Abstract

We show that an elliptical nanohole array (ENA) penetrating through a metal/dielectric/metal (MDM) film produces multi-band circular dichroism (CD) in the near infrared (N-IR) region when the incident light is off-normal incidence. This extrinsic CD is a result of the elliptical symmetry of the nanohole, which gives rise to different polarization modes along its short and long axes. These two polarization modes introduce a net polar vector that forms a chiral triad with the off-normal incidence and the vector normal to the plane of the ENA. The proposed structure possesses four resonance peaks arising from the excitation of both internal- and external- surface plasmon polariton (SPP) modes with different diffraction orders to those wavelengths at which they couple to the incoming light. The formation of these resonance peaks is responsible for the multi-band CD.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
    [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  4. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011).
    [CrossRef] [PubMed]
  5. L. Zhu, F. Y. Meng, L. Dong, J. H. Fu, F. Zhang, and Q. Wu, “Polarization manipulation based on electromagnetically induced transparency-like (EIT-like) effect,” Opt. Express21(26), 32099–32110 (2013).
    [CrossRef] [PubMed]
  6. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  7. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
    [CrossRef] [PubMed]
  8. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
    [CrossRef] [PubMed]
  9. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett.36(9), 1653–1655 (2011).
    [CrossRef] [PubMed]
  10. T. Cao, L. Zhang, R. E. Simpson, C. W. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express21(23), 27841–27851 (2013).
    [CrossRef] [PubMed]
  11. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
    [CrossRef] [PubMed]
  12. P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. W. Xie, Y. Zheng, J. Duan, and Z. Y. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J. Opt. Soc. Am. A30(9), 1714–1718 (2013).
    [CrossRef] [PubMed]
  13. V. Yannopapas, “Circular dichroism in planar nonchiral plasmonic metamaterials,” Opt. Lett.34(5), 632–634 (2009).
    [CrossRef] [PubMed]
  14. J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamatrial,” J. Appl. Phys.112(7), 073522 (2012).
    [CrossRef]
  15. C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun.285(10-11), 2750–2754 (2012).
    [CrossRef]
  16. S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79(4), 043819 (2009).
    [CrossRef]
  17. X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express20(14), 16050–16058 (2012).
    [CrossRef] [PubMed]
  18. S. X. Li, Z. Y. Yang, J. Wang, and M. Zhao, “Broadband terahertz circular polarizers with single- and double-helical array metamaterials,” J. Opt. Soc. Am. A28(1), 19–23 (2011).
    [CrossRef] [PubMed]
  19. C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett.107(17), 177401 (2011).
    [CrossRef] [PubMed]
  20. Y. Huang, Y. Zhou, and S. T. Wu, “Broadband circular polarizer using stacked chiral polymer films,” Opt. Express15(10), 6414–6419 (2007).
    [CrossRef] [PubMed]
  21. D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
    [CrossRef]
  22. J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
    [CrossRef]
  23. D. Zarifi, M. Soleimani, and V. Nayyeri, “A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index,” J. Electromagn. Waves Appl.26(2-3), 251–263 (2012).
    [CrossRef]
  24. L. Xie, H. Yang, X. Huang, and Z. Li, “Multi-band circular polarizer using archimedean spiral structure chiral metamaterial with zero and negative refractive index,” Prog. Electromagnetics Res.141, 645–657 (2013).
    [CrossRef]
  25. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
    [CrossRef] [PubMed]
  26. A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
    [CrossRef] [PubMed]
  27. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
    [CrossRef] [PubMed]
  28. M. Reichelt, S. W. Koch, A. V. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures,” Appl. Phys. B84(1-2), 97–101 (2006).
    [CrossRef]
  29. T. Cao and M. J. Cryan, “Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial,” J. Opt.14(8), 085101 (2012).
    [CrossRef]
  30. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
    [CrossRef] [PubMed]
  31. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
    [CrossRef]
  32. C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009).
    [CrossRef] [PubMed]
  33. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013).
    [CrossRef] [PubMed]
  34. A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater.2(6), 556–564 (2014).
    [CrossRef]
  35. T. Cao, Y.-L. D. Ho, P. J. Heard, L. P. Barry, A. E. Kelly, and M. J. Cryan, “Fabrication and measurement of a photonic crystal waveguide integrated with a semiconductor optical amplifier,” J. Opt. Soc. Am. B26(4), 768–777 (2009).
    [CrossRef]
  36. L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem.48(1), 357–386 (1997).
    [CrossRef] [PubMed]
  37. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  38. B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano7(7), 6321–6329 (2013).
    [CrossRef] [PubMed]
  39. A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B86(7), 075138 (2012).
    [CrossRef]
  40. B. M. Maoz, A. B. Moshe, D. Vestler, O. Bar-Elli, and G. Markovich, “Chiroptical effects in planar achiral plasmonic oriented nanohole arrays,” Nano Lett.12(5), 2357–2361 (2012).
    [CrossRef] [PubMed]
  41. R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
    [CrossRef] [PubMed]
  42. Y. W. Jiang, Y. T. Wu, M. W. Tsai, P. E. Chang, D. C. Tzuang, Y. H. Ye, and S. C. Lee, “Characteristics of a waveguide mode in a trilayer Ag/SiO2/Au plasmonic thermal emitter,” Opt. Lett.34(20), 3089–3091 (2009).
    [CrossRef] [PubMed]
  43. T. Cao, R. E. Simpson, and M. J. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” J. Opt. Soc. Am. B30(2), 439–444 (2013).
    [CrossRef]
  44. T. Verbiest, M. Kauranen, A. Persoons, and A. Persoons, “Optical activity of anisotropic achiral surfaces,” Phys. Rev. Lett.77(8), 1456–1459 (1996).
    [CrossRef] [PubMed]

2014

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater.2(6), 556–564 (2014).
[CrossRef]

2013

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

L. Xie, H. Yang, X. Huang, and Z. Li, “Multi-band circular polarizer using archimedean spiral structure chiral metamaterial with zero and negative refractive index,” Prog. Electromagnetics Res.141, 645–657 (2013).
[CrossRef]

T. Cao, R. E. Simpson, and M. J. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” J. Opt. Soc. Am. B30(2), 439–444 (2013).
[CrossRef]

P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. W. Xie, Y. Zheng, J. Duan, and Z. Y. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J. Opt. Soc. Am. A30(9), 1714–1718 (2013).
[CrossRef] [PubMed]

T. Cao, L. Zhang, R. E. Simpson, C. W. Wei, and M. J. Cryan, “Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials,” Opt. Express21(23), 27841–27851 (2013).
[CrossRef] [PubMed]

L. Zhu, F. Y. Meng, L. Dong, J. H. Fu, F. Zhang, and Q. Wu, “Polarization manipulation based on electromagnetically induced transparency-like (EIT-like) effect,” Opt. Express21(26), 32099–32110 (2013).
[CrossRef] [PubMed]

2012

X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express20(14), 16050–16058 (2012).
[CrossRef] [PubMed]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

D. Zarifi, M. Soleimani, and V. Nayyeri, “A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index,” J. Electromagn. Waves Appl.26(2-3), 251–263 (2012).
[CrossRef]

T. Cao and M. J. Cryan, “Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial,” J. Opt.14(8), 085101 (2012).
[CrossRef]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamatrial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun.285(10-11), 2750–2754 (2012).
[CrossRef]

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B86(7), 075138 (2012).
[CrossRef]

B. M. Maoz, A. B. Moshe, D. Vestler, O. Bar-Elli, and G. Markovich, “Chiroptical effects in planar achiral plasmonic oriented nanohole arrays,” Nano Lett.12(5), 2357–2361 (2012).
[CrossRef] [PubMed]

2011

2010

2009

V. Yannopapas, “Circular dichroism in planar nonchiral plasmonic metamaterials,” Opt. Lett.34(5), 632–634 (2009).
[CrossRef] [PubMed]

T. Cao, Y.-L. D. Ho, P. J. Heard, L. P. Barry, A. E. Kelly, and M. J. Cryan, “Fabrication and measurement of a photonic crystal waveguide integrated with a semiconductor optical amplifier,” J. Opt. Soc. Am. B26(4), 768–777 (2009).
[CrossRef]

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009).
[CrossRef] [PubMed]

Y. W. Jiang, Y. T. Wu, M. W. Tsai, P. E. Chang, D. C. Tzuang, Y. H. Ye, and S. C. Lee, “Characteristics of a waveguide mode in a trilayer Ag/SiO2/Au plasmonic thermal emitter,” Opt. Lett.34(20), 3089–3091 (2009).
[CrossRef] [PubMed]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79(4), 043819 (2009).
[CrossRef]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

2007

2006

M. Reichelt, S. W. Koch, A. V. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures,” Appl. Phys. B84(1-2), 97–101 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

2003

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1997

L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem.48(1), 357–386 (1997).
[CrossRef] [PubMed]

1996

T. Verbiest, M. Kauranen, A. Persoons, and A. Persoons, “Optical activity of anisotropic achiral surfaces,” Phys. Rev. Lett.77(8), 1456–1459 (1996).
[CrossRef] [PubMed]

1995

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Akosman, A. E.

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Bagnall, D. M.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

Bar-Elli, O.

B. M. Maoz, A. B. Moshe, D. Vestler, O. Bar-Elli, and G. Markovich, “Chiroptical effects in planar achiral plasmonic oriented nanohole arrays,” Nano Lett.12(5), 2357–2361 (2012).
[CrossRef] [PubMed]

Barry, L. P.

Baumberg, J. J.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Boyd, R. W.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79(4), 043819 (2009).
[CrossRef]

Braun, P. V.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

Broer, D. J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

Canfield, B. K.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79(4), 043819 (2009).
[CrossRef]

Cao, T.

Capasso, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Chan, C. T.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett.107(17), 177401 (2011).
[CrossRef] [PubMed]

Chang, P. E.

Chen, H.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett.107(17), 177401 (2011).
[CrossRef] [PubMed]

Chen, Y.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Cryan, M. J.

Cui, T. J.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamatrial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Dahlin, A. B.

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater.2(6), 556–564 (2014).
[CrossRef]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
[CrossRef] [PubMed]

Dolgaleva, K.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79(4), 043819 (2009).
[CrossRef]

Dong, L.

Duan, J.

Fedotov, V. A.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

Feng, C.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun.285(10-11), 2750–2754 (2012).
[CrossRef]

Feng, Q.

Frank, B.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

Fu, J. H.

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Galynsky, V. M.

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B86(7), 075138 (2012).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

García-Meca, C.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009).
[CrossRef] [PubMed]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Giessen, H.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

Hao, J.

He, Q.

Heard, P. J.

Hein, S. M.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

Ho, Y.-L. D.

Höök, F.

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater.2(6), 556–564 (2014).
[CrossRef]

Hu, C.

Huang, C.

Huang, X.

L. Xie, H. Yang, X. Huang, and Z. Li, “Multi-band circular polarizer using archimedean spiral structure chiral metamaterial with zero and negative refractive index,” Prog. Electromagnetics Res.141, 645–657 (2013).
[CrossRef]

Huang, Y.

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Jefimovs, K.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79(4), 043819 (2009).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Jiang, W. X.

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamatrial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

Jiang, Y. W.

Jiao, J.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun.285(10-11), 2750–2754 (2012).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Kauranen, M.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79(4), 043819 (2009).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

T. Verbiest, M. Kauranen, A. Persoons, and A. Persoons, “Optical activity of anisotropic achiral surfaces,” Phys. Rev. Lett.77(8), 1456–1459 (1996).
[CrossRef] [PubMed]

Kelly, A. E.

Klein, M. W.

Koch, S. W.

M. Reichelt, S. W. Koch, A. V. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures,” Appl. Phys. B84(1-2), 97–101 (2006).
[CrossRef]

Krasavin, A.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

Krasavin, A. V.

M. Reichelt, S. W. Koch, A. V. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures,” Appl. Phys. B84(1-2), 97–101 (2006).
[CrossRef]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Lee, S.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun.285(10-11), 2750–2754 (2012).
[CrossRef]

Lee, S. C.

Li, F.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett.107(17), 177401 (2011).
[CrossRef] [PubMed]

Li, H.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett.107(17), 177401 (2011).
[CrossRef] [PubMed]

Li, L.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun.285(10-11), 2750–2754 (2012).
[CrossRef]

Li, S. X.

Li, Z.

L. Xie, H. Yang, X. Huang, and Z. Li, “Multi-band circular polarizer using archimedean spiral structure chiral metamaterial with zero and negative refractive index,” Prog. Electromagnetics Res.141, 645–657 (2013).
[CrossRef]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
[CrossRef] [PubMed]

Liu, X. X.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

Lu, Z.

Lub, J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

Luo, X.

Ma, H. F.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamatrial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

Ma, X.

Maoz, B. M.

B. M. Maoz, A. B. Moshe, D. Vestler, O. Bar-Elli, and G. Markovich, “Chiroptical effects in planar achiral plasmonic oriented nanohole arrays,” Nano Lett.12(5), 2357–2361 (2012).
[CrossRef] [PubMed]

Mapar, M.

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater.2(6), 556–564 (2014).
[CrossRef]

Markovich, G.

B. M. Maoz, A. B. Moshe, D. Vestler, O. Bar-Elli, and G. Markovich, “Chiroptical effects in planar achiral plasmonic oriented nanohole arrays,” Nano Lett.12(5), 2357–2361 (2012).
[CrossRef] [PubMed]

Martí, J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009).
[CrossRef] [PubMed]

Martínez, A.

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009).
[CrossRef] [PubMed]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

Mazzotta, F.

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater.2(6), 556–564 (2014).
[CrossRef]

Meng, F. Y.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Mol, G. N.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

Moloney, J. V.

M. Reichelt, S. W. Koch, A. V. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures,” Appl. Phys. B84(1-2), 97–101 (2006).
[CrossRef]

Moshe, A. B.

B. M. Maoz, A. B. Moshe, D. Vestler, O. Bar-Elli, and G. Markovich, “Chiroptical effects in planar achiral plasmonic oriented nanohole arrays,” Nano Lett.12(5), 2357–2361 (2012).
[CrossRef] [PubMed]

Mutlu, M.

Nafie, L. A.

L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem.48(1), 357–386 (1997).
[CrossRef] [PubMed]

Nayyeri, V.

D. Zarifi, M. Soleimani, and V. Nayyeri, “A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index,” J. Electromagn. Waves Appl.26(2-3), 251–263 (2012).
[CrossRef]

Novitsky, A. V.

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B86(7), 075138 (2012).
[CrossRef]

Ortuño, R.

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009).
[CrossRef] [PubMed]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

Ozbay, E.

Papakostas, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Persoons, A.

T. Verbiest, M. Kauranen, A. Persoons, and A. Persoons, “Optical activity of anisotropic achiral surfaces,” Phys. Rev. Lett.77(8), 1456–1459 (1996).
[CrossRef] [PubMed]

T. Verbiest, M. Kauranen, A. Persoons, and A. Persoons, “Optical activity of anisotropic achiral surfaces,” Phys. Rev. Lett.77(8), 1456–1459 (1996).
[CrossRef] [PubMed]

Plum, E.

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
[CrossRef] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

Potts, A.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Pu, M.

Reichelt, M.

M. Reichelt, S. W. Koch, A. V. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures,” Appl. Phys. B84(1-2), 97–101 (2006).
[CrossRef]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Rodríguez-Fortuño, F. J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009).
[CrossRef] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Sannomiya, T.

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater.2(6), 556–564 (2014).
[CrossRef]

Schäferling, M.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Schwanecke, A. S.

M. Reichelt, S. W. Koch, A. V. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures,” Appl. Phys. B84(1-2), 97–101 (2006).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

Serebryannikov, A. E.

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
[CrossRef]

Shi, J. H.

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamatrial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

Sibilia, C.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

Simpson, R. E.

Singh, R.

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Soleimani, M.

D. Zarifi, M. Soleimani, and V. Nayyeri, “A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index,” J. Electromagn. Waves Appl.26(2-3), 251–263 (2012).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stroucken, T.

M. Reichelt, S. W. Koch, A. V. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures,” Appl. Phys. B84(1-2), 97–101 (2006).
[CrossRef]

Sun, W.

Svirko, Y.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79(4), 043819 (2009).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Tsai, D. P.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

Tsai, M. W.

Turunen, J.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79(4), 043819 (2009).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Tzuang, D. C.

Valev, V. K.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

Verbiest, T.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

T. Verbiest, M. Kauranen, A. Persoons, and A. Persoons, “Optical activity of anisotropic achiral surfaces,” Phys. Rev. Lett.77(8), 1456–1459 (1996).
[CrossRef] [PubMed]

Vestler, D.

B. M. Maoz, A. B. Moshe, D. Vestler, O. Bar-Elli, and G. Markovich, “Chiroptical effects in planar achiral plasmonic oriented nanohole arrays,” Nano Lett.12(5), 2357–2361 (2012).
[CrossRef] [PubMed]

Volkov, S. N.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79(4), 043819 (2009).
[CrossRef]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Wang, J.

Wang, Z. B.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun.285(10-11), 2750–2754 (2012).
[CrossRef]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
[CrossRef] [PubMed]

Wei, C. W.

Wright, E. M.

M. Reichelt, S. W. Koch, A. V. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures,” Appl. Phys. B84(1-2), 97–101 (2006).
[CrossRef]

Wu, C.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett.107(17), 177401 (2011).
[CrossRef] [PubMed]

Wu, L.

Wu, Q.

Wu, S. T.

Wu, Y. T.

Xie, L.

L. Xie, H. Yang, X. Huang, and Z. Li, “Multi-band circular polarizer using archimedean spiral structure chiral metamaterial with zero and negative refractive index,” Prog. Electromagnetics Res.141, 645–657 (2013).
[CrossRef]

Xie, Z. W.

Xiong, K.

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater.2(6), 556–564 (2014).
[CrossRef]

Yang, H.

L. Xie, H. Yang, X. Huang, and Z. Li, “Multi-band circular polarizer using archimedean spiral structure chiral metamaterial with zero and negative refractive index,” Prog. Electromagnetics Res.141, 645–657 (2013).
[CrossRef]

Yang, Z. Y.

Yannopapas, V.

Ye, Y. H.

Yin, X.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

Yu, N.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Yu, X.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett.107(17), 177401 (2011).
[CrossRef] [PubMed]

Zarifi, D.

D. Zarifi, M. Soleimani, and V. Nayyeri, “A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index,” J. Electromagn. Waves Appl.26(2-3), 251–263 (2012).
[CrossRef]

Zayats, A. V.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

Zhang, F.

Zhang, L.

Zhang, P.

Zhang, W.

Zhao, J.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

Zhao, M.

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Zheludev, N. I.

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
[CrossRef] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

M. Reichelt, S. W. Koch, A. V. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures,” Appl. Phys. B84(1-2), 97–101 (2006).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

Zheng, Y.

Zhou, L.

Zhou, Y.

Zhu, L.

Zhu, Z.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamatrial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

Zhukovsky, S. V.

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B86(7), 075138 (2012).
[CrossRef]

ACS Nano

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano7(7), 6321–6329 (2013).
[CrossRef] [PubMed]

Adv. Mater.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater.25(18), 2517–2534 (2013).
[CrossRef] [PubMed]

Adv. Opt. Mater.

A. B. Dahlin, M. Mapar, K. Xiong, F. Mazzotta, F. Höök, and T. Sannomiya, “Plasmonic Nanopores in Metal-Insulator-Metal Films,” Adv. Opt. Mater.2(6), 556–564 (2014).
[CrossRef]

Annu. Rev. Phys. Chem.

L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem.48(1), 357–386 (1997).
[CrossRef] [PubMed]

Appl. Phys. B

M. Reichelt, S. W. Koch, A. V. Krasavin, J. V. Moloney, A. S. Schwanecke, T. Stroucken, E. M. Wright, and N. I. Zheludev, “Broken enantiomeric symmetry for electromagnetic waves interacting with planar chiral nanostructures,” Appl. Phys. B84(1-2), 97–101 (2006).
[CrossRef]

J. Appl. Phys.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamatrial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

J. Electromagn. Waves Appl.

D. Zarifi, M. Soleimani, and V. Nayyeri, “A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index,” J. Electromagn. Waves Appl.26(2-3), 251–263 (2012).
[CrossRef]

J. Opt.

T. Cao and M. J. Cryan, “Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial,” J. Opt.14(8), 085101 (2012).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nano Lett.

B. M. Maoz, A. B. Moshe, D. Vestler, O. Bar-Elli, and G. Markovich, “Chiroptical effects in planar achiral plasmonic oriented nanohole arrays,” Nano Lett.12(5), 2357–2361 (2012).
[CrossRef] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Nat Commun

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Nat. Photonics

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics1(1), 41–48 (2007).
[CrossRef]

Nature

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995).
[CrossRef]

Opt. Commun.

C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun.285(10-11), 2750–2754 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B. K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79(4), 043819 (2009).
[CrossRef]

Phys. Rev. B

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B86(7), 075138 (2012).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett.107(17), 177401 (2011).
[CrossRef] [PubMed]

T. Verbiest, M. Kauranen, A. Persoons, and A. Persoons, “Optical activity of anisotropic achiral surfaces,” Phys. Rev. Lett.77(8), 1456–1459 (1996).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90(10), 107404 (2003).
[CrossRef] [PubMed]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett.91(24), 247404 (2003).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95(22), 227401 (2005).
[CrossRef] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Prog. Electromagnetics Res.

L. Xie, H. Yang, X. Huang, and Z. Li, “Multi-band circular polarizer using archimedean spiral structure chiral metamaterial with zero and negative refractive index,” Prog. Electromagnetics Res.141, 645–657 (2013).
[CrossRef]

Science

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the MDM layers perforated with a square array of elliptical holes suspended in air. (b) Illustration of the square lattice of the ENA, the lattice constant is L = 400 nm, hole diameters are a = 340 nm, b = 170 nm. (c) Demonstration of the chiral triad formed by the wavevector (k), the vector normal to the surface (n), and one of the two diameters of the elliptical hole (a or b), the components of the chiral triad are marked in red.

Fig. 2
Fig. 2

Spectrum for right and left circularly polarized light incident at angle θ = φ = 45° (a) for an ENA penetrating through the MDM layers; (b) CD for an ENA penetrating through the MDM layers.

Fig. 3
Fig. 3

(a) Representation of the dispersion relation of the Au-Dielectric-Au trilayers. (b) The transmittance CD of the ENA penetrating through the MDM layers at angle θ = φ = 45°. The subscripts + and − stand for odd and even symmetry modes, respectively

Fig. 4
Fig. 4

Circular dichroism for φ = θ = 45° with different thicknesses of dielectric interlayer in MDM-ENA

Fig. 5
Fig. 5

CD for (a) θ = 45° incidence with different values of φ;(b) φ = 45° incidence with different values of θ.

Fig. 6
Fig. 6

FDTD simulation of the CD spectra of the MDM-ENA. (a) Simulated CD spectra at normal(θ = φ = 0°)and oblique(θ = φ = 45°)incidences. (b−e) Snapshots of normalized electric field distribution at the gold-air interface during light propagation through the MDM-ENA at λ = 1430nm. The response to LCP light is displayed on the left and the response to the RCP light displayed on the right. The left/right pairs were taken from the same time steps along the beam propagation. (b, c) Field distribution on perpendicular incidence(θ = φ = 0°), showing patterns with mirror symmetry for the two circular polarizations. (d,e) The asymmetric field distribution in the case of oblique incidence (θ = φ = 45°). (f−i) Snapshots of normalized electric field distribution at the gold-dielectric interface during light propagation through the MDM-ENA at λ = 1620nm.(f, g) Field distribution on perpendicular incidence (θ = φ = 0°), showing patterns with mirror symmetry for the two circular polarizations. (h,i) The asymmetric field distribution in the case of oblique incidence (θ = φ = 45°).

Metrics