Abstract

The phosphors of Sm3+ activated KSr4(BO3)3 are synthesized through a solid state reaction. The site occupancy of Sm3+ in KSr4(BO3)3:Sm3+ was studied by Rietveld analysis of the X-ray powder diffraction patterns. Sm3+ ions are inclined to occupy 8c (Sr2) and 4a (Sr3) sites in the structure of KSr4(BO3)3 according to the refinement results. The luminescence properties of Sm3+ activated KSr4(BO3)3 have been investigated and strong reddish orange emitting color is found. The phenomenon of concentration quenching can be observed with the increasing of Sm3+ concentration. The nonradiative concentration quenching among two nearest Sm3+ centers occurs via electric multipolar interactions based on the Dexter theory. Fluorescence lifetime of KSr4(BO3)3:Sm3+ is 0.69, 0.74, 0.70, and 0.69 ms for the transition of 4G5/2 to 6HJ (J = 5/2, 7/2, 9/2, 11/2) respectively and the critical distance is 17.6 Å.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shi, Y. Wen, M. Que, G. Zhu, and Y. H. Wang, “Structure, photoluminescent and cathodoluminescent properties of a rare-earth free red emitting β-Zn3B2O6:Mn2+ phosphor,” Dalton Trans.43(6), 2418–2423 (2014).
    [CrossRef] [PubMed]
  2. R. Pązik, K. Zawisza, A. Watras, K. Maleszka-Baginska, P. Boutinaud, R. Mahiou, and P. J. Deren, “Temperature induced emission quenching processes in Eu3+-doped La2CaB10O19,” J. Mater. Chem.22(42), 22651–22657 (2012).
    [CrossRef]
  3. S. Yuan, Y. Yang, X. Zhang, F. Tessier, F. Cheviré, J. L. Adam, B. Moine, and G. Chen, “Eu2+ and Mn2+ codoped Ba2Mg(BO3)2-new red phosphor for white LEDs,” Opt. Lett.33(23), 2865–2867 (2008).
    [CrossRef] [PubMed]
  4. X. G. Zhang and M. L. Gong, “Single-phased white-light-emitting NaCaBO3:Ce3+,Tb3+,Mn2+ phosphors for LED applications,” Dalton Trans.43(6), 2465–2472 (2014).
    [CrossRef] [PubMed]
  5. L. Wu, X. L. Chen, Y. Zhang, Y. F. Kong, J. J. Xu, and Y. P. Xu, “Ab initio structure determination of novel borate NaSrBO3,” J. Solid State Chem.179(4), 1219–1224 (2006).
    [CrossRef]
  6. W. R. Liu, C. H. Huang, C. P. Wu, Y. C. Chiu, Y. T. Yeh, and T. M. Chen, “High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes,” J. Mater. Chem.21(19), 6869–6874 (2011).
    [CrossRef]
  7. L. Wu, X. L. Chen, Y. P. Xu, Y. P. Sun, Y. P. Xu, and X. Z. Li, “Structure determination and relative properties of novel noncentrosymmetric borates MM’4(BO3)3 (M = Na, M’ = Ca and M = K, M’ = Ca, Sr),” Inorg. Chem.45(7), 3042–3047 (2006).
    [CrossRef] [PubMed]
  8. Y. Zhang, W. Liu, M. Ji, B. Wang, Y. Kong, and J. Xu, “Structure and photoluminescence properties of KSr4(BO3)3:Eu3+ red-emitting phosphor,” Opt. Mater. Express2(1), 92–101 (2012).
    [CrossRef]
  9. L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor: Dy3+-,Tm3+-, and Eu3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem.22(13), 6463–6470 (2012).
    [CrossRef]
  10. J. Xu, Z. Ju, X. Gao, Y. An, X. Tang, and W. Liu, “Na2CaSn2Ge3O12: a novel host lattice for Sm3+-doped long-persistent phosphorescence materials emitting reddish orange light,” Inorg. Chem.52(24), 13875–13881 (2013).
    [CrossRef] [PubMed]
  11. V. Kumar, A. K. Bedyal, S. S. Pitale, O. M. Ntwaeaborwa, and H. C. Swart, “Synthesis, spectral and surface investigation of NaSrBO3:Sm3+ phosphor for full color down conversion in LEDs,” J. Alloy. Comp.554, 214–220 (2013).
    [CrossRef]
  12. S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n=1,2,∞) with perovskite-related structures,” Appl. Phys. Lett.101(9), 091113 (2012).
    [CrossRef]
  13. E. Pavitra, G. S. R. Raju, Y. H. Ko, and J. S. Yu, “A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors,” Phys. Chem. Chem. Phys.14(32), 11296–11307 (2012).
    [CrossRef] [PubMed]
  14. Z. G. Xia and D. M. Chen, “synthesis and luminescence properties of BaMoO4: Sm3+ phosphors,” J. Am. Ceram. Soc.93, 1397–1401 (2010).
  15. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr.32(5), 751–767 (1976).
    [CrossRef]
  16. H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr.22(1), 151–152 (1967).
    [CrossRef]
  17. H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Cryst.2(2), 65–71 (1969).
    [CrossRef]
  18. J. Rodriguez-Carvajal, “FULLPROF2000,” (LLB, France, 2001) www.ill.eu/site/fullprof/ .
  19. C. K. Jayasankar and P. Babu, “Optical properties of Sm3+ ions in lithium borate and lithium fluoroborate glasses,” J. Alloy. Comp.307(1-2), 82–95 (2000).
    [CrossRef]
  20. G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep.24, 131–144 (1969).
  21. D. L. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys.22(6), 1063–1070 (1954).
    [CrossRef]
  22. L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc.114(10), 1048–1053 (1967).
    [CrossRef]
  23. G. Blasse and B. C. Grabmarier, Luminescent Materials (Springer-Verlag, 1994).
  24. Y. G. Su, L. P. Li, and G. S. Li, “Generation of tunable wavelength lights in core-shell CaWO4 microspheres via co-doping with Na+ and Ln3+ (Ln=Tb, Sm, Dy, Eu),” J. Mater. Chem.19(16), 2316–2322 (2009).
    [CrossRef]
  25. S. Tang, M. Huang, J. Wang, F. Yu, G. Shang, and J. Wu, “Hydrothermal synthesis and luminescence properties of GdVO4:Ln3+ (Ln=Eu, Sm, Dy) phosphors,” J. Alloy. Comp.513, 474–480 (2012).
    [CrossRef]

2014 (2)

X. G. Zhang and M. L. Gong, “Single-phased white-light-emitting NaCaBO3:Ce3+,Tb3+,Mn2+ phosphors for LED applications,” Dalton Trans.43(6), 2465–2472 (2014).
[CrossRef] [PubMed]

Y. R. Shi, Y. Wen, M. Que, G. Zhu, and Y. H. Wang, “Structure, photoluminescent and cathodoluminescent properties of a rare-earth free red emitting β-Zn3B2O6:Mn2+ phosphor,” Dalton Trans.43(6), 2418–2423 (2014).
[CrossRef] [PubMed]

2013 (2)

J. Xu, Z. Ju, X. Gao, Y. An, X. Tang, and W. Liu, “Na2CaSn2Ge3O12: a novel host lattice for Sm3+-doped long-persistent phosphorescence materials emitting reddish orange light,” Inorg. Chem.52(24), 13875–13881 (2013).
[CrossRef] [PubMed]

V. Kumar, A. K. Bedyal, S. S. Pitale, O. M. Ntwaeaborwa, and H. C. Swart, “Synthesis, spectral and surface investigation of NaSrBO3:Sm3+ phosphor for full color down conversion in LEDs,” J. Alloy. Comp.554, 214–220 (2013).
[CrossRef]

2012 (6)

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n=1,2,∞) with perovskite-related structures,” Appl. Phys. Lett.101(9), 091113 (2012).
[CrossRef]

E. Pavitra, G. S. R. Raju, Y. H. Ko, and J. S. Yu, “A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors,” Phys. Chem. Chem. Phys.14(32), 11296–11307 (2012).
[CrossRef] [PubMed]

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor: Dy3+-,Tm3+-, and Eu3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem.22(13), 6463–6470 (2012).
[CrossRef]

R. Pązik, K. Zawisza, A. Watras, K. Maleszka-Baginska, P. Boutinaud, R. Mahiou, and P. J. Deren, “Temperature induced emission quenching processes in Eu3+-doped La2CaB10O19,” J. Mater. Chem.22(42), 22651–22657 (2012).
[CrossRef]

S. Tang, M. Huang, J. Wang, F. Yu, G. Shang, and J. Wu, “Hydrothermal synthesis and luminescence properties of GdVO4:Ln3+ (Ln=Eu, Sm, Dy) phosphors,” J. Alloy. Comp.513, 474–480 (2012).
[CrossRef]

Y. Zhang, W. Liu, M. Ji, B. Wang, Y. Kong, and J. Xu, “Structure and photoluminescence properties of KSr4(BO3)3:Eu3+ red-emitting phosphor,” Opt. Mater. Express2(1), 92–101 (2012).
[CrossRef]

2011 (1)

W. R. Liu, C. H. Huang, C. P. Wu, Y. C. Chiu, Y. T. Yeh, and T. M. Chen, “High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes,” J. Mater. Chem.21(19), 6869–6874 (2011).
[CrossRef]

2010 (1)

Z. G. Xia and D. M. Chen, “synthesis and luminescence properties of BaMoO4: Sm3+ phosphors,” J. Am. Ceram. Soc.93, 1397–1401 (2010).

2009 (1)

Y. G. Su, L. P. Li, and G. S. Li, “Generation of tunable wavelength lights in core-shell CaWO4 microspheres via co-doping with Na+ and Ln3+ (Ln=Tb, Sm, Dy, Eu),” J. Mater. Chem.19(16), 2316–2322 (2009).
[CrossRef]

2008 (1)

2006 (2)

L. Wu, X. L. Chen, Y. P. Xu, Y. P. Sun, Y. P. Xu, and X. Z. Li, “Structure determination and relative properties of novel noncentrosymmetric borates MM’4(BO3)3 (M = Na, M’ = Ca and M = K, M’ = Ca, Sr),” Inorg. Chem.45(7), 3042–3047 (2006).
[CrossRef] [PubMed]

L. Wu, X. L. Chen, Y. Zhang, Y. F. Kong, J. J. Xu, and Y. P. Xu, “Ab initio structure determination of novel borate NaSrBO3,” J. Solid State Chem.179(4), 1219–1224 (2006).
[CrossRef]

2000 (1)

C. K. Jayasankar and P. Babu, “Optical properties of Sm3+ ions in lithium borate and lithium fluoroborate glasses,” J. Alloy. Comp.307(1-2), 82–95 (2000).
[CrossRef]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr.32(5), 751–767 (1976).
[CrossRef]

1969 (2)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep.24, 131–144 (1969).

H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Cryst.2(2), 65–71 (1969).
[CrossRef]

1967 (2)

H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr.22(1), 151–152 (1967).
[CrossRef]

L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc.114(10), 1048–1053 (1967).
[CrossRef]

1954 (1)

D. L. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys.22(6), 1063–1070 (1954).
[CrossRef]

Adam, J. L.

An, Y.

J. Xu, Z. Ju, X. Gao, Y. An, X. Tang, and W. Liu, “Na2CaSn2Ge3O12: a novel host lattice for Sm3+-doped long-persistent phosphorescence materials emitting reddish orange light,” Inorg. Chem.52(24), 13875–13881 (2013).
[CrossRef] [PubMed]

Babu, P.

C. K. Jayasankar and P. Babu, “Optical properties of Sm3+ ions in lithium borate and lithium fluoroborate glasses,” J. Alloy. Comp.307(1-2), 82–95 (2000).
[CrossRef]

Bedyal, A. K.

V. Kumar, A. K. Bedyal, S. S. Pitale, O. M. Ntwaeaborwa, and H. C. Swart, “Synthesis, spectral and surface investigation of NaSrBO3:Sm3+ phosphor for full color down conversion in LEDs,” J. Alloy. Comp.554, 214–220 (2013).
[CrossRef]

Blasse, G.

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep.24, 131–144 (1969).

Boutinaud, P.

R. Pązik, K. Zawisza, A. Watras, K. Maleszka-Baginska, P. Boutinaud, R. Mahiou, and P. J. Deren, “Temperature induced emission quenching processes in Eu3+-doped La2CaB10O19,” J. Mater. Chem.22(42), 22651–22657 (2012).
[CrossRef]

Chen, D. M.

Z. G. Xia and D. M. Chen, “synthesis and luminescence properties of BaMoO4: Sm3+ phosphors,” J. Am. Ceram. Soc.93, 1397–1401 (2010).

Chen, G.

Chen, T. M.

W. R. Liu, C. H. Huang, C. P. Wu, Y. C. Chiu, Y. T. Yeh, and T. M. Chen, “High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes,” J. Mater. Chem.21(19), 6869–6874 (2011).
[CrossRef]

Chen, X. L.

L. Wu, X. L. Chen, Y. Zhang, Y. F. Kong, J. J. Xu, and Y. P. Xu, “Ab initio structure determination of novel borate NaSrBO3,” J. Solid State Chem.179(4), 1219–1224 (2006).
[CrossRef]

L. Wu, X. L. Chen, Y. P. Xu, Y. P. Sun, Y. P. Xu, and X. Z. Li, “Structure determination and relative properties of novel noncentrosymmetric borates MM’4(BO3)3 (M = Na, M’ = Ca and M = K, M’ = Ca, Sr),” Inorg. Chem.45(7), 3042–3047 (2006).
[CrossRef] [PubMed]

Cheviré, F.

Chiu, Y. C.

W. R. Liu, C. H. Huang, C. P. Wu, Y. C. Chiu, Y. T. Yeh, and T. M. Chen, “High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes,” J. Mater. Chem.21(19), 6869–6874 (2011).
[CrossRef]

Deren, P. J.

R. Pązik, K. Zawisza, A. Watras, K. Maleszka-Baginska, P. Boutinaud, R. Mahiou, and P. J. Deren, “Temperature induced emission quenching processes in Eu3+-doped La2CaB10O19,” J. Mater. Chem.22(42), 22651–22657 (2012).
[CrossRef]

Dexter, D. L.

D. L. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys.22(6), 1063–1070 (1954).
[CrossRef]

Gao, X.

J. Xu, Z. Ju, X. Gao, Y. An, X. Tang, and W. Liu, “Na2CaSn2Ge3O12: a novel host lattice for Sm3+-doped long-persistent phosphorescence materials emitting reddish orange light,” Inorg. Chem.52(24), 13875–13881 (2013).
[CrossRef] [PubMed]

Gong, M. L.

X. G. Zhang and M. L. Gong, “Single-phased white-light-emitting NaCaBO3:Ce3+,Tb3+,Mn2+ phosphors for LED applications,” Dalton Trans.43(6), 2465–2472 (2014).
[CrossRef] [PubMed]

Gui, M. Y.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor: Dy3+-,Tm3+-, and Eu3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem.22(13), 6463–6470 (2012).
[CrossRef]

Huang, C. H.

W. R. Liu, C. H. Huang, C. P. Wu, Y. C. Chiu, Y. T. Yeh, and T. M. Chen, “High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes,” J. Mater. Chem.21(19), 6869–6874 (2011).
[CrossRef]

Huang, M.

S. Tang, M. Huang, J. Wang, F. Yu, G. Shang, and J. Wu, “Hydrothermal synthesis and luminescence properties of GdVO4:Ln3+ (Ln=Eu, Sm, Dy) phosphors,” J. Alloy. Comp.513, 474–480 (2012).
[CrossRef]

Jayasankar, C. K.

C. K. Jayasankar and P. Babu, “Optical properties of Sm3+ ions in lithium borate and lithium fluoroborate glasses,” J. Alloy. Comp.307(1-2), 82–95 (2000).
[CrossRef]

Ji, M.

Ju, Z.

J. Xu, Z. Ju, X. Gao, Y. An, X. Tang, and W. Liu, “Na2CaSn2Ge3O12: a novel host lattice for Sm3+-doped long-persistent phosphorescence materials emitting reddish orange light,” Inorg. Chem.52(24), 13875–13881 (2013).
[CrossRef] [PubMed]

Kamimura, S.

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n=1,2,∞) with perovskite-related structures,” Appl. Phys. Lett.101(9), 091113 (2012).
[CrossRef]

Ko, Y. H.

E. Pavitra, G. S. R. Raju, Y. H. Ko, and J. S. Yu, “A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors,” Phys. Chem. Chem. Phys.14(32), 11296–11307 (2012).
[CrossRef] [PubMed]

Kong, Y.

Kong, Y. F.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor: Dy3+-,Tm3+-, and Eu3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem.22(13), 6463–6470 (2012).
[CrossRef]

L. Wu, X. L. Chen, Y. Zhang, Y. F. Kong, J. J. Xu, and Y. P. Xu, “Ab initio structure determination of novel borate NaSrBO3,” J. Solid State Chem.179(4), 1219–1224 (2006).
[CrossRef]

Kumar, V.

V. Kumar, A. K. Bedyal, S. S. Pitale, O. M. Ntwaeaborwa, and H. C. Swart, “Synthesis, spectral and surface investigation of NaSrBO3:Sm3+ phosphor for full color down conversion in LEDs,” J. Alloy. Comp.554, 214–220 (2013).
[CrossRef]

Li, G. S.

Y. G. Su, L. P. Li, and G. S. Li, “Generation of tunable wavelength lights in core-shell CaWO4 microspheres via co-doping with Na+ and Ln3+ (Ln=Tb, Sm, Dy, Eu),” J. Mater. Chem.19(16), 2316–2322 (2009).
[CrossRef]

Li, L. P.

Y. G. Su, L. P. Li, and G. S. Li, “Generation of tunable wavelength lights in core-shell CaWO4 microspheres via co-doping with Na+ and Ln3+ (Ln=Tb, Sm, Dy, Eu),” J. Mater. Chem.19(16), 2316–2322 (2009).
[CrossRef]

Li, X. Z.

L. Wu, X. L. Chen, Y. P. Xu, Y. P. Sun, Y. P. Xu, and X. Z. Li, “Structure determination and relative properties of novel noncentrosymmetric borates MM’4(BO3)3 (M = Na, M’ = Ca and M = K, M’ = Ca, Sr),” Inorg. Chem.45(7), 3042–3047 (2006).
[CrossRef] [PubMed]

Liu, W.

J. Xu, Z. Ju, X. Gao, Y. An, X. Tang, and W. Liu, “Na2CaSn2Ge3O12: a novel host lattice for Sm3+-doped long-persistent phosphorescence materials emitting reddish orange light,” Inorg. Chem.52(24), 13875–13881 (2013).
[CrossRef] [PubMed]

Y. Zhang, W. Liu, M. Ji, B. Wang, Y. Kong, and J. Xu, “Structure and photoluminescence properties of KSr4(BO3)3:Eu3+ red-emitting phosphor,” Opt. Mater. Express2(1), 92–101 (2012).
[CrossRef]

Liu, W. R.

W. R. Liu, C. H. Huang, C. P. Wu, Y. C. Chiu, Y. T. Yeh, and T. M. Chen, “High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes,” J. Mater. Chem.21(19), 6869–6874 (2011).
[CrossRef]

Lu, P. Z.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor: Dy3+-,Tm3+-, and Eu3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem.22(13), 6463–6470 (2012).
[CrossRef]

Mahiou, R.

R. Pązik, K. Zawisza, A. Watras, K. Maleszka-Baginska, P. Boutinaud, R. Mahiou, and P. J. Deren, “Temperature induced emission quenching processes in Eu3+-doped La2CaB10O19,” J. Mater. Chem.22(42), 22651–22657 (2012).
[CrossRef]

Maleszka-Baginska, K.

R. Pązik, K. Zawisza, A. Watras, K. Maleszka-Baginska, P. Boutinaud, R. Mahiou, and P. J. Deren, “Temperature induced emission quenching processes in Eu3+-doped La2CaB10O19,” J. Mater. Chem.22(42), 22651–22657 (2012).
[CrossRef]

Moine, B.

Ntwaeaborwa, O. M.

V. Kumar, A. K. Bedyal, S. S. Pitale, O. M. Ntwaeaborwa, and H. C. Swart, “Synthesis, spectral and surface investigation of NaSrBO3:Sm3+ phosphor for full color down conversion in LEDs,” J. Alloy. Comp.554, 214–220 (2013).
[CrossRef]

Pavitra, E.

E. Pavitra, G. S. R. Raju, Y. H. Ko, and J. S. Yu, “A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors,” Phys. Chem. Chem. Phys.14(32), 11296–11307 (2012).
[CrossRef] [PubMed]

Pazik, R.

R. Pązik, K. Zawisza, A. Watras, K. Maleszka-Baginska, P. Boutinaud, R. Mahiou, and P. J. Deren, “Temperature induced emission quenching processes in Eu3+-doped La2CaB10O19,” J. Mater. Chem.22(42), 22651–22657 (2012).
[CrossRef]

Pitale, S. S.

V. Kumar, A. K. Bedyal, S. S. Pitale, O. M. Ntwaeaborwa, and H. C. Swart, “Synthesis, spectral and surface investigation of NaSrBO3:Sm3+ phosphor for full color down conversion in LEDs,” J. Alloy. Comp.554, 214–220 (2013).
[CrossRef]

Que, M.

Y. R. Shi, Y. Wen, M. Que, G. Zhu, and Y. H. Wang, “Structure, photoluminescent and cathodoluminescent properties of a rare-earth free red emitting β-Zn3B2O6:Mn2+ phosphor,” Dalton Trans.43(6), 2418–2423 (2014).
[CrossRef] [PubMed]

Raju, G. S. R.

E. Pavitra, G. S. R. Raju, Y. H. Ko, and J. S. Yu, “A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors,” Phys. Chem. Chem. Phys.14(32), 11296–11307 (2012).
[CrossRef] [PubMed]

Rietveld, H. M.

H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Cryst.2(2), 65–71 (1969).
[CrossRef]

H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr.22(1), 151–152 (1967).
[CrossRef]

Schulman, J. H.

D. L. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys.22(6), 1063–1070 (1954).
[CrossRef]

Shang, G.

S. Tang, M. Huang, J. Wang, F. Yu, G. Shang, and J. Wu, “Hydrothermal synthesis and luminescence properties of GdVO4:Ln3+ (Ln=Eu, Sm, Dy) phosphors,” J. Alloy. Comp.513, 474–480 (2012).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr.32(5), 751–767 (1976).
[CrossRef]

Shi, Y. R.

Y. R. Shi, Y. Wen, M. Que, G. Zhu, and Y. H. Wang, “Structure, photoluminescent and cathodoluminescent properties of a rare-earth free red emitting β-Zn3B2O6:Mn2+ phosphor,” Dalton Trans.43(6), 2418–2423 (2014).
[CrossRef] [PubMed]

Su, Y. G.

Y. G. Su, L. P. Li, and G. S. Li, “Generation of tunable wavelength lights in core-shell CaWO4 microspheres via co-doping with Na+ and Ln3+ (Ln=Tb, Sm, Dy, Eu),” J. Mater. Chem.19(16), 2316–2322 (2009).
[CrossRef]

Sun, Y. P.

L. Wu, X. L. Chen, Y. P. Xu, Y. P. Sun, Y. P. Xu, and X. Z. Li, “Structure determination and relative properties of novel noncentrosymmetric borates MM’4(BO3)3 (M = Na, M’ = Ca and M = K, M’ = Ca, Sr),” Inorg. Chem.45(7), 3042–3047 (2006).
[CrossRef] [PubMed]

Swart, H. C.

V. Kumar, A. K. Bedyal, S. S. Pitale, O. M. Ntwaeaborwa, and H. C. Swart, “Synthesis, spectral and surface investigation of NaSrBO3:Sm3+ phosphor for full color down conversion in LEDs,” J. Alloy. Comp.554, 214–220 (2013).
[CrossRef]

Tang, S.

S. Tang, M. Huang, J. Wang, F. Yu, G. Shang, and J. Wu, “Hydrothermal synthesis and luminescence properties of GdVO4:Ln3+ (Ln=Eu, Sm, Dy) phosphors,” J. Alloy. Comp.513, 474–480 (2012).
[CrossRef]

Tang, X.

J. Xu, Z. Ju, X. Gao, Y. An, X. Tang, and W. Liu, “Na2CaSn2Ge3O12: a novel host lattice for Sm3+-doped long-persistent phosphorescence materials emitting reddish orange light,” Inorg. Chem.52(24), 13875–13881 (2013).
[CrossRef] [PubMed]

Tessier, F.

Tian, S.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor: Dy3+-,Tm3+-, and Eu3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem.22(13), 6463–6470 (2012).
[CrossRef]

Van Uitert, L. G.

L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc.114(10), 1048–1053 (1967).
[CrossRef]

Wang, B.

Wang, J.

S. Tang, M. Huang, J. Wang, F. Yu, G. Shang, and J. Wu, “Hydrothermal synthesis and luminescence properties of GdVO4:Ln3+ (Ln=Eu, Sm, Dy) phosphors,” J. Alloy. Comp.513, 474–480 (2012).
[CrossRef]

Wang, Y. H.

Y. R. Shi, Y. Wen, M. Que, G. Zhu, and Y. H. Wang, “Structure, photoluminescent and cathodoluminescent properties of a rare-earth free red emitting β-Zn3B2O6:Mn2+ phosphor,” Dalton Trans.43(6), 2418–2423 (2014).
[CrossRef] [PubMed]

Watras, A.

R. Pązik, K. Zawisza, A. Watras, K. Maleszka-Baginska, P. Boutinaud, R. Mahiou, and P. J. Deren, “Temperature induced emission quenching processes in Eu3+-doped La2CaB10O19,” J. Mater. Chem.22(42), 22651–22657 (2012).
[CrossRef]

Wen, Y.

Y. R. Shi, Y. Wen, M. Que, G. Zhu, and Y. H. Wang, “Structure, photoluminescent and cathodoluminescent properties of a rare-earth free red emitting β-Zn3B2O6:Mn2+ phosphor,” Dalton Trans.43(6), 2418–2423 (2014).
[CrossRef] [PubMed]

Wu, C. P.

W. R. Liu, C. H. Huang, C. P. Wu, Y. C. Chiu, Y. T. Yeh, and T. M. Chen, “High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes,” J. Mater. Chem.21(19), 6869–6874 (2011).
[CrossRef]

Wu, J.

S. Tang, M. Huang, J. Wang, F. Yu, G. Shang, and J. Wu, “Hydrothermal synthesis and luminescence properties of GdVO4:Ln3+ (Ln=Eu, Sm, Dy) phosphors,” J. Alloy. Comp.513, 474–480 (2012).
[CrossRef]

Wu, L.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor: Dy3+-,Tm3+-, and Eu3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem.22(13), 6463–6470 (2012).
[CrossRef]

L. Wu, X. L. Chen, Y. Zhang, Y. F. Kong, J. J. Xu, and Y. P. Xu, “Ab initio structure determination of novel borate NaSrBO3,” J. Solid State Chem.179(4), 1219–1224 (2006).
[CrossRef]

L. Wu, X. L. Chen, Y. P. Xu, Y. P. Sun, Y. P. Xu, and X. Z. Li, “Structure determination and relative properties of novel noncentrosymmetric borates MM’4(BO3)3 (M = Na, M’ = Ca and M = K, M’ = Ca, Sr),” Inorg. Chem.45(7), 3042–3047 (2006).
[CrossRef] [PubMed]

Xia, Z. G.

Z. G. Xia and D. M. Chen, “synthesis and luminescence properties of BaMoO4: Sm3+ phosphors,” J. Am. Ceram. Soc.93, 1397–1401 (2010).

Xu, C. N.

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n=1,2,∞) with perovskite-related structures,” Appl. Phys. Lett.101(9), 091113 (2012).
[CrossRef]

Xu, J.

J. Xu, Z. Ju, X. Gao, Y. An, X. Tang, and W. Liu, “Na2CaSn2Ge3O12: a novel host lattice for Sm3+-doped long-persistent phosphorescence materials emitting reddish orange light,” Inorg. Chem.52(24), 13875–13881 (2013).
[CrossRef] [PubMed]

Y. Zhang, W. Liu, M. Ji, B. Wang, Y. Kong, and J. Xu, “Structure and photoluminescence properties of KSr4(BO3)3:Eu3+ red-emitting phosphor,” Opt. Mater. Express2(1), 92–101 (2012).
[CrossRef]

Xu, J. J.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor: Dy3+-,Tm3+-, and Eu3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem.22(13), 6463–6470 (2012).
[CrossRef]

L. Wu, X. L. Chen, Y. Zhang, Y. F. Kong, J. J. Xu, and Y. P. Xu, “Ab initio structure determination of novel borate NaSrBO3,” J. Solid State Chem.179(4), 1219–1224 (2006).
[CrossRef]

Xu, Y. P.

L. Wu, X. L. Chen, Y. Zhang, Y. F. Kong, J. J. Xu, and Y. P. Xu, “Ab initio structure determination of novel borate NaSrBO3,” J. Solid State Chem.179(4), 1219–1224 (2006).
[CrossRef]

L. Wu, X. L. Chen, Y. P. Xu, Y. P. Sun, Y. P. Xu, and X. Z. Li, “Structure determination and relative properties of novel noncentrosymmetric borates MM’4(BO3)3 (M = Na, M’ = Ca and M = K, M’ = Ca, Sr),” Inorg. Chem.45(7), 3042–3047 (2006).
[CrossRef] [PubMed]

L. Wu, X. L. Chen, Y. P. Xu, Y. P. Sun, Y. P. Xu, and X. Z. Li, “Structure determination and relative properties of novel noncentrosymmetric borates MM’4(BO3)3 (M = Na, M’ = Ca and M = K, M’ = Ca, Sr),” Inorg. Chem.45(7), 3042–3047 (2006).
[CrossRef] [PubMed]

Yamada, H.

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n=1,2,∞) with perovskite-related structures,” Appl. Phys. Lett.101(9), 091113 (2012).
[CrossRef]

Yang, Y.

Yeh, Y. T.

W. R. Liu, C. H. Huang, C. P. Wu, Y. C. Chiu, Y. T. Yeh, and T. M. Chen, “High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes,” J. Mater. Chem.21(19), 6869–6874 (2011).
[CrossRef]

Yu, F.

S. Tang, M. Huang, J. Wang, F. Yu, G. Shang, and J. Wu, “Hydrothermal synthesis and luminescence properties of GdVO4:Ln3+ (Ln=Eu, Sm, Dy) phosphors,” J. Alloy. Comp.513, 474–480 (2012).
[CrossRef]

Yu, J. S.

E. Pavitra, G. S. R. Raju, Y. H. Ko, and J. S. Yu, “A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors,” Phys. Chem. Chem. Phys.14(32), 11296–11307 (2012).
[CrossRef] [PubMed]

Yuan, S.

Zawisza, K.

R. Pązik, K. Zawisza, A. Watras, K. Maleszka-Baginska, P. Boutinaud, R. Mahiou, and P. J. Deren, “Temperature induced emission quenching processes in Eu3+-doped La2CaB10O19,” J. Mater. Chem.22(42), 22651–22657 (2012).
[CrossRef]

Zhang, X.

Zhang, X. G.

X. G. Zhang and M. L. Gong, “Single-phased white-light-emitting NaCaBO3:Ce3+,Tb3+,Mn2+ phosphors for LED applications,” Dalton Trans.43(6), 2465–2472 (2014).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, W. Liu, M. Ji, B. Wang, Y. Kong, and J. Xu, “Structure and photoluminescence properties of KSr4(BO3)3:Eu3+ red-emitting phosphor,” Opt. Mater. Express2(1), 92–101 (2012).
[CrossRef]

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor: Dy3+-,Tm3+-, and Eu3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem.22(13), 6463–6470 (2012).
[CrossRef]

L. Wu, X. L. Chen, Y. Zhang, Y. F. Kong, J. J. Xu, and Y. P. Xu, “Ab initio structure determination of novel borate NaSrBO3,” J. Solid State Chem.179(4), 1219–1224 (2006).
[CrossRef]

Zhao, L. X.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor: Dy3+-,Tm3+-, and Eu3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem.22(13), 6463–6470 (2012).
[CrossRef]

Zhu, G.

Y. R. Shi, Y. Wen, M. Que, G. Zhu, and Y. H. Wang, “Structure, photoluminescent and cathodoluminescent properties of a rare-earth free red emitting β-Zn3B2O6:Mn2+ phosphor,” Dalton Trans.43(6), 2418–2423 (2014).
[CrossRef] [PubMed]

Acta Crystallogr. (2)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr.32(5), 751–767 (1976).
[CrossRef]

H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr.22(1), 151–152 (1967).
[CrossRef]

Appl. Phys. Lett. (1)

S. Kamimura, H. Yamada, and C. N. Xu, “Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+ (n=1,2,∞) with perovskite-related structures,” Appl. Phys. Lett.101(9), 091113 (2012).
[CrossRef]

Dalton Trans. (2)

X. G. Zhang and M. L. Gong, “Single-phased white-light-emitting NaCaBO3:Ce3+,Tb3+,Mn2+ phosphors for LED applications,” Dalton Trans.43(6), 2465–2472 (2014).
[CrossRef] [PubMed]

Y. R. Shi, Y. Wen, M. Que, G. Zhu, and Y. H. Wang, “Structure, photoluminescent and cathodoluminescent properties of a rare-earth free red emitting β-Zn3B2O6:Mn2+ phosphor,” Dalton Trans.43(6), 2418–2423 (2014).
[CrossRef] [PubMed]

Inorg. Chem. (2)

L. Wu, X. L. Chen, Y. P. Xu, Y. P. Sun, Y. P. Xu, and X. Z. Li, “Structure determination and relative properties of novel noncentrosymmetric borates MM’4(BO3)3 (M = Na, M’ = Ca and M = K, M’ = Ca, Sr),” Inorg. Chem.45(7), 3042–3047 (2006).
[CrossRef] [PubMed]

J. Xu, Z. Ju, X. Gao, Y. An, X. Tang, and W. Liu, “Na2CaSn2Ge3O12: a novel host lattice for Sm3+-doped long-persistent phosphorescence materials emitting reddish orange light,” Inorg. Chem.52(24), 13875–13881 (2013).
[CrossRef] [PubMed]

J. Alloy. Comp. (3)

V. Kumar, A. K. Bedyal, S. S. Pitale, O. M. Ntwaeaborwa, and H. C. Swart, “Synthesis, spectral and surface investigation of NaSrBO3:Sm3+ phosphor for full color down conversion in LEDs,” J. Alloy. Comp.554, 214–220 (2013).
[CrossRef]

C. K. Jayasankar and P. Babu, “Optical properties of Sm3+ ions in lithium borate and lithium fluoroborate glasses,” J. Alloy. Comp.307(1-2), 82–95 (2000).
[CrossRef]

S. Tang, M. Huang, J. Wang, F. Yu, G. Shang, and J. Wu, “Hydrothermal synthesis and luminescence properties of GdVO4:Ln3+ (Ln=Eu, Sm, Dy) phosphors,” J. Alloy. Comp.513, 474–480 (2012).
[CrossRef]

J. Am. Ceram. Soc. (1)

Z. G. Xia and D. M. Chen, “synthesis and luminescence properties of BaMoO4: Sm3+ phosphors,” J. Am. Ceram. Soc.93, 1397–1401 (2010).

J. Appl. Cryst. (1)

H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Cryst.2(2), 65–71 (1969).
[CrossRef]

J. Chem. Phys. (1)

D. L. Dexter and J. H. Schulman, “Theory of concentration quenching in inorganic phosphors,” J. Chem. Phys.22(6), 1063–1070 (1954).
[CrossRef]

J. Electrochem. Soc. (1)

L. G. Van Uitert, “Characterization of Energy Transfer Interactions between Rare Earth Ions,” J. Electrochem. Soc.114(10), 1048–1053 (1967).
[CrossRef]

J. Mater. Chem. (4)

Y. G. Su, L. P. Li, and G. S. Li, “Generation of tunable wavelength lights in core-shell CaWO4 microspheres via co-doping with Na+ and Ln3+ (Ln=Tb, Sm, Dy, Eu),” J. Mater. Chem.19(16), 2316–2322 (2009).
[CrossRef]

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor: Dy3+-,Tm3+-, and Eu3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem.22(13), 6463–6470 (2012).
[CrossRef]

W. R. Liu, C. H. Huang, C. P. Wu, Y. C. Chiu, Y. T. Yeh, and T. M. Chen, “High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes,” J. Mater. Chem.21(19), 6869–6874 (2011).
[CrossRef]

R. Pązik, K. Zawisza, A. Watras, K. Maleszka-Baginska, P. Boutinaud, R. Mahiou, and P. J. Deren, “Temperature induced emission quenching processes in Eu3+-doped La2CaB10O19,” J. Mater. Chem.22(42), 22651–22657 (2012).
[CrossRef]

J. Solid State Chem. (1)

L. Wu, X. L. Chen, Y. Zhang, Y. F. Kong, J. J. Xu, and Y. P. Xu, “Ab initio structure determination of novel borate NaSrBO3,” J. Solid State Chem.179(4), 1219–1224 (2006).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. Express (1)

Philips Res. Rep. (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep.24, 131–144 (1969).

Phys. Chem. Chem. Phys. (1)

E. Pavitra, G. S. R. Raju, Y. H. Ko, and J. S. Yu, “A novel strategy for controllable emissions from Eu3+ or Sm3+ ions co-doped SrY2O4:Tb3+ phosphors,” Phys. Chem. Chem. Phys.14(32), 11296–11307 (2012).
[CrossRef] [PubMed]

Other (2)

J. Rodriguez-Carvajal, “FULLPROF2000,” (LLB, France, 2001) www.ill.eu/site/fullprof/ .

G. Blasse and B. C. Grabmarier, Luminescent Materials (Springer-Verlag, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The XRD patterns of KSr4(BO3)3:xSm3+ (x = 0.003, 0.02, 0.05) phosphors. (b) SEM morphology of KSr4(BO3)3:0.02Sm3+ phosphor. (c) Final Rietveld refinement plots of the KSr4(BO3)3:0.02Sm3+. Small circles (o) correspond to experimental values, and the continuous lines, the calculated pattern; vertical bars (|) indicate the position of Bragg peaks. The bottom trace depicts the difference between the experimental and the calculated intensity values. Inset is the coordination environments of Sr2+ with O2-. The large white balls are Sr2+ ions, the small black balls are O2- ions. (d) the dependence of cell volume of KSr4(BO3)3:Sm3+ to the Sm3+ concentration.

Fig. 2
Fig. 2

(a) PL/PLE spectra of as–synthesized KSr4(BO3)3:0.02Sm3+ (blue, λem = 598 nm; black, λex = 376 nm). The PL spectrum shows the terminal levels of the transitions from the 4G5/2 state. (b) The energy levels diagram for Sm3+ ions in KSr4(BO3)3.

Fig. 3
Fig. 3

(a) Emission spectra of KSr4(BO3)3:Sm3+ with different Sm3+ concentrations, and (b) Emission intensity vs. Sm3+ concentration (x) of KSr4 (BO3)3:Sm3+ phosphors. The inset in (b) shows the dependence of lg(I/x) on lgx.

Fig. 4
Fig. 4

Schematic diagram of cross relaxation process in the self-concentration quenching of Sm3 + ions in KSr4 (BO3)3:Sm3+.

Fig. 5
Fig. 5

Photoluminescence decay curve for Sm3+ emission at 558, 598, 645, and 710 nm corresponding to the 4G5/2-6HJ (J = 5/2, 7/2, 9/2, 11/2) emission lines upon 376 nm excitation for KSr4(BO3)3:0.02Sm3+ phosphor. Black circles and red solid lines represent the experimental data and fitting results, respectively.

Tables (3)

Tables Icon

Table 1 Occupancy of Sm3+ occupying different sites for KSr4(BO3)3:0.02Sm3+ refined by Rietveld method, in which A–G represents Sm3+ occupy Sr(1) site, Sr(2) site, Sr(3) site, Sr(1) and Sr(2) site, Sr(1) and Sr(3) sites, Sr(2) and Sr(3) sites, and Sr(1), Sr(2) and Sr(3) sites, respectively.

Tables Icon

Table 2 Fractional atomic coordinates and occupancy for KSr4(BO3)3:0.02Sm3+.

Tables Icon

Table 3 Constants (A) and Decay times (τ) of KSr4(BO3)3:0.02Sm3+ as a function of emission wavelength of Sm3+.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R c 2 [ 3V 4π x c Z ] 1 3
I x = k 1+β (x) θ/3
I = I 0 + A 1 exp ( t / τ 1 ) + A 2 exp ( t / τ 2 )
t= ( A 1 τ 1 2 + A 2 τ 2 2 ) / ( A 1 τ 1 + A 2 τ 2 )
A= L 0 (λ) L i (λ) L 0 (λ)
η int = E i (λ)(1A) E 0 (λ) L e (λ)A

Metrics