRef]

H. K. Shin, K. H. Kim, T. H. Yoon, and J. C. Kim, “Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal,” J. Appl. Phys.104(8), 084515 (2008).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Kim, K. J.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp.18(2), 134–140 (2010).
[CrossRef]

Kim, S. G.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Kim, S. H.

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys.43(11A), 7643–7647 (2004).
[CrossRef]

Kim, S. M.

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys.48(3), 032405 (2009).
[CrossRef]

S. H. Lee, S. M. Kim, and S. T. Wu, “Review paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp.17(7), 551–559 (2009).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Kim, W.

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys.48(3), 032405 (2009).
[CrossRef]

Kim, Y.

Y. Kim, J. Francl, B. Taheri, and J. L. West, “A method for the formation of polymer walls in liquid crystal/polymer mixtures,” Appl. Phys. Lett.72(18), 2253–2255 (1998).
[CrossRef]

Kim, Y. S.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Koda, T.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp.18(2), 134–140 (2010).
[CrossRef]

Komitov, L.

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express22(9), 10634–10641 (2014).
[CrossRef] [PubMed]

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst.41(4), 552–557 (2014).
[CrossRef]

Kondo, K.

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett.69(5), 623–625 (1996).
[CrossRef]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
[CrossRef]

Kundu, S.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst.41(4), 552–557 (2014).
[CrossRef]

Kwok, H. S.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(6), 061707 (2005).
[CrossRef] [PubMed]

Lee, B. H.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst.41(4), 552–557 (2014).
[CrossRef]

Lee, C. H.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett.71(19), 2851–2853 (1997).
[CrossRef]

Lee, G. D.

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express22(9), 10634–10641 (2014).
[CrossRef] [PubMed]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys.48(3), 032405 (2009).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Lee, H. K.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Lee, J. H.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst.41(4), 552–557 (2014).
[CrossRef]

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express22(9), 10634–10641 (2014).
[CrossRef] [PubMed]

H. K. Shin, J. H. Lee, J. W. Kim, T. H. Yoon, and J. C. Kim, “Fast polarization switching panel with high brightness and contrast ratio for three-dimensional display,” Appl. Phys. Lett.98(6), 063505 (2011).
[CrossRef] [PubMed]

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys.44(32), 325104 (2011).
[CrossRef]

Lee, S. H.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst.41(4), 552–557 (2014).
[CrossRef]

Y. J. Lim, Y. E. Choi, J. H. Lee, G. D. Lee, L. Komitov, and S. H. Lee, “Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field,” Opt. Express22(9), 10634–10641 (2014).
[CrossRef] [PubMed]

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys.44(32), 325104 (2011).
[CrossRef]

S. H. Lee, S. M. Kim, and S. T. Wu, “Review paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp.17(7), 551–559 (2009).
[CrossRef]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys.48(3), 032405 (2009).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett.71(19), 2851–2853 (1997).
[CrossRef]

Lee, T.-R.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp.18(2), 134–140 (2010).
[CrossRef]

Li, J.

J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp.13(12), 1017–1026 (2005).
[CrossRef]

Lim, Y. J.

Lin, Y. H.

J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp.13(12), 1017–1026 (2005).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
[CrossRef]

Lu, R.

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
[CrossRef]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
[CrossRef]

Lyu, J. J.

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys.44(32), 325104 (2011).
[CrossRef]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys.48(3), 032405 (2009).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Maier, W.

W. Maier and G. Meier, “A simple theory of the dielectric characteristics of homogeneous oriented crystalline-liquid phases of the nematic type,” Z. Naturforsch. Teil.16, 262–267 (1961).

W. Maier and A. Saupe, “A simple molecular statistical theory for nematic crystalline-liquid phase, PartII,” Z. Naturforsh. Teil15(a), 287–292 (1960).

W. Maier and A. Saupe, “A simple molecular statistical theory of the nematic crystalline-liquid phase, Part I,” Z. Naturforsh. Teil.14(a), 882–889 (1959).

Meier, G.

W. Maier and G. Meier, “A simple theory of the dielectric characteristics of homogeneous oriented crystalline-liquid phases of the nematic type,” Z. Naturforsch. Teil.16, 262–267 (1961).

Momoi, Y.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp.18(2), 134–140 (2010).
[CrossRef]

Moore, M. H.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst.33(1), 67–73 (2006).
[CrossRef]

Murauski, A.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(6), 061707 (2005).
[CrossRef] [PubMed]

Muravsky, A.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(6), 061707 (2005).
[CrossRef] [PubMed]

Nephew, J. B.

J. B. Nephew, T. C. Nihei, and S. A. Carter, “Reaction-induced phase separation dynamics: a polymer in a liquid crystal solvent,” Phys. Rev. Lett.80(15), 3276–3279 (1998).
[CrossRef]

Nie, X.

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
[CrossRef]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
[CrossRef]

Nihei, T. C.

J. B. Nephew, T. C. Nihei, and S. A. Carter, “Reaction-induced phase separation dynamics: a polymer in a liquid crystal solvent,” Phys. Rev. Lett.80(15), 3276–3279 (1998).
[CrossRef]

Nobili, M.

A. D. Garbo and M. Nobili, “Order parameter dependence of the nematic liquid crystal anchoring energy: A numerical approach,” Liq. Cryst.19(2), 269–276 (1995).
[CrossRef]

Oh, C. H.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp.18(2), 134–140 (2010).
[CrossRef]

Oh-e, M.

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett.69(5), 623–625 (1996).
[CrossRef]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
[CrossRef]

Park, H. S.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett.71(19), 2851–2853 (1997).
[CrossRef]

Park, I. C.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett.71(19), 2851–2853 (1997).
[CrossRef]

Park, J. S.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett.71(19), 2851–2853 (1997).
[CrossRef]

Qi, G. J.

C. Y. Xiang, J. X. Guo, X. W. Sun, X. J. Yin, and G. J. Qi, “A fast response, three-electrode liquid crystal device,” Jpn. J. Appl. Phys.42(7), 763–765 (2003).
[CrossRef]

Rao, L.

L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett.94(7), 071112 (2009).
[CrossRef]

Ren, H.

J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp.13(12), 1017–1026 (2005).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
[CrossRef]

Reznikov, Y.

J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett.86(3), 031111 (2005).
[CrossRef]

Rho, B. G.

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett.71(19), 2851–2853 (1997).
[CrossRef]

Saupe, A.

W. Maier and A. Saupe, “A simple molecular statistical theory for nematic crystalline-liquid phase, PartII,” Z. Naturforsh. Teil15(a), 287–292 (1960).

W. Maier and A. Saupe, “A simple molecular statistical theory of the nematic crystalline-liquid phase, Part I,” Z. Naturforsh. Teil.14(a), 882–889 (1959).

Shashidhar, R.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst.33(1), 67–73 (2006).
[CrossRef]

Shenoy, D. K.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst.33(1), 67–73 (2006).
[CrossRef]

Shin, H. H.

H. K. Hong and H. H. Shin, “Effects of rubbing angle on maximum transmittance of in‐plane switching liquid crystal display,” Liq. Cryst.35(2), 173–177 (2008).
[CrossRef]

Shin, H. K.

H. K. Shin, J. H. Lee, J. W. Kim, T. H. Yoon, and J. C. Kim, “Fast polarization switching panel with high brightness and contrast ratio for three-dimensional display,” Appl. Phys. Lett.98(6), 063505 (2011).
[CrossRef] [PubMed]

H. K. Shin, K. H. Kim, T. H. Yoon, and J. C. Kim, “Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal,” J. Appl. Phys.104(8), 084515 (2008).
[CrossRef]

Shin, S. T.

J. I. Baek, K. H. Kim, J. C. Kim, T. H. Yoon, H. S. Woo, S. T. Shin, and J. H. Souk, “Fast switching of vertical alignment liquid crystal cells with liquid crystalline polymer networks,” Jpn. J. Appl. Phys.48(55R), 056507 (2009).
[CrossRef]

Son, J.

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys.48(3), 032405 (2009).
[CrossRef]

Souk, J. H.

J. I. Baek, K. H. Kim, J. C. Kim, T. H. Yoon, H. S. Woo, S. T. Shin, and J. H. Souk, “Fast switching of vertical alignment liquid crystal cells with liquid crystalline polymer networks,” Jpn. J. Appl. Phys.48(55R), 056507 (2009).
[CrossRef]

Sun, X. W.

C. Y. Xiang, X. W. Sun, and X. J. Yin, “The electro-optic properties of a vertically aligned fast response liquid crystal display with three-electrode driving,” J. Phys. D Appl. Phys.37(7), 994–997 (2004).
[CrossRef]

C. Y. Xiang, J. X. Guo, X. W. Sun, X. J. Yin, and G. J. Qi, “A fast response, three-electrode liquid crystal device,” Jpn. J. Appl. Phys.42(7), 763–765 (2003).
[CrossRef]

Sun, Y.

G. Yang and Y. Sun, “Fast-response vertical alignment liquid crystal display driven by in-plane switching,” Liq. Cryst.38(4), 507–510 (2011).
[CrossRef]

G. Yang and Y. Sun, “A high-transmittance vertical alignment liquid crystal display using a fringe and in-plane electrical field,” Liq. Cryst.38(4), 469–473 (2011).
[CrossRef]

Sun, Y. B.

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst.33(7), 829–832 (2006).
[CrossRef]

Taheri, B.

Y. Kim, J. Francl, B. Taheri, and J. L. West, “A method for the formation of polymer walls in liquid crystal/polymer mixtures,” Appl. Phys. Lett.72(18), 2253–2255 (1998).
[CrossRef]

Tamai, K.

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp.18(2), 134–140 (2010).
[CrossRef]

Wang, H.

H. Wang, T. X. Wu, X. Zhu, and S.-T. Wu, “Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell,” J. Appl. Phys.95(10), 5502–5508 (2004).
[CrossRef]

West, J. L.

J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett.86(3), 031111 (2005).
[CrossRef]

Y. Kim, J. Francl, B. Taheri, and J. L. West, “A method for the formation of polymer walls in liquid crystal/polymer mixtures,” Appl. Phys. Lett.72(18), 2253–2255 (1998).
[CrossRef]

Woo, H. S.

J. I. Baek, K. H. Kim, J. C. Kim, T. H. Yoon, H. S. Woo, S. T. Shin, and J. H. Souk, “Fast switching of vertical alignment liquid crystal cells with liquid crystalline polymer networks,” Jpn. J. Appl. Phys.48(55R), 056507 (2009).
[CrossRef]

Wu, S. T.

S. H. Lee, S. M. Kim, and S. T. Wu, “Review paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp.17(7), 551–559 (2009).
[CrossRef]

L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett.94(7), 071112 (2009).
[CrossRef]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
[CrossRef]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
[CrossRef]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006).
[CrossRef]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006).
[CrossRef]

J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp.13(12), 1017–1026 (2005).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
[CrossRef]

Wu, S.-T.

H. Wang, T. X. Wu, X. Zhu, and S.-T. Wu, “Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell,” J. Appl. Phys.95(10), 5502–5508 (2004).
[CrossRef]

Wu, T. X.

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
[CrossRef]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
[CrossRef]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006).
[CrossRef]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006).
[CrossRef]

H. Wang, T. X. Wu, X. Zhu, and S.-T. Wu, “Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell,” J. Appl. Phys.95(10), 5502–5508 (2004).
[CrossRef]

Xiang, C. Y.

C. Y. Xiang, X. W. Sun, and X. J. Yin, “The electro-optic properties of a vertically aligned fast response liquid crystal display with three-electrode driving,” J. Phys. D Appl. Phys.37(7), 994–997 (2004).
[CrossRef]

C. Y. Xiang, J. X. Guo, X. W. Sun, X. J. Yin, and G. J. Qi, “A fast response, three-electrode liquid crystal device,” Jpn. J. Appl. Phys.42(7), 763–765 (2003).
[CrossRef]

Xianyu, H.

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
[CrossRef]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
[CrossRef]

Yang, G.

G. Yang and Y. Sun, “Fast-response vertical alignment liquid crystal display driven by in-plane switching,” Liq. Cryst.38(4), 507–510 (2011).
[CrossRef]

G. Yang and Y. Sun, “A high-transmittance vertical alignment liquid crystal display using a fringe and in-plane electrical field,” Liq. Cryst.38(4), 469–473 (2011).
[CrossRef]

Yeung, F. S. Y.

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(6), 061707 (2005).
[CrossRef] [PubMed]

Yin, X. J.

C. Y. Xiang, X. W. Sun, and X. J. Yin, “The electro-optic properties of a vertically aligned fast response liquid crystal display with three-electrode driving,” J. Phys. D Appl. Phys.37(7), 994–997 (2004).
[CrossRef]

C. Y. Xiang, J. X. Guo, X. W. Sun, X. J. Yin, and G. J. Qi, “A fast response, three-electrode liquid crystal device,” Jpn. J. Appl. Phys.42(7), 763–765 (2003).
[CrossRef]

Yoon, T. H.

H. K. Shin, J. H. Lee, J. W. Kim, T. H. Yoon, and J. C. Kim, “Fast polarization switching panel with high brightness and contrast ratio for three-dimensional display,” Appl. Phys. Lett.98(6), 063505 (2011).
[CrossRef] [PubMed]

J. I. Baek, K. H. Kim, J. C. Kim, T. H. Yoon, H. S. Woo, S. T. Shin, and J. H. Souk, “Fast switching of vertical alignment liquid crystal cells with liquid crystalline polymer networks,” Jpn. J. Appl. Phys.48(55R), 056507 (2009).
[CrossRef]

H. K. Shin, K. H. Kim, T. H. Yoon, and J. C. Kim, “Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal,” J. Appl. Phys.104(8), 084515 (2008).
[CrossRef]

J. S. Gwag, J. C. Kim, and T. H. Yoon, “Electrically tilted liquid crystal display mode for high speed operation,” Jpn. J. Appl. Phys.45(9A), 7047–7049 (2006).
[CrossRef]

Yun, Y. K.

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst.41(4), 552–557 (2014).
[CrossRef]

Zhang, G.

J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett.86(3), 031111 (2005).
[CrossRef]

Zhu, X.

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006).
[CrossRef]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006).
[CrossRef]

H. Wang, T. X. Wu, X. Zhu, and S.-T. Wu, “Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell,” J. Appl. Phys.95(10), 5502–5508 (2004).
[CrossRef]

Appl. Phys. Lett. (9)

H. K. Shin, J. H. Lee, J. W. Kim, T. H. Yoon, and J. C. Kim, “Fast polarization switching panel with high brightness and contrast ratio for three-dimensional display,” Appl. Phys. Lett.98(6), 063505 (2011).
[CrossRef] [PubMed]

M. Oh-e and K. Kondo, “Response mechanism of nematic liquid crystals using the in-plane switching mode,” Appl. Phys. Lett.69(5), 623–625 (1996).
[CrossRef]

J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett.86(3), 031111 (2005).
[CrossRef]

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67(26), 3895–3897 (1995).
[CrossRef]

Y. Kim, J. Francl, B. Taheri, and J. L. West, “A method for the formation of polymer walls in liquid crystal/polymer mixtures,” Appl. Phys. Lett.72(18), 2253–2255 (1998).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett.84(8), 1233–1235 (2004).
[CrossRef]

L. Rao, S. Gauza, and S. T. Wu, “Low temperature effects on the response time of liquid crystal displays,” Appl. Phys. Lett.94(7), 071112 (2009).
[CrossRef]

S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing-free, vertically aligned nematic liquid crystal display controlled by in-plane field,” Appl. Phys. Lett.71(19), 2851–2853 (1997).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Fuller. Nanotube. Car. N. (1)

F. Akkurt, N. Kaya, and A. Alicilar, “Phase transitions, order parameters and threshold voltages in liquid crystal systems doped with disperse orange dye and carbon nanoparticles,” Fuller. Nanotube. Car. N.17(6), 616–624 (2009).
[CrossRef]

J. Appl. Phys. (4)

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
[CrossRef]

X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, “Anchoring energy and cell gap effects on liquid crystal response time,” J. Appl. Phys.101(10), 103110 (2007).
[CrossRef]

H. K. Shin, K. H. Kim, T. H. Yoon, and J. C. Kim, “Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal,” J. Appl. Phys.104(8), 084515 (2008).
[CrossRef]

H. Wang, T. X. Wu, X. Zhu, and S.-T. Wu, “Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell,” J. Appl. Phys.95(10), 5502–5508 (2004).
[CrossRef]

J. Appl. Polym. Sci. (1)

R. Benmouna and B. Benyoucef, “Thermophysical and thermomechanical properties of norland optical adhesives and liquid crystal composites,” J. Appl. Polym. Sci.108(6), 4072–4079 (2008).
[CrossRef]

J. Phys. D Appl. Phys. (2)

C. Y. Xiang, X. W. Sun, and X. J. Yin, “The electro-optic properties of a vertically aligned fast response liquid crystal display with three-electrode driving,” J. Phys. D Appl. Phys.37(7), 994–997 (2004).
[CrossRef]

J. J. Lyu, H. Kikuchi, D. H. Kim, J. H. Lee, K. H. Kim, H. Higuchi, and S. H. Lee, “Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer stabilized vertical alignment liquid crystal displays,” J. Phys. D Appl. Phys.44(32), 325104 (2011).
[CrossRef]

J. Soc. Inf. Disp. (5)

S. H. Lee, S. M. Kim, and S. T. Wu, “Review paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp.17(7), 551–559 (2009).
[CrossRef]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006).
[CrossRef]

Y. Momoi, K. Tamai, K. Furuta, T.-R. Lee, K. J. Kim, C. H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Disp.18(2), 134–140 (2010).
[CrossRef]

J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp.13(12), 1017–1026 (2005).
[CrossRef]

Z. Ge, X. Zhu, T. X. Wu, and S. T. Wu, “High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal,” J. Soc. Inf. Disp.14(11), 1031–1037 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (5)

C. Y. Xiang, J. X. Guo, X. W. Sun, X. J. Yin, and G. J. Qi, “A fast response, three-electrode liquid crystal device,” Jpn. J. Appl. Phys.42(7), 763–765 (2003).
[CrossRef]

J. S. Gwag, J. C. Kim, and T. H. Yoon, “Electrically tilted liquid crystal display mode for high speed operation,” Jpn. J. Appl. Phys.45(9A), 7047–7049 (2006).
[CrossRef]

J. I. Baek, K. H. Kim, J. C. Kim, T. H. Yoon, H. S. Woo, S. T. Shin, and J. H. Souk, “Fast switching of vertical alignment liquid crystal cells with liquid crystalline polymer networks,” Jpn. J. Appl. Phys.48(55R), 056507 (2009).
[CrossRef]

S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys.43(11A), 7643–7647 (2004).
[CrossRef]

S. M. Kim, I. Y. Cho, W. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, “Surface-modification on vertical alignment layer using UV-curable reactive mesogens,” Jpn. J. Appl. Phys.48(3), 032405 (2009).
[CrossRef]

Liq. Cryst. (7)

G. Yang and Y. Sun, “Fast-response vertical alignment liquid crystal display driven by in-plane switching,” Liq. Cryst.38(4), 507–510 (2011).
[CrossRef]

G. Yang and Y. Sun, “A high-transmittance vertical alignment liquid crystal display using a fringe and in-plane electrical field,” Liq. Cryst.38(4), 469–473 (2011).
[CrossRef]

H. K. Hong and H. H. Shin, “Effects of rubbing angle on maximum transmittance of in‐plane switching liquid crystal display,” Liq. Cryst.35(2), 173–177 (2008).
[CrossRef]

R. H. Guan, Y. B. Sun, and W. X. Kang, “Rubbing angle effect on in-plane switching liquid crystal displays,” Liq. Cryst.33(7), 829–832 (2006).
[CrossRef]

S. W. Kang, Y. E. Choi, B. H. Lee, J. H. Lee, S. Kundu, H. S. Jin, Y. K. Yun, S. H. Lee, and L. Komitov, “Surface polymer-stabilised in-plane field driven vertical alignment liquid crystal device,” Liq. Cryst.41(4), 552–557 (2014).
[CrossRef]

A. D. Garbo and M. Nobili, “Order parameter dependence of the nematic liquid crystal anchoring energy: A numerical approach,” Liq. Cryst.19(2), 269–276 (1995).
[CrossRef]

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst.33(1), 67–73 (2006).
[CrossRef]

Opt. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Murauski, V. Chigrinov, A. Muravsky, F. S. Y. Yeung, J. Ho, and H. S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(6), 061707 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. B. Nephew, T. C. Nihei, and S. A. Carter, “Reaction-induced phase separation dynamics: a polymer in a liquid crystal solvent,” Phys. Rev. Lett.80(15), 3276–3279 (1998).
[CrossRef]

Z. Naturforsch. Teil. (1)

W. Maier and G. Meier, “A simple theory of the dielectric characteristics of homogeneous oriented crystalline-liquid phases of the nematic type,” Z. Naturforsch. Teil.16, 262–267 (1961).

Z. Naturforsh. Teil (1)

W. Maier and A. Saupe, “A simple molecular statistical theory for nematic crystalline-liquid phase, PartII,” Z. Naturforsh. Teil15(a), 287–292 (1960).

Z. Naturforsh. Teil. (1)

W. Maier and A. Saupe, “A simple molecular statistical theory of the nematic crystalline-liquid phase, Part I,” Z. Naturforsh. Teil.14(a), 882–889 (1959).

Other (8)

J. K. Song, K. E. Lee, H. S. Chang, S. M. Hong, M. B. Jun, B. Y. Park, S. S. Seomun, K. H. Kim, and S. S. Kim, “Novel method for fast response time in PVA mode,” SID Symp. Dig. Tech. Pap. 35(1), 1344–1347 (2004).

Y. Kim, J. Francl, B. Taheri, and J. L. West, “A novel method for the formation of polymer walls in liquid crystal/polymer displays,” SID Symp. Dig. Tech. Pap. 29(1), 397–400 (1998).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (Roberts & Co., 2005), Chap. 4.

S. H. Lim, D. H. Kim, S. J. Shin, W. C. Woo, H. S. Jin, S. H. Lee, E. Y. Kim, and S. E. Lee, “Polymer stabilized in-plane field driven vertical alignment liquid crystal device,” SID Symp. Dig. Tech. Pap. 42(1), 1645–1647 (2011).
[CrossRef]

J. H. Lee, D. N. Liu, and S. T. Wu, Introduction to Flat Panel Displays (Wiley, 2008).

S. M. Jung, J. U. Park, S. C. Lee, W. S. Kim, M. S. Yang, I. B. Kang, and I. J. Chung, “A novel polarizer glasses-type 3D displays with an active retarder,” SID Symp. Dig. Tech. Pap. 40(1), 348–351 (2009).

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig. Tech. Pap. 35(1), 1200–1203 (2004).
[CrossRef]

I. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustrations of the process of polymerization and LC molecular orientation for a VA-IPS LC cell with polymers. (a) Well mixed monomer in the LC cell and UV-light exposure. (b) Polymers assembling on the top- and bottom-substrate surface after UV curing. (c) A cell sandwiched between the polarizer and analyzer, and the configuration of LC molecules under the connection with VIPS.

Fig. 2
Fig. 2

(a)-(c) FE-SEM images recording the TA-9164 with planar cross-linking, UCL002 with spherical and NOA65 with clustered polymer morphologies, respectively. For these three images, the scale bar is the same, as represented in (b). (d) T-V curves for different types of VA-IPS cells: pure E7 LC, NOA65 polymer, TA-9164 polymer, and UCL002 polymer cells. The horizontal and vertical dotted lines represent the Tmax and VTmax of each cell, respectively. (e) Conoscope images showing the effect of polymer morphology on the alignment quality of VA-IPS cells. Of all the cells, the planar cross-linking TA-9164 polymer cell has the highest brightness, indicating that the alignment quality is the best (high orderly vertical configuration). (f) Estimation on the Vth of the VA-IPS E7 LC cell with different monomer materials. The Vth value for each cell is shown in parentheses, determined by the maximum tangent line’s slope.

Fig. 3
Fig. 3

(a) τr and (b) τf responses for the pure E7 LC cell, NOA65 polymer, TA-9164 polymer, and UCL002 polymer cells.

Fig. 4
Fig. 4

Gray-level responses of (a) τr and (b) τf for the pure E7 LC cell and the TA-9164 polymer cell.

Fig. 5
Fig. 5

τr response behavior for the pure E7 LC cell applied with normal drive (VTmax = 10.5 V), the pure E7 LC cell applied with overdrive (15 V), and the TA-9164 polymer cell applied with normal drive (VTmax = 12 V).

Tables (1)

Tables Icon

Table 1 Electro-Optical Properties for Different Kinds of VA-IPS Cells.

Metrics