Abstract

We report on a one step functionalization process for optical fiber sensing applications in which a thin film (∼50 nm) polymer doped with sensor molecules is applied to a silica exposed-core fiber. The method removes the need for surface attachment of functional groups, while integrating the polymer, silica and sensor molecule elements to create a distributed sensor capable of detecting an analyte of interest anywhere along the fiber’s length. We also show that the thin film coating serves a protective function, reducing deterioration in the transmission properties of the silica exposed-core fiber, but increasing loss.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012).
    [CrossRef]
  2. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
    [CrossRef]
  3. S. Afshar V., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15, 17891–17901 (2007).
    [CrossRef]
  4. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.80, 4269–4283 (2008).
    [CrossRef] [PubMed]
  5. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
    [CrossRef]
  6. C. Lodeiro, J. L. Capelo, J. C. Mejuto, E. Oliveira, H. M. Santos, B. Pedras, and C. Nunez, “Light and colour as analytical detection tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors,” Chem. Soc. Rev.39, 2948–2976 (2010).
    [CrossRef] [PubMed]
  7. S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
    [CrossRef]
  8. H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” J. Mater. Chem. C1, 6782–6789 (2013).
    [CrossRef]
  9. B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomed. - NBM9, 550–557 (2013).
    [CrossRef]
  10. A. François, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Comparison of surface functionalization processes for optical fibre biosensing applications,” in “20th International Conference on Optical Fibre Sensors,” vol. 7503 of Proc. SPIE(2009).
    [CrossRef]
  11. S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir27, 5680–5685 (2011).
    [CrossRef] [PubMed]
  12. M. Zhu, M. Z. Lerum, and W. Chen, “How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica,” Langmuir28, 416–423 (2012).
    [CrossRef]
  13. K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
    [CrossRef]
  14. K. Peters, “Polymer optical fiber sensors - a review,” Smart Mater. Struct.20, 013002 (2011).
    [CrossRef]
  15. S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun.265, 513–520 (2006).
    [CrossRef]
  16. S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J.1, 286–292 (2009).
    [CrossRef]
  17. A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun.285, 1825–1833 (2012).
    [CrossRef]
  18. M. Li and D. A. Nolan, “Optical transmission fiber design evolution,” J. Lightwave Technol.26, 1079–1092 (2008).
    [CrossRef]
  19. E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
    [CrossRef] [PubMed]
  20. S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber bragg gratings: refractive index sensing,” Opt. Express22, 1480–1489 (2014).
    [CrossRef] [PubMed]
  21. K. J. Rowland, A. François, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express21, 11492–11505 (2013).
    [CrossRef] [PubMed]
  22. V. V. N. R. Kishore, A. Aziz, K. L. Narasimhan, N. Periasamy, P. S. Meenakshi, and S. Wategaonkar, “On the assignment of the absorption bands in the optical spectrum of Alq3,” Synthetic Met.126, 199–205 (2002).
    [CrossRef]
  23. G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit.4, 47–56 (2005).
    [CrossRef]
  24. J. Ščančar and R. Milačič, “Aluminium speciation in environmental samples: a review,” Anal. Bioanal. Chem.386, 999–1012 (2006).
    [CrossRef] [PubMed]
  25. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express4, 29–40 (2014).
    [CrossRef]
  26. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
    [CrossRef] [PubMed]
  27. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.42, 517–519 (2006).
    [CrossRef]
  28. G. Zhai and L. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express15, 13805–13816 (2007).
    [CrossRef] [PubMed]
  29. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19, 8596–8601 (2011).
    [CrossRef] [PubMed]
  30. S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, and T. M. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010).
    [CrossRef]
  31. G. S. He, H. Qin, and Q. Zheng, “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: Wavelength, size, and angle dependences,” J. Appl. Phys.105, 023110 (2009).
    [CrossRef]
  32. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express13, 236–244 (2005).
    [CrossRef] [PubMed]
  33. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultralow loss and long length photonic crystal fiber,” J. Lightwave Technol.22, 7–10 (2004).
    [CrossRef]
  34. T. Kaino, M. Fujiki, S. Oikawa, and S. Nara, “Low-loss plastic optical fibers,” Appl. Opt.20, 2886–2888 (1981).
    [CrossRef] [PubMed]
  35. T. Seydel, A. Madsen, M. Tolan, G. Grübel, and W. Press, “Capillary waves in slow motion,” Phys. Rev. B63, 073409 (2001).
    [CrossRef]
  36. J. Jäckle and K. Kawasaki, “Intrinsic roughness of glass surfaces,” J. Phys. - Condens. Mat.7, 4351–4358 (1995).
    [CrossRef]
  37. S. C. Xue, M. C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, and R. Lwin, “Role of material properties and drawing conditions in the fabrication of microstructured optical fibers,” J. Lightwave Technol.24, 853–860 (2006).
    [CrossRef]
  38. J. Liu, H. Li, and J.-M. Lin, “Measurements of surface tension of organic solvents using a simple microfabricated chip,” Anal. Chem.79, 371–377 (2007).
    [CrossRef]
  39. K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express2, 1101–1110 (2012).
    [CrossRef]

2014 (2)

2013 (4)

K. J. Rowland, A. François, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express21, 11492–11505 (2013).
[CrossRef] [PubMed]

S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
[CrossRef]

H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” J. Mater. Chem. C1, 6782–6789 (2013).
[CrossRef]

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomed. - NBM9, 550–557 (2013).
[CrossRef]

2012 (4)

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012).
[CrossRef]

M. Zhu, M. Z. Lerum, and W. Chen, “How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica,” Langmuir28, 416–423 (2012).
[CrossRef]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun.285, 1825–1833 (2012).
[CrossRef]

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express2, 1101–1110 (2012).
[CrossRef]

2011 (4)

K. Peters, “Polymer optical fiber sensors - a review,” Smart Mater. Struct.20, 013002 (2011).
[CrossRef]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir27, 5680–5685 (2011).
[CrossRef] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19, 8596–8601 (2011).
[CrossRef] [PubMed]

2010 (4)

S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, and T. M. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010).
[CrossRef]

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

C. Lodeiro, J. L. Capelo, J. C. Mejuto, E. Oliveira, H. M. Santos, B. Pedras, and C. Nunez, “Light and colour as analytical detection tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors,” Chem. Soc. Rev.39, 2948–2976 (2010).
[CrossRef] [PubMed]

2009 (3)

G. S. He, H. Qin, and Q. Zheng, “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: Wavelength, size, and angle dependences,” J. Appl. Phys.105, 023110 (2009).
[CrossRef]

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J.1, 286–292 (2009).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

2008 (2)

M. Li and D. A. Nolan, “Optical transmission fiber design evolution,” J. Lightwave Technol.26, 1079–1092 (2008).
[CrossRef]

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.80, 4269–4283 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (4)

S. C. Xue, M. C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, and R. Lwin, “Role of material properties and drawing conditions in the fabrication of microstructured optical fibers,” J. Lightwave Technol.24, 853–860 (2006).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.42, 517–519 (2006).
[CrossRef]

J. Ščančar and R. Milačič, “Aluminium speciation in environmental samples: a review,” Anal. Bioanal. Chem.386, 999–1012 (2006).
[CrossRef] [PubMed]

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun.265, 513–520 (2006).
[CrossRef]

2005 (2)

2004 (1)

2002 (1)

V. V. N. R. Kishore, A. Aziz, K. L. Narasimhan, N. Periasamy, P. S. Meenakshi, and S. Wategaonkar, “On the assignment of the absorption bands in the optical spectrum of Alq3,” Synthetic Met.126, 199–205 (2002).
[CrossRef]

2001 (1)

T. Seydel, A. Madsen, M. Tolan, G. Grübel, and W. Press, “Capillary waves in slow motion,” Phys. Rev. B63, 073409 (2001).
[CrossRef]

1999 (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
[CrossRef]

1995 (1)

J. Jäckle and K. Kawasaki, “Intrinsic roughness of glass surfaces,” J. Phys. - Condens. Mat.7, 4351–4358 (1995).
[CrossRef]

1981 (1)

Abbott, D.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J.1, 286–292 (2009).
[CrossRef]

Abell, A. D.

S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
[CrossRef]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir27, 5680–5685 (2011).
[CrossRef] [PubMed]

Afshar V., S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J.1, 286–292 (2009).
[CrossRef]

S. Afshar V., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15, 17891–17901 (2007).
[CrossRef]

Atakaramians, S.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J.1, 286–292 (2009).
[CrossRef]

Aziz, A.

V. V. N. R. Kishore, A. Aziz, K. L. Narasimhan, N. Periasamy, P. S. Meenakshi, and S. Wategaonkar, “On the assignment of the absorption bands in the optical spectrum of Alq3,” Synthetic Met.126, 199–205 (2002).
[CrossRef]

Bang, O.

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun.285, 1825–1833 (2012).
[CrossRef]

Barton, G. W.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun.265, 513–520 (2006).
[CrossRef]

S. C. Xue, M. C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, and R. Lwin, “Role of material properties and drawing conditions in the fabrication of microstructured optical fibers,” J. Lightwave Technol.24, 853–860 (2006).
[CrossRef]

Bennett, P. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
[CrossRef]

Birks, T. A.

Boyd, K.

Brambilla, G.

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.42, 517–519 (2006).
[CrossRef]

Brazzatti, J.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomed. - NBM9, 550–557 (2013).
[CrossRef]

Canning, J.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J.1, 286–292 (2009).
[CrossRef]

Capelo, J. L.

C. Lodeiro, J. L. Capelo, J. C. Mejuto, E. Oliveira, H. M. Santos, B. Pedras, and C. Nunez, “Light and colour as analytical detection tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors,” Chem. Soc. Rev.39, 2948–2976 (2010).
[CrossRef] [PubMed]

Chen, W.

M. Zhu, M. Z. Lerum, and W. Chen, “How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica,” Langmuir28, 416–423 (2012).
[CrossRef]

Cook, K.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J.1, 286–292 (2009).
[CrossRef]

Couny, F.

Davis, C.

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012).
[CrossRef]

G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit.4, 47–56 (2005).
[CrossRef]

Ebendorff-Heidepriem, H.

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express4, 29–40 (2014).
[CrossRef]

H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” J. Mater. Chem. C1, 6782–6789 (2013).
[CrossRef]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012).
[CrossRef]

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express2, 1101–1110 (2012).
[CrossRef]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir27, 5680–5685 (2011).
[CrossRef] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J.1, 286–292 (2009).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

A. François, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Comparison of surface functionalization processes for optical fibre biosensing applications,” in “20th International Conference on Optical Fibre Sensors,” vol. 7503 of Proc. SPIE(2009).
[CrossRef]

Farr, L.

Feng, X.

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.42, 517–519 (2006).
[CrossRef]

Foo, H. T. C.

H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” J. Mater. Chem. C1, 6782–6789 (2013).
[CrossRef]

François, A.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomed. - NBM9, 550–557 (2013).
[CrossRef]

K. J. Rowland, A. François, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express21, 11492–11505 (2013).
[CrossRef] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

A. François, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Comparison of surface functionalization processes for optical fibre biosensing applications,” in “20th International Conference on Optical Fibre Sensors,” vol. 7503 of Proc. SPIE(2009).
[CrossRef]

Fujiki, M.

Fujiwara, M.

Gan, J.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun.265, 513–520 (2006).
[CrossRef]

Grübel, G.

T. Seydel, A. Madsen, M. Tolan, G. Grübel, and W. Press, “Capillary waves in slow motion,” Phys. Rev. B63, 073409 (2001).
[CrossRef]

He, G. S.

G. S. He, H. Qin, and Q. Zheng, “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: Wavelength, size, and angle dependences,” J. Appl. Phys.105, 023110 (2009).
[CrossRef]

Heng, S.

S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
[CrossRef]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir27, 5680–5685 (2011).
[CrossRef] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

Hinton, B. R. W.

G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit.4, 47–56 (2005).
[CrossRef]

Hirao, K.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

Hoffmann, P.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomed. - NBM9, 550–557 (2013).
[CrossRef]

K. J. Rowland, A. François, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express21, 11492–11505 (2013).
[CrossRef] [PubMed]

Jäckle, J.

J. Jäckle and K. Kawasaki, “Intrinsic roughness of glass surfaces,” J. Phys. - Condens. Mat.7, 4351–4358 (1995).
[CrossRef]

Kaino, T.

Kawasaki, K.

J. Jäckle and K. Kawasaki, “Intrinsic roughness of glass surfaces,” J. Phys. - Condens. Mat.7, 4351–4358 (1995).
[CrossRef]

Kishore, V. V. N. R.

V. V. N. R. Kishore, A. Aziz, K. L. Narasimhan, N. Periasamy, P. S. Meenakshi, and S. Wategaonkar, “On the assignment of the absorption bands in the optical spectrum of Alq3,” Synthetic Met.126, 199–205 (2002).
[CrossRef]

Klingler-Hoffmann, M.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomed. - NBM9, 550–557 (2013).
[CrossRef]

Knight, J. C.

Kostecki, R.

Krol, D.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

Large, M. C. J.

Law, S. H.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun.265, 513–520 (2006).
[CrossRef]

Lerum, M. Z.

M. Zhu, M. Z. Lerum, and W. Chen, “How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica,” Langmuir28, 416–423 (2012).
[CrossRef]

Li, H.

J. Liu, H. Li, and J.-M. Lin, “Measurements of surface tension of organic solvents using a simple microfabricated chip,” Anal. Chem.79, 371–377 (2007).
[CrossRef]

Li, M.

Lin, J.-M.

J. Liu, H. Li, and J.-M. Lin, “Measurements of surface tension of organic solvents using a simple microfabricated chip,” Anal. Chem.79, 371–377 (2007).
[CrossRef]

Liu, J.

J. Liu, H. Li, and J.-M. Lin, “Measurements of surface tension of organic solvents using a simple microfabricated chip,” Anal. Chem.79, 371–377 (2007).
[CrossRef]

Lodeiro, C.

C. Lodeiro, J. L. Capelo, J. C. Mejuto, E. Oliveira, H. M. Santos, B. Pedras, and C. Nunez, “Light and colour as analytical detection tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors,” Chem. Soc. Rev.39, 2948–2976 (2010).
[CrossRef] [PubMed]

Lwin, R.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun.265, 513–520 (2006).
[CrossRef]

S. C. Xue, M. C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, and R. Lwin, “Role of material properties and drawing conditions in the fabrication of microstructured optical fibers,” J. Lightwave Technol.24, 853–860 (2006).
[CrossRef]

Madsen, A.

T. Seydel, A. Madsen, M. Tolan, G. Grübel, and W. Press, “Capillary waves in slow motion,” Phys. Rev. B63, 073409 (2001).
[CrossRef]

Mangan, B. J.

Mason, M. W.

McAdam, G.

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012).
[CrossRef]

G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit.4, 47–56 (2005).
[CrossRef]

McKenzie, I.

G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit.4, 47–56 (2005).
[CrossRef]

Meenakshi, P. S.

V. V. N. R. Kishore, A. Aziz, K. L. Narasimhan, N. Periasamy, P. S. Meenakshi, and S. Wategaonkar, “On the assignment of the absorption bands in the optical spectrum of Alq3,” Synthetic Met.126, 199–205 (2002).
[CrossRef]

Mejuto, J. C.

C. Lodeiro, J. L. Capelo, J. C. Mejuto, E. Oliveira, H. M. Santos, B. Pedras, and C. Nunez, “Light and colour as analytical detection tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors,” Chem. Soc. Rev.39, 2948–2976 (2010).
[CrossRef] [PubMed]

Milacic, R.

J. Ščančar and R. Milačič, “Aluminium speciation in environmental samples: a review,” Anal. Bioanal. Chem.386, 999–1012 (2006).
[CrossRef] [PubMed]

Monro, T. M.

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber bragg gratings: refractive index sensing,” Opt. Express22, 1480–1489 (2014).
[CrossRef] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express4, 29–40 (2014).
[CrossRef]

K. J. Rowland, A. François, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express21, 11492–11505 (2013).
[CrossRef] [PubMed]

S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
[CrossRef]

H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” J. Mater. Chem. C1, 6782–6789 (2013).
[CrossRef]

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomed. - NBM9, 550–557 (2013).
[CrossRef]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012).
[CrossRef]

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2 laser,” Opt. Mater. Express2, 1101–1110 (2012).
[CrossRef]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir27, 5680–5685 (2011).
[CrossRef] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, and T. M. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010).
[CrossRef]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J.1, 286–292 (2009).
[CrossRef]

S. Afshar V., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15, 17891–17901 (2007).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
[CrossRef]

A. François, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Comparison of surface functionalization processes for optical fibre biosensing applications,” in “20th International Conference on Optical Fibre Sensors,” vol. 7503 of Proc. SPIE(2009).
[CrossRef]

Munch, J.

Nakajima, K.

Nara, S.

Narasimhan, K. L.

V. V. N. R. Kishore, A. Aziz, K. L. Narasimhan, N. Periasamy, P. S. Meenakshi, and S. Wategaonkar, “On the assignment of the absorption bands in the optical spectrum of Alq3,” Synthetic Met.126, 199–205 (2002).
[CrossRef]

Newman, P. J.

G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit.4, 47–56 (2005).
[CrossRef]

Nguyen, M.-C.

S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
[CrossRef]

Nielsen, K.

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun.285, 1825–1833 (2012).
[CrossRef]

Nolan, D. A.

Nunez, C.

C. Lodeiro, J. L. Capelo, J. C. Mejuto, E. Oliveira, H. M. Santos, B. Pedras, and C. Nunez, “Light and colour as analytical detection tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors,” Chem. Soc. Rev.39, 2948–2976 (2010).
[CrossRef] [PubMed]

Oikawa, S.

Oliveira, E.

C. Lodeiro, J. L. Capelo, J. C. Mejuto, E. Oliveira, H. M. Santos, B. Pedras, and C. Nunez, “Light and colour as analytical detection tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors,” Chem. Soc. Rev.39, 2948–2976 (2010).
[CrossRef] [PubMed]

Pedras, B.

C. Lodeiro, J. L. Capelo, J. C. Mejuto, E. Oliveira, H. M. Santos, B. Pedras, and C. Nunez, “Light and colour as analytical detection tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors,” Chem. Soc. Rev.39, 2948–2976 (2010).
[CrossRef] [PubMed]

Penno, M.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomed. - NBM9, 550–557 (2013).
[CrossRef]

Periasamy, N.

V. V. N. R. Kishore, A. Aziz, K. L. Narasimhan, N. Periasamy, P. S. Meenakshi, and S. Wategaonkar, “On the assignment of the absorption bands in the optical spectrum of Alq3,” Synthetic Met.126, 199–205 (2002).
[CrossRef]

Peters, K.

K. Peters, “Polymer optical fiber sensors - a review,” Smart Mater. Struct.20, 013002 (2011).
[CrossRef]

Poladian, L.

Press, W.

T. Seydel, A. Madsen, M. Tolan, G. Grübel, and W. Press, “Capillary waves in slow motion,” Phys. Rev. B63, 073409 (2001).
[CrossRef]

Qin, H.

G. S. He, H. Qin, and Q. Zheng, “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: Wavelength, size, and angle dependences,” J. Appl. Phys.105, 023110 (2009).
[CrossRef]

Rasmussen, H. K.

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun.285, 1825–1833 (2012).
[CrossRef]

Richardson, D. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
[CrossRef]

Richardson, K.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

Roberts, P. J.

Rowland, K. J.

Russell, P. S.

Sabert, H.

Santos, H. M.

C. Lodeiro, J. L. Capelo, J. C. Mejuto, E. Oliveira, H. M. Santos, B. Pedras, and C. Nunez, “Light and colour as analytical detection tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors,” Chem. Soc. Rev.39, 2948–2976 (2010).
[CrossRef] [PubMed]

Sato, K.

Šcancar, J.

J. Ščančar and R. Milačič, “Aluminium speciation in environmental samples: a review,” Anal. Bioanal. Chem.386, 999–1012 (2006).
[CrossRef] [PubMed]

Schartner, E. P.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

Sciacca, B.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomed. - NBM9, 550–557 (2013).
[CrossRef]

Seydel, T.

T. Seydel, A. Madsen, M. Tolan, G. Grübel, and W. Press, “Capillary waves in slow motion,” Phys. Rev. B63, 073409 (2001).
[CrossRef]

Sinchenko, E.

S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, and T. M. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010).
[CrossRef]

Stefani, A.

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun.285, 1825–1833 (2012).
[CrossRef]

Stoddart, P. R.

S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, and T. M. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010).
[CrossRef]

Sumby, C. J.

H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” J. Mater. Chem. C1, 6782–6789 (2013).
[CrossRef]

A. François, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Comparison of surface functionalization processes for optical fibre biosensing applications,” in “20th International Conference on Optical Fibre Sensors,” vol. 7503 of Proc. SPIE(2009).
[CrossRef]

Tajima, K.

Takeuchi, S.

Tanner, R. I.

Tolan, M.

T. Seydel, A. Madsen, M. Tolan, G. Grübel, and W. Press, “Capillary waves in slow motion,” Phys. Rev. B63, 073409 (2001).
[CrossRef]

Tomlinson, A.

Tong, L.

Toubaru, K.

van Eijkelenborg, M. A.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun.265, 513–520 (2006).
[CrossRef]

Warren-Smith, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

Warren-Smith, S. C.

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber bragg gratings: refractive index sensing,” Opt. Express22, 1480–1489 (2014).
[CrossRef] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express4, 29–40 (2014).
[CrossRef]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012).
[CrossRef]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir27, 5680–5685 (2011).
[CrossRef] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, and T. M. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

S. Afshar V., S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15, 17891–17901 (2007).
[CrossRef]

Wategaonkar, S.

V. V. N. R. Kishore, A. Aziz, K. L. Narasimhan, N. Periasamy, P. S. Meenakshi, and S. Wategaonkar, “On the assignment of the absorption bands in the optical spectrum of Alq3,” Synthetic Met.126, 199–205 (2002).
[CrossRef]

White, R. T.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

Williams, D. P.

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.80, 4269–4283 (2008).
[CrossRef] [PubMed]

Xu, F.

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.42, 517–519 (2006).
[CrossRef]

Xue, S. C.

Yan, C.

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun.265, 513–520 (2006).
[CrossRef]

Zhai, G.

Zheng, Q.

G. S. He, H. Qin, and Q. Zheng, “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: Wavelength, size, and angle dependences,” J. Appl. Phys.105, 023110 (2009).
[CrossRef]

Zhou, J.

Zhu, M.

M. Zhu, M. Z. Lerum, and W. Chen, “How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica,” Langmuir28, 416–423 (2012).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. Ščančar and R. Milačič, “Aluminium speciation in environmental samples: a review,” Anal. Bioanal. Chem.386, 999–1012 (2006).
[CrossRef] [PubMed]

Anal. Chem. (2)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.80, 4269–4283 (2008).
[CrossRef] [PubMed]

J. Liu, H. Li, and J.-M. Lin, “Measurements of surface tension of organic solvents using a simple microfabricated chip,” Anal. Chem.79, 371–377 (2007).
[CrossRef]

Appl. Opt. (1)

Chem. Soc. Rev. (1)

C. Lodeiro, J. L. Capelo, J. C. Mejuto, E. Oliveira, H. M. Santos, B. Pedras, and C. Nunez, “Light and colour as analytical detection tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors,” Chem. Soc. Rev.39, 2948–2976 (2010).
[CrossRef] [PubMed]

Electron. Lett. (2)

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett.42, 517–519 (2006).
[CrossRef]

IEEE Photon. J. (1)

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J.1, 286–292 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, and T. M. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photon. Technol. Lett.22, 1385–1387 (2010).
[CrossRef]

Int. J. Appl. Glass Sci. (1)

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

J. Appl. Phys. (1)

G. S. He, H. Qin, and Q. Zheng, “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water: Wavelength, size, and angle dependences,” J. Appl. Phys.105, 023110 (2009).
[CrossRef]

J. Lightwave Technol. (3)

J. Mater. Chem. C (1)

H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” J. Mater. Chem. C1, 6782–6789 (2013).
[CrossRef]

J. Phys. - Condens. Mat. (1)

J. Jäckle and K. Kawasaki, “Intrinsic roughness of glass surfaces,” J. Phys. - Condens. Mat.7, 4351–4358 (1995).
[CrossRef]

Langmuir (2)

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir27, 5680–5685 (2011).
[CrossRef] [PubMed]

M. Zhu, M. Z. Lerum, and W. Chen, “How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica,” Langmuir28, 416–423 (2012).
[CrossRef]

Nanomed. - NBM (1)

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomed. - NBM9, 550–557 (2013).
[CrossRef]

Opt. Commun. (2)

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization,” Opt. Commun.285, 1825–1833 (2012).
[CrossRef]

S. H. Law, M. A. van Eijkelenborg, G. W. Barton, C. Yan, R. Lwin, and J. Gan, “Cleaved end-face quality of microstructured polymer optical fibres,” Opt. Commun.265, 513–520 (2006).
[CrossRef]

Opt. Express (7)

Opt. Fiber Technol. (1)

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

Opt. Mater. Express (3)

Phys. Rev. B (1)

T. Seydel, A. Madsen, M. Tolan, G. Grübel, and W. Press, “Capillary waves in slow motion,” Phys. Rev. B63, 073409 (2001).
[CrossRef]

RSC Adv. (1)

S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
[CrossRef]

Sensors (1)

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

Smart Mater. Struct. (1)

K. Peters, “Polymer optical fiber sensors - a review,” Smart Mater. Struct.20, 013002 (2011).
[CrossRef]

Struct. Health Monit. (1)

G. McAdam, P. J. Newman, I. McKenzie, C. Davis, and B. R. W. Hinton, “Fiber optic sensors for detection of corrosion within aircraft,” Struct. Health Monit.4, 47–56 (2005).
[CrossRef]

Synthetic Met. (1)

V. V. N. R. Kishore, A. Aziz, K. L. Narasimhan, N. Periasamy, P. S. Meenakshi, and S. Wategaonkar, “On the assignment of the absorption bands in the optical spectrum of Alq3,” Synthetic Met.126, 199–205 (2002).
[CrossRef]

Other (1)

A. François, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Comparison of surface functionalization processes for optical fibre biosensing applications,” in “20th International Conference on Optical Fibre Sensors,” vol. 7503 of Proc. SPIE(2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Contrast enhanced SEM image of (silica material shown in black) exposed-core MOF cross section, having an effective core diameter of 7.5 μm (core location shown by green box). (b) A schematic of the thin-film polymer coating method used to coat the outside of the MOF including the exposed core region. (c) Close-up SEM of the outside edge of the exposed core (red arrow in Fig. 1(a)) with 50 nm polymer coating (light grey).

Fig. 2
Fig. 2

(a) Setup used to test the ability of the coated fiber to detect Al cations (MMF is multimode fiber). (b) Back reflected spectra of the functionalized fiber directly after immersion in Al cations solution (green circle) and after 1 hour of immersion in solution (blue circle).

Fig. 3
Fig. 3

Deterioration in the transmission properties of the air exposed uncoated (red circle, from [1] with 10 μm core diameter) and thin-film polymer functionalized (blue circle) silica exposed-core MOF. The 95% confidence interval is shown in black. For the thin-film polymer functionalized fiber result, the confidence interval is approximately the same as the line thickness.

Fig. 4
Fig. 4

Broadband cutback loss measurements of silica exposed-core MOF, before (blue circle) and after polymer (PMMA+8HQ) coating (red circle). The difference between the coated and uncoated fiber loss αafterαbefore is shown in green (circle). Cutback loss measurement at λ = 640 nm for un-doped PMMA coated exposed-core MOF (dark-red dot).

Fig. 5
Fig. 5

(a) Numerical simulation result for the z-component power flow (Sz) distribution at λ = 532 nm of the fundamental mode using full vector FEM. The fiber core profile (shown by white outline) taken from SEM image. (b) Detail of the of the refractive index profile used for the simulation.

Fig. 6
Fig. 6

(green circle) Plot of loss induced from applying the polymer layer, α′ in Eq. (5), using cutback measurements (αafterαbefore, Fig. 4) for 405 nm, 532 nm, 640 nm, 790 nm, 980 nm, 1064 nm, and 1550 nm wavelengths. Plot of fitted λ dependent functions Eq. (7) (red square) and Eq. (8) (blue square).

Tables (1)

Tables Icon

Table 1 Loss measurements for silica exposed-core MOF (Fig. 1(a))

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P ( λ , t ) = P ( λ , 0 ) 10 ξ t z / 10
α fiber ( λ ) = ( ε 0 μ 0 ) 1 2 n r α | E | 2 d A E × H * z ^ d A
α after α before = ( ε 0 μ 0 ) 1 2 layer n r α | E | 2 d A E × H * z ^ d A
α after α before = ( ε 0 μ 0 ) 1 2 ( n m r α m layer | E | 2 d A E × H * z ^ d A + layer n r ( x , y ) α f ( x , y ) | E | 2 d A E × H * z ^ d A )
( μ 0 ε 0 ) 1 2 ( α after α before ) E × H * z ^ d A n m r layer | E | 2 d A = α m + layer n r ( x , y ) α f ( x , y ) | E | 2 d A n m r layer | E | 2 d A = α
α = i = 0 4 a i λ i
α 1 = ( 2049.04 λ + 413.27 λ 4 + 6988.35 ) [ R 2 = 0.997 ]
and α 2 = ( 1272.97 λ 3 + 8001.75 ) [ R 2 = 0.994 ]

Metrics