Abstract

Development of micro-components for IR integrated optic devices requires the elaboration of IR waveguides. It is shown that amorphous chalcogenide films from the Ge-Se-Te system are well suited to such development. Thermal and optical characteristics of films elaborated by thermal co-evaporation are first measured. The Se-rich (> 60 at. %) region with a Ge content of about 25 at. % comprises films with a vitreous transition temperature, Tg, larger than 400K, a high thermal stability (ΔT > 100K) and a well-controlled refractive index, n, owing to a weak dependence of n with composition in this region. Films in this composition region are then profitably used to develop optical structures, such as straight or S-bend waveguides, spirals, Y-junction or Mach-Zehnder interferometer, by stacking and further etching of the films. The transmission region accessible to these structures lies from telecommunication wavelength up to 16-17 µm. When a higher transmission region is required, the use of pure Ge-Te films is mandatory. A modal filter allowing a light rejection efficiency of 6.10−5 to be a part of a spatial interferometer is then elaborated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chatterjee, P. K. Purkait, and D. Garg, “Athermalization of infra-red camera of projectile weapons,” Appl. Therm. Eng.29(10), 2106–2112 (2009).
    [CrossRef]
  2. R. Kasztelanic, I. Kujawa, R. Stepien, K. Harasny, D. Pysz, and R. Buczynski, “Fresnel lens fabrication for broadband IR optics using hot embossing process,” Infrared Phys. Technol.60, 1–6 (2013).
    [CrossRef]
  3. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids326-327, 519–523 (2003).
    [CrossRef]
  4. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
    [CrossRef] [PubMed]
  5. H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett.38(15), 2779–2782 (2013).
    [CrossRef] [PubMed]
  6. J. A. Savage, Infrared Optical Materials and their Antireflexion Coatings (Adam Hilger, 1985).
  7. I. U. Arachchige, R. Soriano, C. D. Malliakas, S. A. Ivanov, and M. C. Kanatzidis, “Amorphous and Crystalline GeTe Nanocrystals,” Adv. Funct. Mater.21(14), 2737–2743 (2011).
    [CrossRef]
  8. J. Feinleib, J. Deneufvi, S. C. Moss, and S. R. Ovshinsky, “Rapid Reversible Light-induced Crystallization Of Amorphous Semiconductors,” Appl. Phys. Lett.18(6), 254–257 (1971).
  9. D. Kang, D. Lee, H.-M. Kim, S.-W. Nam, M.-H. Kwon, and K.-B. Kim, “Analysis of the electric field induced elemental separation of Ge2Sb2Te5 by transmission electron microscopy,” Appl. Phys. Lett.95(1), 011904 (2009).
    [CrossRef]
  10. H. B. Lu, E. Thelander, J. W. Gerlach, U. Decker, B. P. Zhu, and B. Rauschenbach, “Single Pulse Laser-Induced Phase Transitions of PLD-Deposited Ge2Sb2Te5 Films,” Adv. Funct. Mater.23(29), 3621–3627 (2013).
    [CrossRef]
  11. E. Barthélémy, S. Albert, C. Vigreux, and A. Pradel, “Effect of composition on the properties of Te-Ge thick films deposited by co-thermal evaporation,” J. Non-Cryst. Solids356(41-42), 2175–2180 (2010).
    [CrossRef]
  12. E. Barthélémy, C. Vigreux, G. Parent, M. Barillot, and A. Pradel, “Telluride films and waveguides for IR integrated optics,” Phys. Status Solidi., C Curr. Top. Solid State Phys.8(9), 2890–2894 (2011).
    [CrossRef]
  13. S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater.16(14), 1847–1852 (2006).
    [CrossRef]
  14. S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, P. Lucas, X. H. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater.33(4), 660–663 (2011).
    [CrossRef]
  15. A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
    [CrossRef]
  16. M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
    [CrossRef] [PubMed]
  17. A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
    [CrossRef]
  18. A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
    [CrossRef]
  19. P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Pledel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem.119(2), 355–362 (2006).
    [CrossRef]
  20. F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J. L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater.31(3), 496–500 (2009).
    [CrossRef]
  21. D. Tsiulyanu, S. Marian, H. D. Liess, and I. Eisele, “Effect of annealing and temperature on the NO2 sensing properties of tellurium based films,” Sens. Actuators B Chem.100(3), 380–386 (2004).
    [CrossRef]
  22. S. Hocdé, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci.3(3), 279–284 (2001).
    [CrossRef]
  23. D. J. Sarrach, J. P. Deneufville, and W. L. Haworth, “Studies Of Aorphous Ge-Se-Te Alloys. 1. Preparation And Calorimetric Observations,” J. Non-Cryst. Solids22(2), 245–267 (1976).
    [CrossRef]
  24. S. A. Khan, M. Zulfequar, and M. Husain, “Effects of annealing on crystallization process in amorphous Ge5Se95-xTex thin films,” Physica B324(1-4), 336–343 (2002).
    [CrossRef]
  25. A. El-Korashy, A. Bakry, M. A. Abdel-Rahim, and M. A. El-Sattar, “Annealing effects on some physical properties of Ge5Se25Te70 chalcogenide glasses,” Physica B391(2), 266–273 (2007).
    [CrossRef]
  26. P. Sharma and S. C. Katyal, “Thickness dependence of optical parameters for Ge-Se-Te thin films,” Mater. Lett.61(23-24), 4516–4518 (2007).
    [CrossRef]
  27. P. Sharma and S. C. Katyal, “Optical study of Ge10Se90-xTex glassy semiconductors,” Thin Solid Films515(20-21), 7966–7970 (2007).
    [CrossRef]
  28. P. Sharma and S. C. Katyal, “Effect of substrate temperature on the optical parameters of thermally evaporated Ge-Se-Te thin films,” Thin Solid Films517(13), 3813–3816 (2009).
    [CrossRef]
  29. Z. Y. Wang, C. J. Tu, Y. M. Li, and Q. Q. Chen, “The Effects Of Sn and Bi Additions On Properties And Structure In Ge-Se-Te Chalcogenide Glass,” J. Non-Cryst. Solids191(1-2), 132–137 (1995).
    [CrossRef]
  30. S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, X. H. Zhang, W. Geliesen, and J. Lucas, “Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15 mu m,” J. Non-Cryst. Solids355(37-42), 2074–2078 (2009).
    [CrossRef]
  31. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett.25(4), 254–256 (2000).
    [CrossRef] [PubMed]
  32. E.-B. Lee, B.-K. Ju, and Y.-T. Kim, “Phase change and electrical characteristics of Ge–Se–Te alloys,” Microelectron. Eng.86(7-9), 1950–1953 (2009).
    [CrossRef]
  33. C. Das, M. G. Mahesha, G. M. Rao, and S. Asokan, “Electrical switching and optical studies on amorphous GexSe35-xTe65 thin films,” Thin Solid Films520(6), 2278–2282 (2012).
    [CrossRef]
  34. E. M. Vinod, A. K. Singh, R. Ganesan, and K. S. Sangunni, “Effect of selenium addition on the GeTe phase change memory alloys,” J. Alloy. Comp.537, 127–132 (2012).
    [CrossRef]
  35. S. Zembutsu and S. Fukunishi, “Waveguiding properties of (Se,S)-based chalcogenide glass films and some applications to optical waveguide devices,” Appl. Opt.18(3), 393–399 (1979).
    [CrossRef] [PubMed]
  36. V. T. Mai, R. Escalier, C. Vigreux, and A. Pradel, “Selenium modified Te85Ge15 films elaborated by thermal co-evaporation for infrared applications,” Thin Solid Films524, 309–315 (2012).
    [CrossRef]
  37. C. Vigreux, M. Vu Thi, R. Escalier, G. Maulion, R. Kribich, and A. Pradel, “Channel waveguides based on thermally co-evaporated Te-Ge-Se films for infrared integrated optics,” J. Non-Cryst. Solids377, 205–208 (2013).
    [CrossRef]
  38. C. Vigreux, A. Piarristeguy, R. Escalier, S. Ménard, M. Barillot, and A. Pradel, “Evidence of a minimum in refractive indexes of amorphous GexTe100−x films: Relevance to the development of infrared waveguides,” Phys Status Solidi A211(4), 932–937 (2014).
    [CrossRef]
  39. E. Barthélémy, S. Albert, C. Vigreux, A. Pradel, X. Zhang, S. Zhang, G. Parent, T. Billeton, J.-E. Broquin, S. Ménard, M. Barillot, and V. Kirschner, in Conference Integrated Optics: Devices, Materials, and Technologies XIV (part of Photonics West)(San Francisco, US, 2010), p. 760405.
  40. C. Vigreux, S. D. Sousa, V. Foucan, E. Barthélémy, and A. Pradel, “Deep reactive ion etching of thermally co-evaporated Te–Ge films for IR integrated optics components,” Microelectron. Eng.88(3), 222–227 (2011).
    [CrossRef]
  41. S. Bordas, M. Geli, J. Casas-Vazquez, N. Clavaguera, and M. T. Clavaguera-Mora, “Phase diagram of the ternary system Ge-Te-Se,” Thermochim. Acta37(2), 197–207 (1980).
    [CrossRef]
  42. Z. Borisova, Glassy Semiconductors (Plenum Press, New York, 1981).
  43. P. Boolchand, D. G. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67, and rigidity transitions in chalgonide glasses,” C. R. Chim.5(11), 713–724 (2002).
    [CrossRef]
  44. M. A. Afifi, N. A. Hegab, H. E. Atyia, and A. S. Farid, “Investigation of DC conductivity and switching phenomenon of Se80Te20−xGex amorphous system,” J. Alloy. Comp.463(1-2), 10–17 (2008).
    [CrossRef]
  45. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys Status Solidi B15(2), 627–637 (1966).
    [CrossRef]
  46. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J Phys E16(12), 1214–1222 (1983).
    [CrossRef]
  47. T. S. Moss, Optical properties of Semiconductors (Butterworths, London, 1959).
  48. T. S. Moss, “A relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors,” Proc. Phys. Soc. B63(3), 167–176 (1950).
    [CrossRef]
  49. N. El-Kabany, “Compositional dependence of the optical properties of the amorphous GexTe1−x system,” Physica B403(18), 2949–2955 (2008).
    [CrossRef]
  50. G. Yang, Y. Gueguen, J.-C. Sangleboeuf, T. Rouxel, C. Boussard-Plédel, J. Troles, P. Lucas, and B. Bureau, “Physical properties of the GexSe1-x glasses in the 0<x<0.42 range in correlation with their structure,” J. Non-Cryst. Solids377, 54–59 (2013).
    [CrossRef]
  51. K. Tanaka, “Structural phase transitions in chalcogenide glasses,” Phys. Rev. B Condens. Matter39(2), 1270–1279 (1989).
    [CrossRef] [PubMed]
  52. A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. Philip, “Observation of a threshold behavior in the optical band gap and thermal diffusivity of Ge-Sb-Se glasses,” Phys. Rev. B Condens. Matter45(14), 8112–8115 (1992).
    [CrossRef] [PubMed]
  53. E. Sleeckx, L. Tichý, P. Nagels, and R. Callaerts, “Thermally and photo-induced irreversible changes in the optical properties of amorphous GexSe100-x films,” J. Non-Cryst. Solids198–200(Part 2), 723–727 (1996).
    [CrossRef]
  54. G. Saffarini, H. Schmitt, H. Shanak, J. Nowoczin, and J. Müller, “Optical band gap in relation to the average coordination number in Ge—S—Bi thin films,” Phys Status Solidi B239(1), 251–256 (2003).
    [CrossRef]
  55. O. Gamulin, M. Ivanda, V. Mitsa, S. Pasic, and M. Balarin, “Spectroscopy studies of structural phase transitions of chalcogenide glass thin films (Ge2S3)x(As2S3)1− x at coordination number 2.67,” Solid State Commun.135(11-12), 753–758 (2005).
    [CrossRef]
  56. D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys Adv Mater96(3), 615–625 (2009).
    [CrossRef]
  57. P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarcik, and A. Pradel, “Short range order and stability of amorphous GexTe100−x alloys (12 ≤ x ≤ 44.6),” J Phys-Condens Matter25, 195401 (2013).
  58. K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
    [CrossRef]
  59. V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
    [CrossRef]
  60. J. Li, X. Shen, J. Sun, K. Vu, D.-Y. Choi, R. Wang, B. Luther-Davies, S. Dai, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths,” Thin Solid Films545, 462–465 (2013).
    [CrossRef]
  61. P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express21(24), 29927–29937 (2013).
    [CrossRef] [PubMed]
  62. J.-F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol.17(7), 1184–1191 (1999).
    [CrossRef]
  63. Z. G. Lian, W. J. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett.34(8), 1234–1236 (2009).
    [CrossRef] [PubMed]
  64. T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express18(18), 19286–19291 (2010).
    [CrossRef] [PubMed]
  65. Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-rib chalcogenide waveguides by solution process,” ACS Photonics1(3), 153–157 (2014).
    [CrossRef]
  66. R. Zhao, M. Wang, B. Chen, K. Liu, E. Y. B. Pun, and H. Lin, “Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing,” Opt. Eng.50(4), 044602 (2011).
    [CrossRef]
  67. L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: the option of mid-infrared integrated optics,” Adv. Space Res.41(12), 1975–1982 (2008).
    [CrossRef]
  68. S. Zhang, X. Zhang, M. Barillot, L. Calvez, C. Boussard, B. Bureau, J. Lucas, V. Kirschner, and G. Parent, “Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application,” Opt. Mater.32(9), 1055–1059 (2010).
    [CrossRef]
  69. C. Vigreux, E. Barthélémy, L. Bastard, J. E. Broquin, M. Barillot, S. Ménard, G. Parent, and A. Pradel, “Realization of single-mode telluride rib waveguides for mid-IR applications between 10 and 20 μm,” Opt. Lett.36(15), 2922–2924 (2011).
    [CrossRef] [PubMed]
  70. C. Vigreux, E. Barthélémy, L. Bastard, J.-E. Broquin, S. Ménard, M. Barillot, G. Parent, and A. Pradel, “Fabrication and testing of all-telluride rib waveguides for nulling interferometry,” Opt. Mater. Express1(3), 357–364 (2011).
    [CrossRef]

2014 (2)

C. Vigreux, A. Piarristeguy, R. Escalier, S. Ménard, M. Barillot, and A. Pradel, “Evidence of a minimum in refractive indexes of amorphous GexTe100−x films: Relevance to the development of infrared waveguides,” Phys Status Solidi A211(4), 932–937 (2014).
[CrossRef]

Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-rib chalcogenide waveguides by solution process,” ACS Photonics1(3), 153–157 (2014).
[CrossRef]

2013 (9)

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett.38(15), 2779–2782 (2013).
[CrossRef] [PubMed]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express21(24), 29927–29937 (2013).
[CrossRef] [PubMed]

G. Yang, Y. Gueguen, J.-C. Sangleboeuf, T. Rouxel, C. Boussard-Plédel, J. Troles, P. Lucas, and B. Bureau, “Physical properties of the GexSe1-x glasses in the 0<x<0.42 range in correlation with their structure,” J. Non-Cryst. Solids377, 54–59 (2013).
[CrossRef]

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarcik, and A. Pradel, “Short range order and stability of amorphous GexTe100−x alloys (12 ≤ x ≤ 44.6),” J Phys-Condens Matter25, 195401 (2013).

J. Li, X. Shen, J. Sun, K. Vu, D.-Y. Choi, R. Wang, B. Luther-Davies, S. Dai, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths,” Thin Solid Films545, 462–465 (2013).
[CrossRef]

R. Kasztelanic, I. Kujawa, R. Stepien, K. Harasny, D. Pysz, and R. Buczynski, “Fresnel lens fabrication for broadband IR optics using hot embossing process,” Infrared Phys. Technol.60, 1–6 (2013).
[CrossRef]

C. Vigreux, M. Vu Thi, R. Escalier, G. Maulion, R. Kribich, and A. Pradel, “Channel waveguides based on thermally co-evaporated Te-Ge-Se films for infrared integrated optics,” J. Non-Cryst. Solids377, 205–208 (2013).
[CrossRef]

H. B. Lu, E. Thelander, J. W. Gerlach, U. Decker, B. P. Zhu, and B. Rauschenbach, “Single Pulse Laser-Induced Phase Transitions of PLD-Deposited Ge2Sb2Te5 Films,” Adv. Funct. Mater.23(29), 3621–3627 (2013).
[CrossRef]

2012 (3)

V. T. Mai, R. Escalier, C. Vigreux, and A. Pradel, “Selenium modified Te85Ge15 films elaborated by thermal co-evaporation for infrared applications,” Thin Solid Films524, 309–315 (2012).
[CrossRef]

C. Das, M. G. Mahesha, G. M. Rao, and S. Asokan, “Electrical switching and optical studies on amorphous GexSe35-xTe65 thin films,” Thin Solid Films520(6), 2278–2282 (2012).
[CrossRef]

E. M. Vinod, A. K. Singh, R. Ganesan, and K. S. Sangunni, “Effect of selenium addition on the GeTe phase change memory alloys,” J. Alloy. Comp.537, 127–132 (2012).
[CrossRef]

2011 (7)

R. Zhao, M. Wang, B. Chen, K. Liu, E. Y. B. Pun, and H. Lin, “Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing,” Opt. Eng.50(4), 044602 (2011).
[CrossRef]

C. Vigreux, E. Barthélémy, L. Bastard, J.-E. Broquin, S. Ménard, M. Barillot, G. Parent, and A. Pradel, “Fabrication and testing of all-telluride rib waveguides for nulling interferometry,” Opt. Mater. Express1(3), 357–364 (2011).
[CrossRef]

C. Vigreux, E. Barthélémy, L. Bastard, J. E. Broquin, M. Barillot, S. Ménard, G. Parent, and A. Pradel, “Realization of single-mode telluride rib waveguides for mid-IR applications between 10 and 20 μm,” Opt. Lett.36(15), 2922–2924 (2011).
[CrossRef] [PubMed]

C. Vigreux, S. D. Sousa, V. Foucan, E. Barthélémy, and A. Pradel, “Deep reactive ion etching of thermally co-evaporated Te–Ge films for IR integrated optics components,” Microelectron. Eng.88(3), 222–227 (2011).
[CrossRef]

I. U. Arachchige, R. Soriano, C. D. Malliakas, S. A. Ivanov, and M. C. Kanatzidis, “Amorphous and Crystalline GeTe Nanocrystals,” Adv. Funct. Mater.21(14), 2737–2743 (2011).
[CrossRef]

E. Barthélémy, C. Vigreux, G. Parent, M. Barillot, and A. Pradel, “Telluride films and waveguides for IR integrated optics,” Phys. Status Solidi., C Curr. Top. Solid State Phys.8(9), 2890–2894 (2011).
[CrossRef]

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, P. Lucas, X. H. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater.33(4), 660–663 (2011).
[CrossRef]

2010 (4)

E. Barthélémy, S. Albert, C. Vigreux, and A. Pradel, “Effect of composition on the properties of Te-Ge thick films deposited by co-thermal evaporation,” J. Non-Cryst. Solids356(41-42), 2175–2180 (2010).
[CrossRef]

T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express18(18), 19286–19291 (2010).
[CrossRef] [PubMed]

S. Zhang, X. Zhang, M. Barillot, L. Calvez, C. Boussard, B. Bureau, J. Lucas, V. Kirschner, and G. Parent, “Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application,” Opt. Mater.32(9), 1055–1059 (2010).
[CrossRef]

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

2009 (9)

E.-B. Lee, B.-K. Ju, and Y.-T. Kim, “Phase change and electrical characteristics of Ge–Se–Te alloys,” Microelectron. Eng.86(7-9), 1950–1953 (2009).
[CrossRef]

S. Chatterjee, P. K. Purkait, and D. Garg, “Athermalization of infra-red camera of projectile weapons,” Appl. Therm. Eng.29(10), 2106–2112 (2009).
[CrossRef]

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys Adv Mater96(3), 615–625 (2009).
[CrossRef]

Z. G. Lian, W. J. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett.34(8), 1234–1236 (2009).
[CrossRef] [PubMed]

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J. L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater.31(3), 496–500 (2009).
[CrossRef]

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, X. H. Zhang, W. Geliesen, and J. Lucas, “Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15 mu m,” J. Non-Cryst. Solids355(37-42), 2074–2078 (2009).
[CrossRef]

P. Sharma and S. C. Katyal, “Effect of substrate temperature on the optical parameters of thermally evaporated Ge-Se-Te thin films,” Thin Solid Films517(13), 3813–3816 (2009).
[CrossRef]

D. Kang, D. Lee, H.-M. Kim, S.-W. Nam, M.-H. Kwon, and K.-B. Kim, “Analysis of the electric field induced elemental separation of Ge2Sb2Te5 by transmission electron microscopy,” Appl. Phys. Lett.95(1), 011904 (2009).
[CrossRef]

2008 (4)

M. A. Afifi, N. A. Hegab, H. E. Atyia, and A. S. Farid, “Investigation of DC conductivity and switching phenomenon of Se80Te20−xGex amorphous system,” J. Alloy. Comp.463(1-2), 10–17 (2008).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
[CrossRef]

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: the option of mid-infrared integrated optics,” Adv. Space Res.41(12), 1975–1982 (2008).
[CrossRef]

N. El-Kabany, “Compositional dependence of the optical properties of the amorphous GexTe1−x system,” Physica B403(18), 2949–2955 (2008).
[CrossRef]

2007 (4)

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

A. El-Korashy, A. Bakry, M. A. Abdel-Rahim, and M. A. El-Sattar, “Annealing effects on some physical properties of Ge5Se25Te70 chalcogenide glasses,” Physica B391(2), 266–273 (2007).
[CrossRef]

P. Sharma and S. C. Katyal, “Thickness dependence of optical parameters for Ge-Se-Te thin films,” Mater. Lett.61(23-24), 4516–4518 (2007).
[CrossRef]

P. Sharma and S. C. Katyal, “Optical study of Ge10Se90-xTex glassy semiconductors,” Thin Solid Films515(20-21), 7966–7970 (2007).
[CrossRef]

2006 (3)

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater.16(14), 1847–1852 (2006).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Pledel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem.119(2), 355–362 (2006).
[CrossRef]

2005 (1)

O. Gamulin, M. Ivanda, V. Mitsa, S. Pasic, and M. Balarin, “Spectroscopy studies of structural phase transitions of chalcogenide glass thin films (Ge2S3)x(As2S3)1− x at coordination number 2.67,” Solid State Commun.135(11-12), 753–758 (2005).
[CrossRef]

2004 (1)

D. Tsiulyanu, S. Marian, H. D. Liess, and I. Eisele, “Effect of annealing and temperature on the NO2 sensing properties of tellurium based films,” Sens. Actuators B Chem.100(3), 380–386 (2004).
[CrossRef]

2003 (3)

G. Saffarini, H. Schmitt, H. Shanak, J. Nowoczin, and J. Müller, “Optical band gap in relation to the average coordination number in Ge—S—Bi thin films,” Phys Status Solidi B239(1), 251–256 (2003).
[CrossRef]

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids326-327, 519–523 (2003).
[CrossRef]

2002 (2)

S. A. Khan, M. Zulfequar, and M. Husain, “Effects of annealing on crystallization process in amorphous Ge5Se95-xTex thin films,” Physica B324(1-4), 336–343 (2002).
[CrossRef]

P. Boolchand, D. G. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67, and rigidity transitions in chalgonide glasses,” C. R. Chim.5(11), 713–724 (2002).
[CrossRef]

2001 (1)

S. Hocdé, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci.3(3), 279–284 (2001).
[CrossRef]

2000 (1)

1999 (1)

1996 (1)

E. Sleeckx, L. Tichý, P. Nagels, and R. Callaerts, “Thermally and photo-induced irreversible changes in the optical properties of amorphous GexSe100-x films,” J. Non-Cryst. Solids198–200(Part 2), 723–727 (1996).
[CrossRef]

1995 (1)

Z. Y. Wang, C. J. Tu, Y. M. Li, and Q. Q. Chen, “The Effects Of Sn and Bi Additions On Properties And Structure In Ge-Se-Te Chalcogenide Glass,” J. Non-Cryst. Solids191(1-2), 132–137 (1995).
[CrossRef]

1992 (1)

A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. Philip, “Observation of a threshold behavior in the optical band gap and thermal diffusivity of Ge-Sb-Se glasses,” Phys. Rev. B Condens. Matter45(14), 8112–8115 (1992).
[CrossRef] [PubMed]

1989 (1)

K. Tanaka, “Structural phase transitions in chalcogenide glasses,” Phys. Rev. B Condens. Matter39(2), 1270–1279 (1989).
[CrossRef] [PubMed]

1983 (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J Phys E16(12), 1214–1222 (1983).
[CrossRef]

1980 (1)

S. Bordas, M. Geli, J. Casas-Vazquez, N. Clavaguera, and M. T. Clavaguera-Mora, “Phase diagram of the ternary system Ge-Te-Se,” Thermochim. Acta37(2), 197–207 (1980).
[CrossRef]

1979 (1)

1976 (1)

D. J. Sarrach, J. P. Deneufville, and W. L. Haworth, “Studies Of Aorphous Ge-Se-Te Alloys. 1. Preparation And Calorimetric Observations,” J. Non-Cryst. Solids22(2), 245–267 (1976).
[CrossRef]

1971 (1)

J. Feinleib, J. Deneufvi, S. C. Moss, and S. R. Ovshinsky, “Rapid Reversible Light-induced Crystallization Of Amorphous Semiconductors,” Appl. Phys. Lett.18(6), 254–257 (1971).

1966 (1)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys Status Solidi B15(2), 627–637 (1966).
[CrossRef]

1950 (1)

T. S. Moss, “A relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors,” Proc. Phys. Soc. B63(3), 167–176 (1950).
[CrossRef]

Abdel-Rahim, M. A.

A. El-Korashy, A. Bakry, M. A. Abdel-Rahim, and M. A. El-Sattar, “Annealing effects on some physical properties of Ge5Se25Te70 chalcogenide glasses,” Physica B391(2), 266–273 (2007).
[CrossRef]

Adam, J. L.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J. L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater.31(3), 496–500 (2009).
[CrossRef]

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

Afifi, M. A.

M. A. Afifi, N. A. Hegab, H. E. Atyia, and A. S. Farid, “Investigation of DC conductivity and switching phenomenon of Se80Te20−xGex amorphous system,” J. Alloy. Comp.463(1-2), 10–17 (2008).
[CrossRef]

Agarwal, A.

Aggarwal, I. D.

Albert, S.

E. Barthélémy, S. Albert, C. Vigreux, and A. Pradel, “Effect of composition on the properties of Te-Ge thick films deposited by co-thermal evaporation,” J. Non-Cryst. Solids356(41-42), 2175–2180 (2010).
[CrossRef]

Anne, M. L.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

Arachchige, I. U.

I. U. Arachchige, R. Soriano, C. D. Malliakas, S. A. Ivanov, and M. C. Kanatzidis, “Amorphous and Crystalline GeTe Nanocrystals,” Adv. Funct. Mater.21(14), 2737–2743 (2011).
[CrossRef]

Arnold, C. B.

Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-rib chalcogenide waveguides by solution process,” ACS Photonics1(3), 153–157 (2014).
[CrossRef]

Asokan, S.

C. Das, M. G. Mahesha, G. M. Rao, and S. Asokan, “Electrical switching and optical studies on amorphous GexSe35-xTe65 thin films,” Thin Solid Films520(6), 2278–2282 (2012).
[CrossRef]

Atyia, H. E.

M. A. Afifi, N. A. Hegab, H. E. Atyia, and A. S. Farid, “Investigation of DC conductivity and switching phenomenon of Se80Te20−xGex amorphous system,” J. Alloy. Comp.463(1-2), 10–17 (2008).
[CrossRef]

Bakry, A.

A. El-Korashy, A. Bakry, M. A. Abdel-Rahim, and M. A. El-Sattar, “Annealing effects on some physical properties of Ge5Se25Te70 chalcogenide glasses,” Physica B391(2), 266–273 (2007).
[CrossRef]

Balarin, M.

O. Gamulin, M. Ivanda, V. Mitsa, S. Pasic, and M. Balarin, “Spectroscopy studies of structural phase transitions of chalcogenide glass thin films (Ge2S3)x(As2S3)1− x at coordination number 2.67,” Solid State Commun.135(11-12), 753–758 (2005).
[CrossRef]

Barillot, M.

C. Vigreux, A. Piarristeguy, R. Escalier, S. Ménard, M. Barillot, and A. Pradel, “Evidence of a minimum in refractive indexes of amorphous GexTe100−x films: Relevance to the development of infrared waveguides,” Phys Status Solidi A211(4), 932–937 (2014).
[CrossRef]

C. Vigreux, E. Barthélémy, L. Bastard, J.-E. Broquin, S. Ménard, M. Barillot, G. Parent, and A. Pradel, “Fabrication and testing of all-telluride rib waveguides for nulling interferometry,” Opt. Mater. Express1(3), 357–364 (2011).
[CrossRef]

E. Barthélémy, C. Vigreux, G. Parent, M. Barillot, and A. Pradel, “Telluride films and waveguides for IR integrated optics,” Phys. Status Solidi., C Curr. Top. Solid State Phys.8(9), 2890–2894 (2011).
[CrossRef]

C. Vigreux, E. Barthélémy, L. Bastard, J. E. Broquin, M. Barillot, S. Ménard, G. Parent, and A. Pradel, “Realization of single-mode telluride rib waveguides for mid-IR applications between 10 and 20 μm,” Opt. Lett.36(15), 2922–2924 (2011).
[CrossRef] [PubMed]

S. Zhang, X. Zhang, M. Barillot, L. Calvez, C. Boussard, B. Bureau, J. Lucas, V. Kirschner, and G. Parent, “Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application,” Opt. Mater.32(9), 1055–1059 (2010).
[CrossRef]

Barthélémy, E.

C. Vigreux, E. Barthélémy, L. Bastard, J. E. Broquin, M. Barillot, S. Ménard, G. Parent, and A. Pradel, “Realization of single-mode telluride rib waveguides for mid-IR applications between 10 and 20 μm,” Opt. Lett.36(15), 2922–2924 (2011).
[CrossRef] [PubMed]

C. Vigreux, S. D. Sousa, V. Foucan, E. Barthélémy, and A. Pradel, “Deep reactive ion etching of thermally co-evaporated Te–Ge films for IR integrated optics components,” Microelectron. Eng.88(3), 222–227 (2011).
[CrossRef]

E. Barthélémy, C. Vigreux, G. Parent, M. Barillot, and A. Pradel, “Telluride films and waveguides for IR integrated optics,” Phys. Status Solidi., C Curr. Top. Solid State Phys.8(9), 2890–2894 (2011).
[CrossRef]

C. Vigreux, E. Barthélémy, L. Bastard, J.-E. Broquin, S. Ménard, M. Barillot, G. Parent, and A. Pradel, “Fabrication and testing of all-telluride rib waveguides for nulling interferometry,” Opt. Mater. Express1(3), 357–364 (2011).
[CrossRef]

E. Barthélémy, S. Albert, C. Vigreux, and A. Pradel, “Effect of composition on the properties of Te-Ge thick films deposited by co-thermal evaporation,” J. Non-Cryst. Solids356(41-42), 2175–2180 (2010).
[CrossRef]

Bastard, L.

Baumann, T.

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

Bayona, J.

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

Bednarcik, J.

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarcik, and A. Pradel, “Short range order and stability of amorphous GexTe100−x alloys (12 ≤ x ≤ 44.6),” J Phys-Condens Matter25, 195401 (2013).

Bellec, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids326-327, 519–523 (2003).
[CrossRef]

Benson, T. M.

Boesewetter, D. E.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Pledel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem.119(2), 355–362 (2006).
[CrossRef]

Boolchand, P.

P. Boolchand, D. G. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67, and rigidity transitions in chalgonide glasses,” C. R. Chim.5(11), 713–724 (2002).
[CrossRef]

Bordas, S.

S. Bordas, M. Geli, J. Casas-Vazquez, N. Clavaguera, and M. T. Clavaguera-Mora, “Phase diagram of the ternary system Ge-Te-Se,” Thermochim. Acta37(2), 197–207 (1980).
[CrossRef]

Boussard, C.

S. Zhang, X. Zhang, M. Barillot, L. Calvez, C. Boussard, B. Bureau, J. Lucas, V. Kirschner, and G. Parent, “Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application,” Opt. Mater.32(9), 1055–1059 (2010).
[CrossRef]

Boussard-Pledel, C.

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, P. Lucas, X. H. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater.33(4), 660–663 (2011).
[CrossRef]

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, X. H. Zhang, W. Geliesen, and J. Lucas, “Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15 mu m,” J. Non-Cryst. Solids355(37-42), 2074–2078 (2009).
[CrossRef]

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Pledel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem.119(2), 355–362 (2006).
[CrossRef]

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater.16(14), 1847–1852 (2006).
[CrossRef]

S. Hocdé, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci.3(3), 279–284 (2001).
[CrossRef]

Boussard-Plédel, C.

G. Yang, Y. Gueguen, J.-C. Sangleboeuf, T. Rouxel, C. Boussard-Plédel, J. Troles, P. Lucas, and B. Bureau, “Physical properties of the GexSe1-x glasses in the 0<x<0.42 range in correlation with their structure,” J. Non-Cryst. Solids377, 54–59 (2013).
[CrossRef]

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J. L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater.31(3), 496–500 (2009).
[CrossRef]

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

Broquin, J. E.

Broquin, J.-E.

C. Vigreux, E. Barthélémy, L. Bastard, J.-E. Broquin, S. Ménard, M. Barillot, G. Parent, and A. Pradel, “Fabrication and testing of all-telluride rib waveguides for nulling interferometry,” Opt. Mater. Express1(3), 357–364 (2011).
[CrossRef]

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: the option of mid-infrared integrated optics,” Adv. Space Res.41(12), 1975–1982 (2008).
[CrossRef]

Buczynski, R.

R. Kasztelanic, I. Kujawa, R. Stepien, K. Harasny, D. Pysz, and R. Buczynski, “Fresnel lens fabrication for broadband IR optics using hot embossing process,” Infrared Phys. Technol.60, 1–6 (2013).
[CrossRef]

Bulla, D.

Bulla, D. A. P.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys Adv Mater96(3), 615–625 (2009).
[CrossRef]

Bureau, B.

G. Yang, Y. Gueguen, J.-C. Sangleboeuf, T. Rouxel, C. Boussard-Plédel, J. Troles, P. Lucas, and B. Bureau, “Physical properties of the GexSe1-x glasses in the 0<x<0.42 range in correlation with their structure,” J. Non-Cryst. Solids377, 54–59 (2013).
[CrossRef]

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, P. Lucas, X. H. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater.33(4), 660–663 (2011).
[CrossRef]

S. Zhang, X. Zhang, M. Barillot, L. Calvez, C. Boussard, B. Bureau, J. Lucas, V. Kirschner, and G. Parent, “Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application,” Opt. Mater.32(9), 1055–1059 (2010).
[CrossRef]

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, X. H. Zhang, W. Geliesen, and J. Lucas, “Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15 mu m,” J. Non-Cryst. Solids355(37-42), 2074–2078 (2009).
[CrossRef]

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J. L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater.31(3), 496–500 (2009).
[CrossRef]

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Pledel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem.119(2), 355–362 (2006).
[CrossRef]

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

Cai, L.

P. Boolchand, D. G. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67, and rigidity transitions in chalgonide glasses,” C. R. Chim.5(11), 713–724 (2002).
[CrossRef]

Callaerts, R.

E. Sleeckx, L. Tichý, P. Nagels, and R. Callaerts, “Thermally and photo-induced irreversible changes in the optical properties of amorphous GexSe100-x films,” J. Non-Cryst. Solids198–200(Part 2), 723–727 (1996).
[CrossRef]

Calvez, L.

S. Zhang, X. Zhang, M. Barillot, L. Calvez, C. Boussard, B. Bureau, J. Lucas, V. Kirschner, and G. Parent, “Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application,” Opt. Mater.32(9), 1055–1059 (2010).
[CrossRef]

Cardinal, T.

Casas-Vazquez, J.

S. Bordas, M. Geli, J. Casas-Vazquez, N. Clavaguera, and M. T. Clavaguera-Mora, “Phase diagram of the ternary system Ge-Te-Se,” Thermochim. Acta37(2), 197–207 (1980).
[CrossRef]

Chakravarty, S.

P. Boolchand, D. G. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67, and rigidity transitions in chalgonide glasses,” C. R. Chim.5(11), 713–724 (2002).
[CrossRef]

Charpentier, F.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J. L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater.31(3), 496–500 (2009).
[CrossRef]

Charrier, J.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

Chatterjee, S.

S. Chatterjee, P. K. Purkait, and D. Garg, “Athermalization of infra-red camera of projectile weapons,” Appl. Therm. Eng.29(10), 2106–2112 (2009).
[CrossRef]

Chen, B.

R. Zhao, M. Wang, B. Chen, K. Liu, E. Y. B. Pun, and H. Lin, “Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing,” Opt. Eng.50(4), 044602 (2011).
[CrossRef]

Chen, Q. Q.

Z. Y. Wang, C. J. Tu, Y. M. Li, and Q. Q. Chen, “The Effects Of Sn and Bi Additions On Properties And Structure In Ge-Se-Te Chalcogenide Glass,” J. Non-Cryst. Solids191(1-2), 132–137 (1995).
[CrossRef]

Cheong, S. W.

Choi, D.-Y.

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express21(24), 29927–29937 (2013).
[CrossRef] [PubMed]

J. Li, X. Shen, J. Sun, K. Vu, D.-Y. Choi, R. Wang, B. Luther-Davies, S. Dai, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths,” Thin Solid Films545, 462–465 (2013).
[CrossRef]

Clavaguera, N.

S. Bordas, M. Geli, J. Casas-Vazquez, N. Clavaguera, and M. T. Clavaguera-Mora, “Phase diagram of the ternary system Ge-Te-Se,” Thermochim. Acta37(2), 197–207 (1980).
[CrossRef]

Clavaguera-Mora, M. T.

S. Bordas, M. Geli, J. Casas-Vazquez, N. Clavaguera, and M. T. Clavaguera-Mora, “Phase diagram of the ternary system Ge-Te-Se,” Thermochim. Acta37(2), 197–207 (1980).
[CrossRef]

Colas, F.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

Collier, J.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Pledel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem.119(2), 355–362 (2006).
[CrossRef]

Compère, C.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

Coulombier, Q.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

Dai, S.

J. Li, X. Shen, J. Sun, K. Vu, D.-Y. Choi, R. Wang, B. Luther-Davies, S. Dai, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths,” Thin Solid Films545, 462–465 (2013).
[CrossRef]

Danto, S.

Das, C.

C. Das, M. G. Mahesha, G. M. Rao, and S. Asokan, “Electrical switching and optical studies on amorphous GexSe35-xTe65 thin films,” Thin Solid Films520(6), 2278–2282 (2012).
[CrossRef]

Debbarma, S.

Decker, U.

H. B. Lu, E. Thelander, J. W. Gerlach, U. Decker, B. P. Zhu, and B. Rauschenbach, “Single Pulse Laser-Induced Phase Transitions of PLD-Deposited Ge2Sb2Te5 Films,” Adv. Funct. Mater.23(29), 3621–3627 (2013).
[CrossRef]

Deneufvi, J.

J. Feinleib, J. Deneufvi, S. C. Moss, and S. R. Ovshinsky, “Rapid Reversible Light-induced Crystallization Of Amorphous Semiconductors,” Appl. Phys. Lett.18(6), 254–257 (1971).

Deneufville, J. P.

D. J. Sarrach, J. P. Deneufville, and W. L. Haworth, “Studies Of Aorphous Ge-Se-Te Alloys. 1. Preparation And Calorimetric Observations,” J. Non-Cryst. Solids22(2), 245–267 (1976).
[CrossRef]

Deng, F.

Ding, Y. J.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Duguay, M. A.

Eisele, I.

D. Tsiulyanu, S. Marian, H. D. Liess, and I. Eisele, “Effect of annealing and temperature on the NO2 sensing properties of tellurium based films,” Sens. Actuators B Chem.100(3), 380–386 (2004).
[CrossRef]

El-Kabany, N.

N. El-Kabany, “Compositional dependence of the optical properties of the amorphous GexTe1−x system,” Physica B403(18), 2949–2955 (2008).
[CrossRef]

El-Korashy, A.

A. El-Korashy, A. Bakry, M. A. Abdel-Rahim, and M. A. El-Sattar, “Annealing effects on some physical properties of Ge5Se25Te70 chalcogenide glasses,” Physica B391(2), 266–273 (2007).
[CrossRef]

El-Sattar, M. A.

A. El-Korashy, A. Bakry, M. A. Abdel-Rahim, and M. A. El-Sattar, “Annealing effects on some physical properties of Ge5Se25Te70 chalcogenide glasses,” Physica B391(2), 266–273 (2007).
[CrossRef]

Escalier, R.

C. Vigreux, A. Piarristeguy, R. Escalier, S. Ménard, M. Barillot, and A. Pradel, “Evidence of a minimum in refractive indexes of amorphous GexTe100−x films: Relevance to the development of infrared waveguides,” Phys Status Solidi A211(4), 932–937 (2014).
[CrossRef]

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarcik, and A. Pradel, “Short range order and stability of amorphous GexTe100−x alloys (12 ≤ x ≤ 44.6),” J Phys-Condens Matter25, 195401 (2013).

C. Vigreux, M. Vu Thi, R. Escalier, G. Maulion, R. Kribich, and A. Pradel, “Channel waveguides based on thermally co-evaporated Te-Ge-Se films for infrared integrated optics,” J. Non-Cryst. Solids377, 205–208 (2013).
[CrossRef]

V. T. Mai, R. Escalier, C. Vigreux, and A. Pradel, “Selenium modified Te85Ge15 films elaborated by thermal co-evaporation for infrared applications,” Thin Solid Films524, 309–315 (2012).
[CrossRef]

Faber, A. J.

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, P. Lucas, X. H. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater.33(4), 660–663 (2011).
[CrossRef]

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, X. H. Zhang, W. Geliesen, and J. Lucas, “Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15 mu m,” J. Non-Cryst. Solids355(37-42), 2074–2078 (2009).
[CrossRef]

Farid, A. S.

M. A. Afifi, N. A. Hegab, H. E. Atyia, and A. S. Farid, “Investigation of DC conductivity and switching phenomenon of Se80Te20−xGex amorphous system,” J. Alloy. Comp.463(1-2), 10–17 (2008).
[CrossRef]

Feinleib, J.

J. Feinleib, J. Deneufvi, S. C. Moss, and S. R. Ovshinsky, “Rapid Reversible Light-induced Crystallization Of Amorphous Semiconductors,” Appl. Phys. Lett.18(6), 254–257 (1971).

Fonteneau, G.

S. Hocdé, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci.3(3), 279–284 (2001).
[CrossRef]

Foucan, V.

C. Vigreux, S. D. Sousa, V. Foucan, E. Barthélémy, and A. Pradel, “Deep reactive ion etching of thermally co-evaporated Te–Ge films for IR integrated optics components,” Microelectron. Eng.88(3), 222–227 (2011).
[CrossRef]

Frumar, M.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

Fukunishi, S.

Furniss, D.

Gai, X.

Galstian, T. V.

Gamulin, O.

O. Gamulin, M. Ivanda, V. Mitsa, S. Pasic, and M. Balarin, “Spectroscopy studies of structural phase transitions of chalcogenide glass thin films (Ge2S3)x(As2S3)1− x at coordination number 2.67,” Solid State Commun.135(11-12), 753–758 (2005).
[CrossRef]

Ganesan, R.

E. M. Vinod, A. K. Singh, R. Ganesan, and K. S. Sangunni, “Effect of selenium addition on the GeTe phase change memory alloys,” J. Alloy. Comp.537, 127–132 (2012).
[CrossRef]

Ganjoo, A.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Garg, D.

S. Chatterjee, P. K. Purkait, and D. Garg, “Athermalization of infra-red camera of projectile weapons,” Appl. Therm. Eng.29(10), 2106–2112 (2009).
[CrossRef]

Geli, M.

S. Bordas, M. Geli, J. Casas-Vazquez, N. Clavaguera, and M. T. Clavaguera-Mora, “Phase diagram of the ternary system Ge-Te-Se,” Thermochim. Acta37(2), 197–207 (1980).
[CrossRef]

Geliesen, W.

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, X. H. Zhang, W. Geliesen, and J. Lucas, “Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15 mu m,” J. Non-Cryst. Solids355(37-42), 2074–2078 (2009).
[CrossRef]

Georgiev, D. G.

P. Boolchand, D. G. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67, and rigidity transitions in chalgonide glasses,” C. R. Chim.5(11), 713–724 (2002).
[CrossRef]

Gerlach, J. W.

H. B. Lu, E. Thelander, J. W. Gerlach, U. Decker, B. P. Zhu, and B. Rauschenbach, “Single Pulse Laser-Induced Phase Transitions of PLD-Deposited Ge2Sb2Te5 Films,” Adv. Funct. Mater.23(29), 3621–3627 (2013).
[CrossRef]

Gopal, E. S. R.

A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. Philip, “Observation of a threshold behavior in the optical band gap and thermal diffusivity of Ge-Sb-Se glasses,” Phys. Rev. B Condens. Matter45(14), 8112–8115 (1992).
[CrossRef] [PubMed]

Grigorovici, R.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys Status Solidi B15(2), 627–637 (1966).
[CrossRef]

Gueguen, Y.

G. Yang, Y. Gueguen, J.-C. Sangleboeuf, T. Rouxel, C. Boussard-Plédel, J. Troles, P. Lucas, and B. Bureau, “Physical properties of the GexSe1-x glasses in the 0<x<0.42 range in correlation with their structure,” J. Non-Cryst. Solids377, 54–59 (2013).
[CrossRef]

Guimond, Y.

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids326-327, 519–523 (2003).
[CrossRef]

Guin, J. P.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

Han, T.

Harasny, K.

R. Kasztelanic, I. Kujawa, R. Stepien, K. Harasny, D. Pysz, and R. Buczynski, “Fresnel lens fabrication for broadband IR optics using hot embossing process,” Infrared Phys. Technol.60, 1–6 (2013).
[CrossRef]

Haworth, W. L.

D. J. Sarrach, J. P. Deneufville, and W. L. Haworth, “Studies Of Aorphous Ge-Se-Te Alloys. 1. Preparation And Calorimetric Observations,” J. Non-Cryst. Solids22(2), 245–267 (1976).
[CrossRef]

Hegab, N. A.

M. A. Afifi, N. A. Hegab, H. E. Atyia, and A. S. Farid, “Investigation of DC conductivity and switching phenomenon of Se80Te20−xGex amorphous system,” J. Alloy. Comp.463(1-2), 10–17 (2008).
[CrossRef]

Hocdé, S.

S. Hocdé, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci.3(3), 279–284 (2001).
[CrossRef]

Houizot, P.

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater.16(14), 1847–1852 (2006).
[CrossRef]

Hu, J.

Husain, M.

S. A. Khan, M. Zulfequar, and M. Husain, “Effects of annealing on crystallization process in amorphous Ge5Se95-xTex thin films,” Physica B324(1-4), 336–343 (2002).
[CrossRef]

Hwang, H. Y.

Hyodo, K.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

Inoue, S.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

Irudayaraj, J.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Ivanda, M.

O. Gamulin, M. Ivanda, V. Mitsa, S. Pasic, and M. Balarin, “Spectroscopy studies of structural phase transitions of chalcogenide glass thin films (Ge2S3)x(As2S3)1− x at coordination number 2.67,” Solid State Commun.135(11-12), 753–758 (2005).
[CrossRef]

Ivanov, S. A.

I. U. Arachchige, R. Soriano, C. D. Malliakas, S. A. Ivanov, and M. C. Kanatzidis, “Amorphous and Crystalline GeTe Nanocrystals,” Adv. Funct. Mater.21(14), 2737–2743 (2011).
[CrossRef]

Jain, H.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Jouan, T.

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

Jóvári, P.

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarcik, and A. Pradel, “Short range order and stability of amorphous GexTe100−x alloys (12 ≤ x ≤ 44.6),” J Phys-Condens Matter25, 195401 (2013).

Ju, B.-K.

E.-B. Lee, B.-K. Ju, and Y.-T. Kim, “Phase change and electrical characteristics of Ge–Se–Te alloys,” Microelectron. Eng.86(7-9), 1950–1953 (2009).
[CrossRef]

Juncker, C.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Pledel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem.119(2), 355–362 (2006).
[CrossRef]

Jurdyc, A. M.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

Kaban, I.

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarcik, and A. Pradel, “Short range order and stability of amorphous GexTe100−x alloys (12 ≤ x ≤ 44.6),” J Phys-Condens Matter25, 195401 (2013).

Kanatzidis, M. C.

I. U. Arachchige, R. Soriano, C. D. Malliakas, S. A. Ivanov, and M. C. Kanatzidis, “Amorphous and Crystalline GeTe Nanocrystals,” Adv. Funct. Mater.21(14), 2737–2743 (2011).
[CrossRef]

Kang, D.

D. Kang, D. Lee, H.-M. Kim, S.-W. Nam, M.-H. Kwon, and K.-B. Kim, “Analysis of the electric field induced elemental separation of Ge2Sb2Te5 by transmission electron microscopy,” Appl. Phys. Lett.95(1), 011904 (2009).
[CrossRef]

Kasztelanic, R.

R. Kasztelanic, I. Kujawa, R. Stepien, K. Harasny, D. Pysz, and R. Buczynski, “Fresnel lens fabrication for broadband IR optics using hot embossing process,” Infrared Phys. Technol.60, 1–6 (2013).
[CrossRef]

Katsufuji, T.

Katyal, S. C.

P. Sharma and S. C. Katyal, “Effect of substrate temperature on the optical parameters of thermally evaporated Ge-Se-Te thin films,” Thin Solid Films517(13), 3813–3816 (2009).
[CrossRef]

P. Sharma and S. C. Katyal, “Thickness dependence of optical parameters for Ge-Se-Te thin films,” Mater. Lett.61(23-24), 4516–4518 (2007).
[CrossRef]

P. Sharma and S. C. Katyal, “Optical study of Ge10Se90-xTex glassy semiconductors,” Thin Solid Films515(20-21), 7966–7970 (2007).
[CrossRef]

Katzir, A.

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

Keirsse, J.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

Kern, P.

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: the option of mid-infrared integrated optics,” Adv. Space Res.41(12), 1975–1982 (2008).
[CrossRef]

Khan, S. A.

S. A. Khan, M. Zulfequar, and M. Husain, “Effects of annealing on crystallization process in amorphous Ge5Se95-xTex thin films,” Physica B324(1-4), 336–343 (2002).
[CrossRef]

Kim, H.-M.

D. Kang, D. Lee, H.-M. Kim, S.-W. Nam, M.-H. Kwon, and K.-B. Kim, “Analysis of the electric field induced elemental separation of Ge2Sb2Te5 by transmission electron microscopy,” Appl. Phys. Lett.95(1), 011904 (2009).
[CrossRef]

Kim, K.-B.

D. Kang, D. Lee, H.-M. Kim, S.-W. Nam, M.-H. Kwon, and K.-B. Kim, “Analysis of the electric field induced elemental separation of Ge2Sb2Te5 by transmission electron microscopy,” Appl. Phys. Lett.95(1), 011904 (2009).
[CrossRef]

Kim, Y.-T.

E.-B. Lee, B.-K. Ju, and Y.-T. Kim, “Phase change and electrical characteristics of Ge–Se–Te alloys,” Microelectron. Eng.86(7-9), 1950–1953 (2009).
[CrossRef]

Kimerling, L.

Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-rib chalcogenide waveguides by solution process,” ACS Photonics1(3), 153–157 (2014).
[CrossRef]

Kimerling, L. C.

Kirschner, V.

S. Zhang, X. Zhang, M. Barillot, L. Calvez, C. Boussard, B. Bureau, J. Lucas, V. Kirschner, and G. Parent, “Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application,” Opt. Mater.32(9), 1055–1059 (2010).
[CrossRef]

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: the option of mid-infrared integrated optics,” Adv. Space Res.41(12), 1975–1982 (2008).
[CrossRef]

Knystautas, E. J.

Kohoutek, T.

Konz, W.

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

Kozacik, S.

Kribich, R.

C. Vigreux, M. Vu Thi, R. Escalier, G. Maulion, R. Kribich, and A. Pradel, “Channel waveguides based on thermally co-evaporated Te-Ge-Se films for infrared integrated optics,” J. Non-Cryst. Solids377, 205–208 (2013).
[CrossRef]

Kujawa, I.

R. Kasztelanic, I. Kujawa, R. Stepien, K. Harasny, D. Pysz, and R. Buczynski, “Fresnel lens fabrication for broadband IR optics using hot embossing process,” Infrared Phys. Technol.60, 1–6 (2013).
[CrossRef]

Kwon, M.-H.

D. Kang, D. Lee, H.-M. Kim, S.-W. Nam, M.-H. Kwon, and K.-B. Kim, “Analysis of the electric field induced elemental separation of Ge2Sb2Te5 by transmission electron microscopy,” Appl. Phys. Lett.95(1), 011904 (2009).
[CrossRef]

Labadie, L.

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: the option of mid-infrared integrated optics,” Adv. Space Res.41(12), 1975–1982 (2008).
[CrossRef]

Labeye, P.

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: the option of mid-infrared integrated optics,” Adv. Space Res.41(12), 1975–1982 (2008).
[CrossRef]

Le Coq, D.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Pledel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem.119(2), 355–362 (2006).
[CrossRef]

Le Person, J.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

LeCoarer, E.

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: the option of mid-infrared integrated optics,” Adv. Space Res.41(12), 1975–1982 (2008).
[CrossRef]

Lee, D.

D. Kang, D. Lee, H.-M. Kim, S.-W. Nam, M.-H. Kwon, and K.-B. Kim, “Analysis of the electric field induced elemental separation of Ge2Sb2Te5 by transmission electron microscopy,” Appl. Phys. Lett.95(1), 011904 (2009).
[CrossRef]

Lee, E.-B.

E.-B. Lee, B.-K. Ju, and Y.-T. Kim, “Phase change and electrical characteristics of Ge–Se–Te alloys,” Microelectron. Eng.86(7-9), 1950–1953 (2009).
[CrossRef]

Lenz, G.

Lhermite, H.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

Li, J.

J. Li, X. Shen, J. Sun, K. Vu, D.-Y. Choi, R. Wang, B. Luther-Davies, S. Dai, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths,” Thin Solid Films545, 462–465 (2013).
[CrossRef]

Li, L.

Li, Y. M.

Z. Y. Wang, C. J. Tu, Y. M. Li, and Q. Q. Chen, “The Effects Of Sn and Bi Additions On Properties And Structure In Ge-Se-Te Chalcogenide Glass,” J. Non-Cryst. Solids191(1-2), 132–137 (1995).
[CrossRef]

Lian, Z. G.

Liess, H. D.

D. Tsiulyanu, S. Marian, H. D. Liess, and I. Eisele, “Effect of annealing and temperature on the NO2 sensing properties of tellurium based films,” Sens. Actuators B Chem.100(3), 380–386 (2004).
[CrossRef]

Lin, H.

Lin, P. T.

Lines, M. E.

Liu, K.

R. Zhao, M. Wang, B. Chen, K. Liu, E. Y. B. Pun, and H. Lin, “Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing,” Opt. Eng.50(4), 044602 (2011).
[CrossRef]

Loreal, O.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

Lu, H. B.

H. B. Lu, E. Thelander, J. W. Gerlach, U. Decker, B. P. Zhu, and B. Rauschenbach, “Single Pulse Laser-Induced Phase Transitions of PLD-Deposited Ge2Sb2Te5 Films,” Adv. Funct. Mater.23(29), 3621–3627 (2013).
[CrossRef]

Lucas, J.

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, P. Lucas, X. H. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater.33(4), 660–663 (2011).
[CrossRef]

S. Zhang, X. Zhang, M. Barillot, L. Calvez, C. Boussard, B. Bureau, J. Lucas, V. Kirschner, and G. Parent, “Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application,” Opt. Mater.32(9), 1055–1059 (2010).
[CrossRef]

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, X. H. Zhang, W. Geliesen, and J. Lucas, “Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15 mu m,” J. Non-Cryst. Solids355(37-42), 2074–2078 (2009).
[CrossRef]

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater.16(14), 1847–1852 (2006).
[CrossRef]

S. Hocdé, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci.3(3), 279–284 (2001).
[CrossRef]

Lucas, P.

G. Yang, Y. Gueguen, J.-C. Sangleboeuf, T. Rouxel, C. Boussard-Plédel, J. Troles, P. Lucas, and B. Bureau, “Physical properties of the GexSe1-x glasses in the 0<x<0.42 range in correlation with their structure,” J. Non-Cryst. Solids377, 54–59 (2013).
[CrossRef]

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, P. Lucas, X. H. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater.33(4), 660–663 (2011).
[CrossRef]

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Pledel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem.119(2), 355–362 (2006).
[CrossRef]

Luther-Davies, B.

J. Li, X. Shen, J. Sun, K. Vu, D.-Y. Choi, R. Wang, B. Luther-Davies, S. Dai, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths,” Thin Solid Films545, 462–465 (2013).
[CrossRef]

P. Ma, D.-Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express21(24), 29927–29937 (2013).
[CrossRef] [PubMed]

T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express18(18), 19286–19291 (2010).
[CrossRef] [PubMed]

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys Adv Mater96(3), 615–625 (2009).
[CrossRef]

Ma, P.

Madden, S.

Madden, S. J.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys Adv Mater96(3), 615–625 (2009).
[CrossRef]

Madhusoodanan, K. N.

A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. Philip, “Observation of a threshold behavior in the optical band gap and thermal diffusivity of Ge-Sb-Se glasses,” Phys. Rev. B Condens. Matter45(14), 8112–8115 (1992).
[CrossRef] [PubMed]

Mahesha, M. G.

C. Das, M. G. Mahesha, G. M. Rao, and S. Asokan, “Electrical switching and optical studies on amorphous GexSe35-xTe65 thin films,” Thin Solid Films520(6), 2278–2282 (2012).
[CrossRef]

Mai, V. T.

V. T. Mai, R. Escalier, C. Vigreux, and A. Pradel, “Selenium modified Te85Ge15 films elaborated by thermal co-evaporation for infrared applications,” Thin Solid Films524, 309–315 (2012).
[CrossRef]

Malliakas, C. D.

I. U. Arachchige, R. Soriano, C. D. Malliakas, S. A. Ivanov, and M. C. Kanatzidis, “Amorphous and Crystalline GeTe Nanocrystals,” Adv. Funct. Mater.21(14), 2737–2743 (2011).
[CrossRef]

Marian, S.

D. Tsiulyanu, S. Marian, H. D. Liess, and I. Eisele, “Effect of annealing and temperature on the NO2 sensing properties of tellurium based films,” Sens. Actuators B Chem.100(3), 380–386 (2004).
[CrossRef]

Maulion, G.

C. Vigreux, M. Vu Thi, R. Escalier, G. Maulion, R. Kribich, and A. Pradel, “Channel waveguides based on thermally co-evaporated Te-Ge-Se films for infrared integrated optics,” J. Non-Cryst. Solids377, 205–208 (2013).
[CrossRef]

Maurugeon, S.

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, P. Lucas, X. H. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater.33(4), 660–663 (2011).
[CrossRef]

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, X. H. Zhang, W. Geliesen, and J. Lucas, “Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15 mu m,” J. Non-Cryst. Solids355(37-42), 2074–2078 (2009).
[CrossRef]

Ménard, S.

Meneghini, C.

Michel, K.

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

Mitsa, V.

O. Gamulin, M. Ivanda, V. Mitsa, S. Pasic, and M. Balarin, “Spectroscopy studies of structural phase transitions of chalcogenide glass thin films (Ge2S3)x(As2S3)1− x at coordination number 2.67,” Solid State Commun.135(11-12), 753–758 (2005).
[CrossRef]

Moreac, A.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

Moss, S. C.

J. Feinleib, J. Deneufvi, S. C. Moss, and S. R. Ovshinsky, “Rapid Reversible Light-induced Crystallization Of Amorphous Semiconductors,” Appl. Phys. Lett.18(6), 254–257 (1971).

Moss, T. S.

T. S. Moss, “A relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors,” Proc. Phys. Soc. B63(3), 167–176 (1950).
[CrossRef]

Müller, J.

G. Saffarini, H. Schmitt, H. Shanak, J. Nowoczin, and J. Müller, “Optical band gap in relation to the average coordination number in Ge—S—Bi thin films,” Phys Status Solidi B239(1), 251–256 (2003).
[CrossRef]

Murakowski, M.

Musgraves, J. D.

Nagels, P.

E. Sleeckx, L. Tichý, P. Nagels, and R. Callaerts, “Thermally and photo-induced irreversible changes in the optical properties of amorphous GexSe100-x films,” J. Non-Cryst. Solids198–200(Part 2), 723–727 (1996).
[CrossRef]

Nam, S.-W.

D. Kang, D. Lee, H.-M. Kim, S.-W. Nam, M.-H. Kwon, and K.-B. Kim, “Analysis of the electric field induced elemental separation of Ge2Sb2Te5 by transmission electron microscopy,” Appl. Phys. Lett.95(1), 011904 (2009).
[CrossRef]

Nazabal, V.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

Nemec, P.

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

Ni, C.

Nie, Q.

J. Li, X. Shen, J. Sun, K. Vu, D.-Y. Choi, R. Wang, B. Luther-Davies, S. Dai, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths,” Thin Solid Films545, 462–465 (2013).
[CrossRef]

Nowoczin, J.

G. Saffarini, H. Schmitt, H. Shanak, J. Nowoczin, and J. Müller, “Optical band gap in relation to the average coordination number in Ge—S—Bi thin films,” Phys Status Solidi B239(1), 251–256 (2003).
[CrossRef]

Orava, J.

Ovshinsky, S. R.

J. Feinleib, J. Deneufvi, S. C. Moss, and S. R. Ovshinsky, “Rapid Reversible Light-induced Crystallization Of Amorphous Semiconductors,” Appl. Phys. Lett.18(6), 254–257 (1971).

Pan, W. J.

Pantano, C. G.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Parent, G.

C. Vigreux, E. Barthélémy, L. Bastard, J. E. Broquin, M. Barillot, S. Ménard, G. Parent, and A. Pradel, “Realization of single-mode telluride rib waveguides for mid-IR applications between 10 and 20 μm,” Opt. Lett.36(15), 2922–2924 (2011).
[CrossRef] [PubMed]

C. Vigreux, E. Barthélémy, L. Bastard, J.-E. Broquin, S. Ménard, M. Barillot, G. Parent, and A. Pradel, “Fabrication and testing of all-telluride rib waveguides for nulling interferometry,” Opt. Mater. Express1(3), 357–364 (2011).
[CrossRef]

E. Barthélémy, C. Vigreux, G. Parent, M. Barillot, and A. Pradel, “Telluride films and waveguides for IR integrated optics,” Phys. Status Solidi., C Curr. Top. Solid State Phys.8(9), 2890–2894 (2011).
[CrossRef]

S. Zhang, X. Zhang, M. Barillot, L. Calvez, C. Boussard, B. Bureau, J. Lucas, V. Kirschner, and G. Parent, “Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application,” Opt. Mater.32(9), 1055–1059 (2010).
[CrossRef]

Pasic, S.

O. Gamulin, M. Ivanda, V. Mitsa, S. Pasic, and M. Balarin, “Spectroscopy studies of structural phase transitions of chalcogenide glass thin films (Ge2S3)x(As2S3)1− x at coordination number 2.67,” Solid State Commun.135(11-12), 753–758 (2005).
[CrossRef]

Philip, J.

A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. Philip, “Observation of a threshold behavior in the optical band gap and thermal diffusivity of Ge-Sb-Se glasses,” Phys. Rev. B Condens. Matter45(14), 8112–8115 (1992).
[CrossRef] [PubMed]

Piarristeguy, A.

C. Vigreux, A. Piarristeguy, R. Escalier, S. Ménard, M. Barillot, and A. Pradel, “Evidence of a minimum in refractive indexes of amorphous GexTe100−x films: Relevance to the development of infrared waveguides,” Phys Status Solidi A211(4), 932–937 (2014).
[CrossRef]

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarcik, and A. Pradel, “Short range order and stability of amorphous GexTe100−x alloys (12 ≤ x ≤ 44.6),” J Phys-Condens Matter25, 195401 (2013).

Pierrès, K. M.-L.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J. L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater.31(3), 496–500 (2009).
[CrossRef]

Pouvreau, C.

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

Pradel, A.

C. Vigreux, A. Piarristeguy, R. Escalier, S. Ménard, M. Barillot, and A. Pradel, “Evidence of a minimum in refractive indexes of amorphous GexTe100−x films: Relevance to the development of infrared waveguides,” Phys Status Solidi A211(4), 932–937 (2014).
[CrossRef]

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarcik, and A. Pradel, “Short range order and stability of amorphous GexTe100−x alloys (12 ≤ x ≤ 44.6),” J Phys-Condens Matter25, 195401 (2013).

C. Vigreux, M. Vu Thi, R. Escalier, G. Maulion, R. Kribich, and A. Pradel, “Channel waveguides based on thermally co-evaporated Te-Ge-Se films for infrared integrated optics,” J. Non-Cryst. Solids377, 205–208 (2013).
[CrossRef]

V. T. Mai, R. Escalier, C. Vigreux, and A. Pradel, “Selenium modified Te85Ge15 films elaborated by thermal co-evaporation for infrared applications,” Thin Solid Films524, 309–315 (2012).
[CrossRef]

C. Vigreux, S. D. Sousa, V. Foucan, E. Barthélémy, and A. Pradel, “Deep reactive ion etching of thermally co-evaporated Te–Ge films for IR integrated optics components,” Microelectron. Eng.88(3), 222–227 (2011).
[CrossRef]

C. Vigreux, E. Barthélémy, L. Bastard, J. E. Broquin, M. Barillot, S. Ménard, G. Parent, and A. Pradel, “Realization of single-mode telluride rib waveguides for mid-IR applications between 10 and 20 μm,” Opt. Lett.36(15), 2922–2924 (2011).
[CrossRef] [PubMed]

E. Barthélémy, C. Vigreux, G. Parent, M. Barillot, and A. Pradel, “Telluride films and waveguides for IR integrated optics,” Phys. Status Solidi., C Curr. Top. Solid State Phys.8(9), 2890–2894 (2011).
[CrossRef]

C. Vigreux, E. Barthélémy, L. Bastard, J.-E. Broquin, S. Ménard, M. Barillot, G. Parent, and A. Pradel, “Fabrication and testing of all-telluride rib waveguides for nulling interferometry,” Opt. Mater. Express1(3), 357–364 (2011).
[CrossRef]

E. Barthélémy, S. Albert, C. Vigreux, and A. Pradel, “Effect of composition on the properties of Te-Ge thick films deposited by co-thermal evaporation,” J. Non-Cryst. Solids356(41-42), 2175–2180 (2010).
[CrossRef]

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: the option of mid-infrared integrated optics,” Adv. Space Res.41(12), 1975–1982 (2008).
[CrossRef]

Prasad, A.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys Adv Mater96(3), 615–625 (2009).
[CrossRef]

Prather, D.

Pun, E. Y. B.

R. Zhao, M. Wang, B. Chen, K. Liu, E. Y. B. Pun, and H. Lin, “Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing,” Opt. Eng.50(4), 044602 (2011).
[CrossRef]

Purkait, P. K.

S. Chatterjee, P. K. Purkait, and D. Garg, “Athermalization of infra-red camera of projectile weapons,” Appl. Therm. Eng.29(10), 2106–2112 (2009).
[CrossRef]

Pysz, D.

R. Kasztelanic, I. Kujawa, R. Stepien, K. Harasny, D. Pysz, and R. Buczynski, “Fresnel lens fabrication for broadband IR optics using hot embossing process,” Infrared Phys. Technol.60, 1–6 (2013).
[CrossRef]

Qu, T.

P. Boolchand, D. G. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67, and rigidity transitions in chalgonide glasses,” C. R. Chim.5(11), 713–724 (2002).
[CrossRef]

Rao, G. M.

C. Das, M. G. Mahesha, G. M. Rao, and S. Asokan, “Electrical switching and optical studies on amorphous GexSe35-xTe65 thin films,” Thin Solid Films520(6), 2278–2282 (2012).
[CrossRef]

Rauschenbach, B.

H. B. Lu, E. Thelander, J. W. Gerlach, U. Decker, B. P. Zhu, and B. Rauschenbach, “Single Pulse Laser-Induced Phase Transitions of PLD-Deposited Ge2Sb2Te5 Films,” Adv. Funct. Mater.23(29), 3621–3627 (2013).
[CrossRef]

Richardson, K.

Richardson, K. A.

Riley, M. R.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Pledel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem.119(2), 355–362 (2006).
[CrossRef]

Rode, A. V.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys Adv Mater96(3), 615–625 (2009).
[CrossRef]

Rouxel, T.

G. Yang, Y. Gueguen, J.-C. Sangleboeuf, T. Rouxel, C. Boussard-Plédel, J. Troles, P. Lucas, and B. Bureau, “Physical properties of the GexSe1-x glasses in the 0<x<0.42 range in correlation with their structure,” J. Non-Cryst. Solids377, 54–59 (2013).
[CrossRef]

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

Ryan, J. V.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Saffarini, G.

G. Saffarini, H. Schmitt, H. Shanak, J. Nowoczin, and J. Müller, “Optical band gap in relation to the average coordination number in Ge—S—Bi thin films,” Phys Status Solidi B239(1), 251–256 (2003).
[CrossRef]

Sanghera, J. S.

Sangleboeuf, J. C.

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

Sangleboeuf, J.-C.

G. Yang, Y. Gueguen, J.-C. Sangleboeuf, T. Rouxel, C. Boussard-Plédel, J. Troles, P. Lucas, and B. Bureau, “Physical properties of the GexSe1-x glasses in the 0<x<0.42 range in correlation with their structure,” J. Non-Cryst. Solids377, 54–59 (2013).
[CrossRef]

Sangunni, K. S.

E. M. Vinod, A. K. Singh, R. Ganesan, and K. S. Sangunni, “Effect of selenium addition on the GeTe phase change memory alloys,” J. Alloy. Comp.537, 127–132 (2012).
[CrossRef]

Sarrach, D. J.

D. J. Sarrach, J. P. Deneufville, and W. L. Haworth, “Studies Of Aorphous Ge-Se-Te Alloys. 1. Preparation And Calorimetric Observations,” J. Non-Cryst. Solids22(2), 245–267 (1976).
[CrossRef]

Schmitt, H.

G. Saffarini, H. Schmitt, H. Shanak, J. Nowoczin, and J. Müller, “Optical band gap in relation to the average coordination number in Ge—S—Bi thin films,” Phys Status Solidi B239(1), 251–256 (2003).
[CrossRef]

Seddon, A. B.

Shanak, H.

G. Saffarini, H. Schmitt, H. Shanak, J. Nowoczin, and J. Müller, “Optical band gap in relation to the average coordination number in Ge—S—Bi thin films,” Phys Status Solidi B239(1), 251–256 (2003).
[CrossRef]

Sharma, P.

P. Sharma and S. C. Katyal, “Effect of substrate temperature on the optical parameters of thermally evaporated Ge-Se-Te thin films,” Thin Solid Films517(13), 3813–3816 (2009).
[CrossRef]

P. Sharma and S. C. Katyal, “Thickness dependence of optical parameters for Ge-Se-Te thin films,” Mater. Lett.61(23-24), 4516–4518 (2007).
[CrossRef]

P. Sharma and S. C. Katyal, “Optical study of Ge10Se90-xTex glassy semiconductors,” Thin Solid Films515(20-21), 7966–7970 (2007).
[CrossRef]

Shen, X.

J. Li, X. Shen, J. Sun, K. Vu, D.-Y. Choi, R. Wang, B. Luther-Davies, S. Dai, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths,” Thin Solid Films545, 462–465 (2013).
[CrossRef]

Singh, A. K.

E. M. Vinod, A. K. Singh, R. Ganesan, and K. S. Sangunni, “Effect of selenium addition on the GeTe phase change memory alloys,” J. Alloy. Comp.537, 127–132 (2012).
[CrossRef]

Singh, V.

Sleeckx, E.

E. Sleeckx, L. Tichý, P. Nagels, and R. Callaerts, “Thermally and photo-induced irreversible changes in the optical properties of amorphous GexSe100-x films,” J. Non-Cryst. Solids198–200(Part 2), 723–727 (1996).
[CrossRef]

Slusher, R. E.

Smektala, F.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J. L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater.31(3), 496–500 (2009).
[CrossRef]

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater.16(14), 1847–1852 (2006).
[CrossRef]

Solis, M. A.

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Pledel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem.119(2), 355–362 (2006).
[CrossRef]

Song, R.

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Soriano, R.

I. U. Arachchige, R. Soriano, C. D. Malliakas, S. A. Ivanov, and M. C. Kanatzidis, “Amorphous and Crystalline GeTe Nanocrystals,” Adv. Funct. Mater.21(14), 2737–2743 (2011).
[CrossRef]

Sousa, S. D.

C. Vigreux, S. D. Sousa, V. Foucan, E. Barthélémy, and A. Pradel, “Deep reactive ion etching of thermally co-evaporated Te–Ge films for IR integrated optics components,” Microelectron. Eng.88(3), 222–227 (2011).
[CrossRef]

Spälter, S.

Srinivasan, A.

A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. Philip, “Observation of a threshold behavior in the optical band gap and thermal diffusivity of Ge-Sb-Se glasses,” Phys. Rev. B Condens. Matter45(14), 8112–8115 (1992).
[CrossRef] [PubMed]

Staubmann, K.

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

Steinner, H.

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

Stepien, R.

R. Kasztelanic, I. Kujawa, R. Stepien, K. Harasny, D. Pysz, and R. Buczynski, “Fresnel lens fabrication for broadband IR optics using hot embossing process,” Infrared Phys. Technol.60, 1–6 (2013).
[CrossRef]

Sun, J.

J. Li, X. Shen, J. Sun, K. Vu, D.-Y. Choi, R. Wang, B. Luther-Davies, S. Dai, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths,” Thin Solid Films545, 462–465 (2013).
[CrossRef]

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J Phys E16(12), 1214–1222 (1983).
[CrossRef]

Tanaka, K.

K. Tanaka, “Structural phase transitions in chalcogenide glasses,” Phys. Rev. B Condens. Matter39(2), 1270–1279 (1989).
[CrossRef] [PubMed]

Tauc, J.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys Status Solidi B15(2), 627–637 (1966).
[CrossRef]

Thelander, E.

H. B. Lu, E. Thelander, J. W. Gerlach, U. Decker, B. P. Zhu, and B. Rauschenbach, “Single Pulse Laser-Induced Phase Transitions of PLD-Deposited Ge2Sb2Te5 Films,” Adv. Funct. Mater.23(29), 3621–3627 (2013).
[CrossRef]

Tichý, L.

E. Sleeckx, L. Tichý, P. Nagels, and R. Callaerts, “Thermally and photo-induced irreversible changes in the optical properties of amorphous GexSe100-x films,” J. Non-Cryst. Solids198–200(Part 2), 723–727 (1996).
[CrossRef]

Troles, J.

G. Yang, Y. Gueguen, J.-C. Sangleboeuf, T. Rouxel, C. Boussard-Plédel, J. Troles, P. Lucas, and B. Bureau, “Physical properties of the GexSe1-x glasses in the 0<x<0.42 range in correlation with their structure,” J. Non-Cryst. Solids377, 54–59 (2013).
[CrossRef]

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J. L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater.31(3), 496–500 (2009).
[CrossRef]

Tsiulyanu, D.

D. Tsiulyanu, S. Marian, H. D. Liess, and I. Eisele, “Effect of annealing and temperature on the NO2 sensing properties of tellurium based films,” Sens. Actuators B Chem.100(3), 380–386 (2004).
[CrossRef]

Tu, C. J.

Z. Y. Wang, C. J. Tu, Y. M. Li, and Q. Q. Chen, “The Effects Of Sn and Bi Additions On Properties And Structure In Ge-Se-Te Chalcogenide Glass,” J. Non-Cryst. Solids191(1-2), 132–137 (1995).
[CrossRef]

Vancu, A.

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys Status Solidi B15(2), 627–637 (1966).
[CrossRef]

Viens, J.-F.

Vigreux, C.

C. Vigreux, A. Piarristeguy, R. Escalier, S. Ménard, M. Barillot, and A. Pradel, “Evidence of a minimum in refractive indexes of amorphous GexTe100−x films: Relevance to the development of infrared waveguides,” Phys Status Solidi A211(4), 932–937 (2014).
[CrossRef]

C. Vigreux, M. Vu Thi, R. Escalier, G. Maulion, R. Kribich, and A. Pradel, “Channel waveguides based on thermally co-evaporated Te-Ge-Se films for infrared integrated optics,” J. Non-Cryst. Solids377, 205–208 (2013).
[CrossRef]

V. T. Mai, R. Escalier, C. Vigreux, and A. Pradel, “Selenium modified Te85Ge15 films elaborated by thermal co-evaporation for infrared applications,” Thin Solid Films524, 309–315 (2012).
[CrossRef]

C. Vigreux, S. D. Sousa, V. Foucan, E. Barthélémy, and A. Pradel, “Deep reactive ion etching of thermally co-evaporated Te–Ge films for IR integrated optics components,” Microelectron. Eng.88(3), 222–227 (2011).
[CrossRef]

C. Vigreux, E. Barthélémy, L. Bastard, J. E. Broquin, M. Barillot, S. Ménard, G. Parent, and A. Pradel, “Realization of single-mode telluride rib waveguides for mid-IR applications between 10 and 20 μm,” Opt. Lett.36(15), 2922–2924 (2011).
[CrossRef] [PubMed]

C. Vigreux, E. Barthélémy, L. Bastard, J.-E. Broquin, S. Ménard, M. Barillot, G. Parent, and A. Pradel, “Fabrication and testing of all-telluride rib waveguides for nulling interferometry,” Opt. Mater. Express1(3), 357–364 (2011).
[CrossRef]

E. Barthélémy, C. Vigreux, G. Parent, M. Barillot, and A. Pradel, “Telluride films and waveguides for IR integrated optics,” Phys. Status Solidi., C Curr. Top. Solid State Phys.8(9), 2890–2894 (2011).
[CrossRef]

E. Barthélémy, S. Albert, C. Vigreux, and A. Pradel, “Effect of composition on the properties of Te-Ge thick films deposited by co-thermal evaporation,” J. Non-Cryst. Solids356(41-42), 2175–2180 (2010).
[CrossRef]

Vigreux-Bercovici, C.

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: the option of mid-infrared integrated optics,” Adv. Space Res.41(12), 1975–1982 (2008).
[CrossRef]

Villeneuve, A.

Vinod, E. M.

E. M. Vinod, A. K. Singh, R. Ganesan, and K. S. Sangunni, “Effect of selenium addition on the GeTe phase change memory alloys,” J. Alloy. Comp.537, 127–132 (2012).
[CrossRef]

Vu, K.

J. Li, X. Shen, J. Sun, K. Vu, D.-Y. Choi, R. Wang, B. Luther-Davies, S. Dai, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths,” Thin Solid Films545, 462–465 (2013).
[CrossRef]

Vu Thi, M.

C. Vigreux, M. Vu Thi, R. Escalier, G. Maulion, R. Kribich, and A. Pradel, “Channel waveguides based on thermally co-evaporated Te-Ge-Se films for infrared integrated optics,” J. Non-Cryst. Solids377, 205–208 (2013).
[CrossRef]

Wagner, T.

Wang, F.

P. Boolchand, D. G. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67, and rigidity transitions in chalgonide glasses,” C. R. Chim.5(11), 713–724 (2002).
[CrossRef]

Wang, M.

R. Zhao, M. Wang, B. Chen, K. Liu, E. Y. B. Pun, and H. Lin, “Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing,” Opt. Eng.50(4), 044602 (2011).
[CrossRef]

Wang, R.

J. Li, X. Shen, J. Sun, K. Vu, D.-Y. Choi, R. Wang, B. Luther-Davies, S. Dai, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths,” Thin Solid Films545, 462–465 (2013).
[CrossRef]

Wang, R. P.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys Adv Mater96(3), 615–625 (2009).
[CrossRef]

Wang, Z. Y.

Z. Y. Wang, C. J. Tu, Y. M. Li, and Q. Q. Chen, “The Effects Of Sn and Bi Additions On Properties And Structure In Ge-Se-Te Chalcogenide Glass,” J. Non-Cryst. Solids191(1-2), 132–137 (1995).
[CrossRef]

Wilhelm, A. A.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

Xu, T.

J. Li, X. Shen, J. Sun, K. Vu, D.-Y. Choi, R. Wang, B. Luther-Davies, S. Dai, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths,” Thin Solid Films545, 462–465 (2013).
[CrossRef]

Yanakata, K.

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

Yang, G.

G. Yang, Y. Gueguen, J.-C. Sangleboeuf, T. Rouxel, C. Boussard-Plédel, J. Troles, P. Lucas, and B. Bureau, “Physical properties of the GexSe1-x glasses in the 0<x<0.42 range in correlation with their structure,” J. Non-Cryst. Solids377, 54–59 (2013).
[CrossRef]

Yang, Z.

Yu, C.

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

Yu, Y.

Zembutsu, S.

Zha, Y.

Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-rib chalcogenide waveguides by solution process,” ACS Photonics1(3), 153–157 (2014).
[CrossRef]

Zhang, S.

S. Zhang, X. Zhang, M. Barillot, L. Calvez, C. Boussard, B. Bureau, J. Lucas, V. Kirschner, and G. Parent, “Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application,” Opt. Mater.32(9), 1055–1059 (2010).
[CrossRef]

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

Zhang, X.

S. Zhang, X. Zhang, M. Barillot, L. Calvez, C. Boussard, B. Bureau, J. Lucas, V. Kirschner, and G. Parent, “Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application,” Opt. Mater.32(9), 1055–1059 (2010).
[CrossRef]

Zhang, X. H.

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, P. Lucas, X. H. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater.33(4), 660–663 (2011).
[CrossRef]

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, X. H. Zhang, W. Geliesen, and J. Lucas, “Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15 mu m,” J. Non-Cryst. Solids355(37-42), 2074–2078 (2009).
[CrossRef]

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater.16(14), 1847–1852 (2006).
[CrossRef]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids326-327, 519–523 (2003).
[CrossRef]

Zhao, R.

R. Zhao, M. Wang, B. Chen, K. Liu, E. Y. B. Pun, and H. Lin, “Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing,” Opt. Eng.50(4), 044602 (2011).
[CrossRef]

Zhu, B. P.

H. B. Lu, E. Thelander, J. W. Gerlach, U. Decker, B. P. Zhu, and B. Rauschenbach, “Single Pulse Laser-Induced Phase Transitions of PLD-Deposited Ge2Sb2Te5 Films,” Adv. Funct. Mater.23(29), 3621–3627 (2013).
[CrossRef]

Zimmermann, J.

Zou, Y.

Zulfequar, M.

S. A. Khan, M. Zulfequar, and M. Husain, “Effects of annealing on crystallization process in amorphous Ge5Se95-xTex thin films,” Physica B324(1-4), 336–343 (2002).
[CrossRef]

ACS Photonics (1)

Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-rib chalcogenide waveguides by solution process,” ACS Photonics1(3), 153–157 (2014).
[CrossRef]

Adv. Funct. Mater. (3)

I. U. Arachchige, R. Soriano, C. D. Malliakas, S. A. Ivanov, and M. C. Kanatzidis, “Amorphous and Crystalline GeTe Nanocrystals,” Adv. Funct. Mater.21(14), 2737–2743 (2011).
[CrossRef]

H. B. Lu, E. Thelander, J. W. Gerlach, U. Decker, B. P. Zhu, and B. Rauschenbach, “Single Pulse Laser-Induced Phase Transitions of PLD-Deposited Ge2Sb2Te5 Films,” Adv. Funct. Mater.23(29), 3621–3627 (2013).
[CrossRef]

S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, and J. Lucas, “A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications,” Adv. Funct. Mater.16(14), 1847–1852 (2006).
[CrossRef]

Adv. Mater. (1)

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

Adv. Space Res. (1)

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: the option of mid-infrared integrated optics,” Adv. Space Res.41(12), 1975–1982 (2008).
[CrossRef]

Appl Phys Adv Mater (1)

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys Adv Mater96(3), 615–625 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Feinleib, J. Deneufvi, S. C. Moss, and S. R. Ovshinsky, “Rapid Reversible Light-induced Crystallization Of Amorphous Semiconductors,” Appl. Phys. Lett.18(6), 254–257 (1971).

D. Kang, D. Lee, H.-M. Kim, S.-W. Nam, M.-H. Kwon, and K.-B. Kim, “Analysis of the electric field induced elemental separation of Ge2Sb2Te5 by transmission electron microscopy,” Appl. Phys. Lett.95(1), 011904 (2009).
[CrossRef]

Appl. Therm. Eng. (1)

S. Chatterjee, P. K. Purkait, and D. Garg, “Athermalization of infra-red camera of projectile weapons,” Appl. Therm. Eng.29(10), 2106–2112 (2009).
[CrossRef]

C. R. Chim. (1)

P. Boolchand, D. G. Georgiev, T. Qu, F. Wang, L. Cai, and S. Chakravarty, “Nanoscale phase separation effects near r=2.4 and 2.67, and rigidity transitions in chalgonide glasses,” C. R. Chim.5(11), 713–724 (2002).
[CrossRef]

Infrared Phys. Technol. (1)

R. Kasztelanic, I. Kujawa, R. Stepien, K. Harasny, D. Pysz, and R. Buczynski, “Fresnel lens fabrication for broadband IR optics using hot embossing process,” Infrared Phys. Technol.60, 1–6 (2013).
[CrossRef]

J Phys E (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J Phys E16(12), 1214–1222 (1983).
[CrossRef]

J Phys-Condens Matter (1)

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarcik, and A. Pradel, “Short range order and stability of amorphous GexTe100−x alloys (12 ≤ x ≤ 44.6),” J Phys-Condens Matter25, 195401 (2013).

J. Alloy. Comp. (2)

E. M. Vinod, A. K. Singh, R. Ganesan, and K. S. Sangunni, “Effect of selenium addition on the GeTe phase change memory alloys,” J. Alloy. Comp.537, 127–132 (2012).
[CrossRef]

M. A. Afifi, N. A. Hegab, H. E. Atyia, and A. S. Farid, “Investigation of DC conductivity and switching phenomenon of Se80Te20−xGex amorphous system,” J. Alloy. Comp.463(1-2), 10–17 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (11)

K. Michel, B. Bureau, C. Pouvreau, J. C. Sangleboeuf, C. Boussard-Plédel, T. Jouan, T. Rouxel, J. L. Adam, K. Staubmann, H. Steinner, T. Baumann, A. Katzir, J. Bayona, and W. Konz, “Development of a chalcogenide glass fiber device for in situ pollutant detection,” J. Non-Cryst. Solids326–327, 434–438 (2003).
[CrossRef]

X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids326-327, 519–523 (2003).
[CrossRef]

Z. Y. Wang, C. J. Tu, Y. M. Li, and Q. Q. Chen, “The Effects Of Sn and Bi Additions On Properties And Structure In Ge-Se-Te Chalcogenide Glass,” J. Non-Cryst. Solids191(1-2), 132–137 (1995).
[CrossRef]

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, X. H. Zhang, W. Geliesen, and J. Lucas, “Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15 mu m,” J. Non-Cryst. Solids355(37-42), 2074–2078 (2009).
[CrossRef]

C. Vigreux, M. Vu Thi, R. Escalier, G. Maulion, R. Kribich, and A. Pradel, “Channel waveguides based on thermally co-evaporated Te-Ge-Se films for infrared integrated optics,” J. Non-Cryst. Solids377, 205–208 (2013).
[CrossRef]

G. Yang, Y. Gueguen, J.-C. Sangleboeuf, T. Rouxel, C. Boussard-Plédel, J. Troles, P. Lucas, and B. Bureau, “Physical properties of the GexSe1-x glasses in the 0<x<0.42 range in correlation with their structure,” J. Non-Cryst. Solids377, 54–59 (2013).
[CrossRef]

E. Sleeckx, L. Tichý, P. Nagels, and R. Callaerts, “Thermally and photo-induced irreversible changes in the optical properties of amorphous GexSe100-x films,” J. Non-Cryst. Solids198–200(Part 2), 723–727 (1996).
[CrossRef]

E. Barthélémy, S. Albert, C. Vigreux, and A. Pradel, “Effect of composition on the properties of Te-Ge thick films deposited by co-thermal evaporation,” J. Non-Cryst. Solids356(41-42), 2175–2180 (2010).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008).
[CrossRef]

A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006).
[CrossRef]

D. J. Sarrach, J. P. Deneufville, and W. L. Haworth, “Studies Of Aorphous Ge-Se-Te Alloys. 1. Preparation And Calorimetric Observations,” J. Non-Cryst. Solids22(2), 245–267 (1976).
[CrossRef]

Mater. Lett. (1)

P. Sharma and S. C. Katyal, “Thickness dependence of optical parameters for Ge-Se-Te thin films,” Mater. Lett.61(23-24), 4516–4518 (2007).
[CrossRef]

Microelectron. Eng. (2)

C. Vigreux, S. D. Sousa, V. Foucan, E. Barthélémy, and A. Pradel, “Deep reactive ion etching of thermally co-evaporated Te–Ge films for IR integrated optics components,” Microelectron. Eng.88(3), 222–227 (2011).
[CrossRef]

E.-B. Lee, B.-K. Ju, and Y.-T. Kim, “Phase change and electrical characteristics of Ge–Se–Te alloys,” Microelectron. Eng.86(7-9), 1950–1953 (2009).
[CrossRef]

Opt. Eng. (1)

R. Zhao, M. Wang, B. Chen, K. Liu, E. Y. B. Pun, and H. Lin, “Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing,” Opt. Eng.50(4), 044602 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Opt. Mater. (3)

S. Zhang, X. Zhang, M. Barillot, L. Calvez, C. Boussard, B. Bureau, J. Lucas, V. Kirschner, and G. Parent, “Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application,” Opt. Mater.32(9), 1055–1059 (2010).
[CrossRef]

F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, and J. L. Adam, “Infrared monitoring of underground CO2 storage using chalcogenide glass fibers,” Opt. Mater.31(3), 496–500 (2009).
[CrossRef]

S. Maurugeon, B. Bureau, C. Boussard-Pledel, A. J. Faber, P. Lucas, X. H. Zhang, and J. Lucas, “Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing,” Opt. Mater.33(4), 660–663 (2011).
[CrossRef]

Opt. Mater. Express (1)

Phys Status Solidi A (1)

C. Vigreux, A. Piarristeguy, R. Escalier, S. Ménard, M. Barillot, and A. Pradel, “Evidence of a minimum in refractive indexes of amorphous GexTe100−x films: Relevance to the development of infrared waveguides,” Phys Status Solidi A211(4), 932–937 (2014).
[CrossRef]

Phys Status Solidi B (2)

J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys Status Solidi B15(2), 627–637 (1966).
[CrossRef]

G. Saffarini, H. Schmitt, H. Shanak, J. Nowoczin, and J. Müller, “Optical band gap in relation to the average coordination number in Ge—S—Bi thin films,” Phys Status Solidi B239(1), 251–256 (2003).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

K. Tanaka, “Structural phase transitions in chalcogenide glasses,” Phys. Rev. B Condens. Matter39(2), 1270–1279 (1989).
[CrossRef] [PubMed]

A. Srinivasan, K. N. Madhusoodanan, E. S. R. Gopal, and J. Philip, “Observation of a threshold behavior in the optical band gap and thermal diffusivity of Ge-Sb-Se glasses,” Phys. Rev. B Condens. Matter45(14), 8112–8115 (1992).
[CrossRef] [PubMed]

Phys. Status Solidi., C Curr. Top. Solid State Phys. (1)

E. Barthélémy, C. Vigreux, G. Parent, M. Barillot, and A. Pradel, “Telluride films and waveguides for IR integrated optics,” Phys. Status Solidi., C Curr. Top. Solid State Phys.8(9), 2890–2894 (2011).
[CrossRef]

Physica B (3)

S. A. Khan, M. Zulfequar, and M. Husain, “Effects of annealing on crystallization process in amorphous Ge5Se95-xTex thin films,” Physica B324(1-4), 336–343 (2002).
[CrossRef]

A. El-Korashy, A. Bakry, M. A. Abdel-Rahim, and M. A. El-Sattar, “Annealing effects on some physical properties of Ge5Se25Te70 chalcogenide glasses,” Physica B391(2), 266–273 (2007).
[CrossRef]

N. El-Kabany, “Compositional dependence of the optical properties of the amorphous GexTe1−x system,” Physica B403(18), 2949–2955 (2008).
[CrossRef]

Proc. Phys. Soc. B (1)

T. S. Moss, “A relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors,” Proc. Phys. Soc. B63(3), 167–176 (1950).
[CrossRef]

Sens. Actuators B Chem. (2)

D. Tsiulyanu, S. Marian, H. D. Liess, and I. Eisele, “Effect of annealing and temperature on the NO2 sensing properties of tellurium based films,” Sens. Actuators B Chem.100(3), 380–386 (2004).
[CrossRef]

P. Lucas, M. A. Solis, D. Le Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Pledel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sens. Actuators B Chem.119(2), 355–362 (2006).
[CrossRef]

Sensors (Basel) (1)

M. L. Anne, J. Keirsse, V. Nazabal, K. Hyodo, S. Inoue, C. Boussard-Pledel, H. Lhermite, J. Charrier, K. Yanakata, O. Loreal, J. Le Person, F. Colas, C. Compère, and B. Bureau, “Chalcogenide Glass Optical Waveguides for Infrared Biosensing,” Sensors (Basel)9(9), 7398–7411 (2009).
[CrossRef] [PubMed]

Solid State Commun. (1)

O. Gamulin, M. Ivanda, V. Mitsa, S. Pasic, and M. Balarin, “Spectroscopy studies of structural phase transitions of chalcogenide glass thin films (Ge2S3)x(As2S3)1− x at coordination number 2.67,” Solid State Commun.135(11-12), 753–758 (2005).
[CrossRef]

Solid State Sci. (1)

S. Hocdé, C. Boussard-Pledel, G. Fonteneau, and J. Lucas, “Chalcogens based glasses for IR fiber chemical sensors,” Solid State Sci.3(3), 279–284 (2001).
[CrossRef]

Thermochim. Acta (1)

S. Bordas, M. Geli, J. Casas-Vazquez, N. Clavaguera, and M. T. Clavaguera-Mora, “Phase diagram of the ternary system Ge-Te-Se,” Thermochim. Acta37(2), 197–207 (1980).
[CrossRef]

Thin Solid Films (6)

V. T. Mai, R. Escalier, C. Vigreux, and A. Pradel, “Selenium modified Te85Ge15 films elaborated by thermal co-evaporation for infrared applications,” Thin Solid Films524, 309–315 (2012).
[CrossRef]

P. Sharma and S. C. Katyal, “Optical study of Ge10Se90-xTex glassy semiconductors,” Thin Solid Films515(20-21), 7966–7970 (2007).
[CrossRef]

P. Sharma and S. C. Katyal, “Effect of substrate temperature on the optical parameters of thermally evaporated Ge-Se-Te thin films,” Thin Solid Films517(13), 3813–3816 (2009).
[CrossRef]

C. Das, M. G. Mahesha, G. M. Rao, and S. Asokan, “Electrical switching and optical studies on amorphous GexSe35-xTe65 thin films,” Thin Solid Films520(6), 2278–2282 (2012).
[CrossRef]

V. Nazabal, P. Němec, A. M. Jurdyc, S. Zhang, F. Charpentier, H. Lhermite, J. Charrier, J. P. Guin, A. Moreac, M. Frumar, and J. L. Adam, “Optical waveguide based on amorphous Er3+-doped Ga–Ge–Sb–S(Se) pulsed laser deposited thin films,” Thin Solid Films518(17), 4941–4947 (2010).
[CrossRef]

J. Li, X. Shen, J. Sun, K. Vu, D.-Y. Choi, R. Wang, B. Luther-Davies, S. Dai, T. Xu, and Q. Nie, “Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths,” Thin Solid Films545, 462–465 (2013).
[CrossRef]

Other (4)

E. Barthélémy, S. Albert, C. Vigreux, A. Pradel, X. Zhang, S. Zhang, G. Parent, T. Billeton, J.-E. Broquin, S. Ménard, M. Barillot, and V. Kirschner, in Conference Integrated Optics: Devices, Materials, and Technologies XIV (part of Photonics West)(San Francisco, US, 2010), p. 760405.

Z. Borisova, Glassy Semiconductors (Plenum Press, New York, 1981).

J. A. Savage, Infrared Optical Materials and their Antireflexion Coatings (Adam Hilger, 1985).

T. S. Moss, Optical properties of Semiconductors (Butterworths, London, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

DSC curves of several Ge-Se-Te films deposited by thermal co-evaporation. Each characteristic temperature is indicated, together with its measurement procedure.

Fig. 2
Fig. 2

a) Vitreous transition temperatures Tg1 and possible isotherms. The yellow zone with small dots shows the domain where two Tg were observed. b) Criterion of stability ΔT of the films in the Ge-Se-Te system. The blue shaded zone corresponds to films with ΔT > 100 K, and the hatched zone delimits films which do not present any crystallization peak in their DSC curve. The yellow zone with small dots corresponds to films with two Tg. The red segment shows the liquid-liquid miscibility gap existing in the GeSe2-Te pseudo-binary system according to Bordas et al. [41] and the red dashed area shows the limit of the liquid-liquid miscibility gap in the Ge-Se-Te system according to Borisova [42].

Fig. 3
Fig. 3

a) Evolution of the optical band gap Eg in the Ge-Se-Te 3D-ternary diagram. b) Corresponding projection diagram. The black squares show the films that were investigated, and which the Eg 2D-tendency versus composition was extrapolated from.

Fig. 4
Fig. 4

a) Evolution of the refractive index at 1.55 µm in the Ge-Se-Te 3D-ternary diagram. b) Corresponding projection diagram. The black squares show the films that were investigated, and which the n 2D-tendency versus composition was extrapolated from.

Fig. 5
Fig. 5

a) SEM picture of a 10-µm wide rib waveguide. b) Near-field image at λ = 1.55 µm at the output of a 10 µm-width rib waveguide and corresponding simulated image. c) Near-field image at λ = 1.55 µm at the output of a 6 µm-width rib waveguide and corresponding simulated image. d) Total optical losses at λ = 1.55 µm versus the waveguide length for a 6-µm wide rib waveguide characterized by an initial length of 3.2 cm. The slope of the simulated dotted line, corresponding to propagation losses, is 1.1 dB.cm−1. The intercept of about 15.3 dB gives an order of magnitude of the coupling losses.

Fig. 6
Fig. 6

a) Optical image of a series of 8 S-bend waveguides of 6-µm in width. r stands for the radius of curvature. For each S-bend waveguide, a distance of 0.25 mm was applied between the two straight branches. b) Bending losses versus the curve radius. The error on the loss values is included in the thickness of the black squares. Inset: schematic diagram of S-bend channel waveguide configuration.

Fig. 7
Fig. 7

a) Optical image of a spiral; b) SEM picture of a Y-junction; c) optical image of a Mach-Zehnder interferometer; d, e and f) 1.55 µm near-field images at the output of a spiral, a Y-junction and a Mach-Zehnder interferometer, respectively.

Fig. 8
Fig. 8

a) Modal filtering bench design; b) transmission spectrum of a [10 – 20 µm] rib waveguide; c) and d) SEM images of the [6 – 11 µm] rib waveguide tested as a modal filter.

Tables (1)

Tables Icon

Table 1 Compositions of the thermally co-evaporated Ge-Se-Te films, along with their characteristic temperatures (Tg, Tx, Tm) and their criterion of stability (ΔT = Tx1Tg1). “N.O.” means that the corresponding characteristic temperatures were not observed. “N.A.” means that due to a lack of matter, DSC analysis was not performed.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n ( λ ) = A + B λ 2
n 4 E g =K

Metrics