Abstract

The design, fabrication and spectroscopic characterization of ytterbium-doped Ta2O5 rib waveguide are described. The waveguides are fabricated on silicon substrates and operate in a single mode at wavelengths above 970 nm. The peak absorption cross-section was measured to be 2.75 × 10−20 cm2 at 975 nm. The emission spectrum was found to have a broad fluorescence spanning from 990 nm to 1090 nm with the fluorescence emission peak occurring at a wavelength of 976 nm. The excited-state life time was measured to be approximately 260 µs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Waveguide lasers in ytterbium-doped tantalum pentoxide on silicon

A. Aghajani, G. S. Murugan, N. P. Sessions, V. Apostolopoulos, and J. S. Wilkinson
Opt. Lett. 40(11) 2549-2552 (2015)

Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum

Payam Rabiei, Jichi Ma, Saeed Khan, Jeff Chiles, and Sasan Fathpour
Opt. Express 21(6) 6967-6972 (2013)

Fluorescence of Ta2O5 thin films doped by kilo-electron-volt Er implantation: application to microcavities

H. Rigneault, F. Flory, S. Monneret, S. Robert, and L. Roux
Appl. Opt. 35(25) 5005-5012 (1996)

References

  • View by:
  • |
  • |
  • |

  1. S. Ohara and Y. Kuroiwa, “Highly ytterbium-doped bismuth-oxide-based fiber,” Opt. Express 17(16), 14104–14108 (2009).
    [Crossref] [PubMed]
  2. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2.,” Opt. Lett. 22(17), 1317–1319 (1997).
    [Crossref] [PubMed]
  3. D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
    [Crossref] [PubMed]
  4. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
    [Crossref]
  5. D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi 3-level 1.03μm laser operation of a planar ion-implanted Yb-YAG waveguide,” Opt. Commun. 99(3–4), 211–215 (1993).
    [Crossref]
  6. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
    [Crossref] [PubMed]
  7. J. K. Jones, J. P. de Sandro, M. Hempstead, D. P. Shepherd, A. C. Large, A. C. Tropper, and J. S. Wilkinson, “Channel waveguide laser at 1 μm in Yb-indiffused LiNbO3,” Opt. Lett. 20(13), 1477–1479 (1995).
    [Crossref] [PubMed]
  8. M. Fujimura, H. Tsuchimoto, and T. Suhara, “Yb-diffused LiNbO3 annealed/proton-exchanged waveguide lasers,” IEEE Photon. Technol. Lett. 17(1), 130–132 (2005).
    [Crossref]
  9. D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Gunther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
    [Crossref]
  10. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17(25), 22417–22422 (2009).
    [Crossref] [PubMed]
  11. A. Choudhary, W. Bolaños, P. Kannan, J. J. Carvajal, M. Aguilo, F. Diaz, and D. P. Shepherd, “Low-threshold, mirrorless emission at 981 nm in an Yb, Gd, Lu:KYW inverted rib waveguide laser,” Conference on Solid State Lasers XXII - Technology and Devices, San Francisco, USA (2013).
    [Crossref]
  12. W. Bolaños, F. Starecki, A. Braud, J.-L. Doualan, R. Moncorgé, and P. Camy, “2.8 W end-pumped Yb3+:LiYF4 waveguide laser,” Opt. Lett. 38(24), 5377–5380 (2013).
    [Crossref] [PubMed]
  13. C. Florea and K. A. Winick, “Ytterbium-doped glass waveguide laser fabricated by ion-exchange,” J. Lightwave Technol. 17(9), 1593–1601 (1999).
    [Crossref]
  14. M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34(3), 247–249 (2009).
    [Crossref] [PubMed]
  15. A. A. Lagatsky, A. Choudhary, P. Kannan, D. P. Shepherd, W. Sibbett, and C. T. A. Brown, “Fundamentally mode-locked, femtosecond waveguide oscillators with multi-gigahertz repetition frequencies up to 15 GHz,” Opt. Express 21(17), 19608–19614 (2013).
    [Crossref] [PubMed]
  16. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett. 37(10), 1691–1693 (2012).
    [Crossref] [PubMed]
  17. E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011).
    [Crossref] [PubMed]
  18. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
    [Crossref]
  19. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. M. W. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
    [Crossref]
  20. C. Y. Tai, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, F. Cattaneo, C. E. Finlayson, and J. J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12(21), 5110–5116 (2004).
    [Crossref] [PubMed]
  21. J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
    [Crossref] [PubMed]
  22. B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” J. Quantum Electron. 41(12), 1565–1573 (2005).
    [Crossref]
  23. A. Z. Subramanian, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” Photon. Technol. Lett. 22(21), 1571–1573 (2010).
    [Crossref]
  24. C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998).
    [Crossref]
  25. A. Subramanian, “Tantalum pentoxide waveguide amplifier and laser for planar lightwave circuits,” Ph.D. thesis, University of Southampton, UK (2011).
  26. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2(1), 60–200 (2010).
    [Crossref]
  27. R. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” J. Quantum Electron. 27(8), 1971–1974 (1991).
    [Crossref]
  28. A. Z. Subramanian, G. S. Murugan, M. N. Zervas, and J. S. Wilkinson, “Spectroscopy, modeling and performance of erbium-doped Ta2O5 waveguide amplifiers,” J. Lightwave Technol. 30(10), 1455–1462 (2012).
    [Crossref]
  29. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [Crossref]
  30. Y. Yu, Y. Huang, L. Zhang, Z. Lin, and G. Wang, “Growth and spectral assessment of Yb3+-doped KBaGd(MoO4)3 crystal: a candidate for ultrashort pulse and tunable lasers,” PLoS ONE 8(1), e54450 (2013).
    [Crossref] [PubMed]
  31. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [Crossref]
  32. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
    [Crossref]
  33. J. Y. Allain, M. Monerie, and H. Poignant, “Ytterbium-doped fluoride fibre laser operating at 1.02 µm,” Electron. Lett. 28(11), 988–989 (1992).
    [Crossref]
  34. P. Nandi and G. Jose, “Ytterbium-Doped P2O5 -TeO5 Glass for Laser Applications,” IEEE J. Quantum Electron. 42(11), 1115–1121 (2006).
    [Crossref]
  35. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2.,” Opt. Lett. 22(17), 1317–1319 (1997).
    [Crossref] [PubMed]
  36. W. F. Krupke, “Ytterbium solid-state lasers. the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
    [Crossref]
  37. T. Y. Fan, “Quasi-three-level lasers” in Solid State Lasers: New Development and Applications, M. Inguscio and R. Wallenstein, eds. (Plenum Press, 1993)

2013 (3)

2012 (3)

2011 (1)

2010 (5)

2009 (4)

2007 (1)

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

2006 (1)

P. Nandi and G. Jose, “Ytterbium-Doped P2O5 -TeO5 Glass for Laser Applications,” IEEE J. Quantum Electron. 42(11), 1115–1121 (2006).
[Crossref]

2005 (2)

M. Fujimura, H. Tsuchimoto, and T. Suhara, “Yb-diffused LiNbO3 annealed/proton-exchanged waveguide lasers,” IEEE Photon. Technol. Lett. 17(1), 130–132 (2005).
[Crossref]

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

2004 (1)

2000 (1)

W. F. Krupke, “Ytterbium solid-state lasers. the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

1999 (2)

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

C. Florea and K. A. Winick, “Ytterbium-doped glass waveguide laser fabricated by ion-exchange,” J. Lightwave Technol. 17(9), 1593–1601 (1999).
[Crossref]

1998 (1)

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998).
[Crossref]

1997 (3)

1996 (1)

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. M. W. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

1995 (1)

1993 (1)

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi 3-level 1.03μm laser operation of a planar ion-implanted Yb-YAG waveguide,” Opt. Commun. 99(3–4), 211–215 (1993).
[Crossref]

1992 (1)

J. Y. Allain, M. Monerie, and H. Poignant, “Ytterbium-doped fluoride fibre laser operating at 1.02 µm,” Electron. Lett. 28(11), 988–989 (1992).
[Crossref]

1991 (1)

R. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Agazzi, L.

Allain, J. Y.

J. Y. Allain, M. Monerie, and H. Poignant, “Ytterbium-doped fluoride fibre laser operating at 1.02 µm,” Electron. Lett. 28(11), 988–989 (1992).
[Crossref]

Ams, M.

Aravazhi, S.

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Gunther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Autran, J. L.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998).
[Crossref]

Ay, F.

Ayliffe, P. J.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Bain, F. M.

Balland, B.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998).
[Crossref]

Baumberg, J. J.

Beecher, S. J.

Bernhardi, E.

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Gunther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Bernhardi, E. H.

Biswal, S.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Bolaños, W.

Bradley, J. D. B.

Braud, A.

Braun, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Brown, C. T. A.

Brown, G.

Calmano, T.

Camy, P.

Cattaneo, F.

Chandler, P. J.

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi 3-level 1.03μm laser operation of a planar ion-implanted Yb-YAG waveguide,” Opt. Commun. 99(3–4), 211–215 (1993).
[Crossref]

Chaneliere, C.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998).
[Crossref]

Charlton, M. D. B.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Choudhary, A.

Christodoulides, D. N.

de Ridder, R. M.

de Sandro, J. P.

Dekker, P.

Devine, R. A. B.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998).
[Crossref]

Doualan, J.-L.

Finlayson, C. E.

Florea, C.

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Fujimura, M.

M. Fujimura, H. Tsuchimoto, and T. Suhara, “Yb-diffused LiNbO3 annealed/proton-exchanged waveguide lasers,” IEEE Photon. Technol. Lett. 17(1), 130–132 (2005).
[Crossref]

Gaeta, A. L.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

García-Blanco, S. M.

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

Geskus, D.

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Gunther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Giesen, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Graf, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Grivas, C.

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Gunther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Gunther, D.

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Gunther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Hametner, K.

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Gunther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi 3-level 1.03μm laser operation of a planar ion-implanted Yb-YAG waveguide,” Opt. Commun. 99(3–4), 211–215 (1993).
[Crossref]

Harkema, S.

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Gunther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Hassan, M. A.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Hempstead, M.

Hönninger, C.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Huang, Y.

Y. Yu, Y. Huang, L. Zhang, Z. Lin, and G. Wang, “Growth and spectral assessment of Yb3+-doped KBaGd(MoO4)3 crystal: a candidate for ultrashort pulse and tunable lasers,” PLoS ONE 8(1), e54450 (2013).
[Crossref] [PubMed]

Huber, G.

Jaque, D.

Johannsen, I.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Jones, J. K.

J. K. Jones, J. P. de Sandro, M. Hempstead, D. P. Shepherd, A. C. Large, A. C. Tropper, and J. S. Wilkinson, “Channel waveguide laser at 1 μm in Yb-indiffused LiNbO3,” Opt. Lett. 20(13), 1477–1479 (1995).
[Crossref] [PubMed]

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi 3-level 1.03μm laser operation of a planar ion-implanted Yb-YAG waveguide,” Opt. Commun. 99(3–4), 211–215 (1993).
[Crossref]

Jose, G.

P. Nandi and G. Jose, “Ytterbium-Doped P2O5 -TeO5 Glass for Laser Applications,” IEEE J. Quantum Electron. 42(11), 1115–1121 (2006).
[Crossref]

Kannan, P.

Kar, A. K.

Keller, U.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Khoo, I. C.

Koper, R. J. I. M.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. M. W. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

Krupke, W. F.

W. F. Krupke, “Ytterbium solid-state lasers. the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

Kuleshov, N. V.

Kuroiwa, Y.

Lagatsky, A. A.

Lahoz, F.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Large, A. C.

J. K. Jones, J. P. de Sandro, M. Hempstead, D. P. Shepherd, A. C. Large, A. C. Tropper, and J. S. Wilkinson, “Channel waveguide laser at 1 μm in Yb-indiffused LiNbO3,” Opt. Lett. 20(13), 1477–1479 (1995).
[Crossref] [PubMed]

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi 3-level 1.03μm laser operation of a planar ion-implanted Yb-YAG waveguide,” Opt. Commun. 99(3–4), 211–215 (1993).
[Crossref]

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Lin, Z.

Y. Yu, Y. Huang, L. Zhang, Z. Lin, and G. Wang, “Growth and spectral assessment of Yb3+-doped KBaGd(MoO4)3 crystal: a candidate for ultrashort pulse and tunable lasers,” PLoS ONE 8(1), e54450 (2013).
[Crossref] [PubMed]

Lipson, M.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

Marshall, G. D.

Mary, R.

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Mikhailov, V. P.

Moncorgé, R.

Monerie, M.

J. Y. Allain, M. Monerie, and H. Poignant, “Ytterbium-doped fluoride fibre laser operating at 1.02 µm,” Electron. Lett. 28(11), 988–989 (1992).
[Crossref]

Morier-Genoud, F.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Moser, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Mourou, G. A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Murugan, G. S.

Nandi, P.

P. Nandi and G. Jose, “Ytterbium-Doped P2O5 -TeO5 Glass for Laser Applications,” IEEE J. Quantum Electron. 42(11), 1115–1121 (2006).
[Crossref]

Nees, J.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Netti, M. C.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

C. Y. Tai, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, F. Cattaneo, C. E. Finlayson, and J. J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12(21), 5110–5116 (2004).
[Crossref] [PubMed]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Ohara, S.

Oton, C. J.

A. Z. Subramanian, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” Photon. Technol. Lett. 22(21), 1571–1573 (2010).
[Crossref]

Parker, G. J.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Paschotta, R.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Perney, N. M. B.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

C. Y. Tai, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, F. Cattaneo, C. E. Finlayson, and J. J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12(21), 5110–5116 (2004).
[Crossref] [PubMed]

Petermann, K.

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[Crossref] [PubMed]

R. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

Podlipensky, A. V.

Poignant, H.

J. Y. Allain, M. Monerie, and H. Poignant, “Ytterbium-doped fluoride fibre laser operating at 1.02 µm,” Electron. Lett. 28(11), 988–989 (1992).
[Crossref]

Pollnau, M.

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011).
[Crossref] [PubMed]

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[Crossref] [PubMed]

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Gunther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Polman, A.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. M. W. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

Psaila, N. D.

Rodman, M. J.

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi 3-level 1.03μm laser operation of a planar ion-implanted Yb-YAG waveguide,” Opt. Commun. 99(3–4), 211–215 (1993).
[Crossref]

Salamo, G. J.

Schmidtchen, J.

R. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

Seeber, W.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Shepherd, D. P.

A. A. Lagatsky, A. Choudhary, P. Kannan, D. P. Shepherd, W. Sibbett, and C. T. A. Brown, “Fundamentally mode-locked, femtosecond waveguide oscillators with multi-gigahertz repetition frequencies up to 15 GHz,” Opt. Express 21(17), 19608–19614 (2013).
[Crossref] [PubMed]

A. Z. Subramanian, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” Photon. Technol. Lett. 22(21), 1571–1573 (2010).
[Crossref]

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

J. K. Jones, J. P. de Sandro, M. Hempstead, D. P. Shepherd, A. C. Large, A. C. Tropper, and J. S. Wilkinson, “Channel waveguide laser at 1 μm in Yb-indiffused LiNbO3,” Opt. Lett. 20(13), 1477–1479 (1995).
[Crossref] [PubMed]

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi 3-level 1.03μm laser operation of a planar ion-implanted Yb-YAG waveguide,” Opt. Commun. 99(3–4), 211–215 (1993).
[Crossref]

Sibbett, W.

Siebenmorgen, J.

Smit, M. K.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. M. W. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

Soref, R.

R. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

Starecki, F.

Stegeman, G. I.

Stoffer, R.

Subramanian, A. Z.

A. Z. Subramanian, G. S. Murugan, M. N. Zervas, and J. S. Wilkinson, “Spectroscopy, modeling and performance of erbium-doped Ta2O5 waveguide amplifiers,” J. Lightwave Technol. 30(10), 1455–1462 (2012).
[Crossref]

A. Z. Subramanian, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” Photon. Technol. Lett. 22(21), 1571–1573 (2010).
[Crossref]

Suhara, T.

M. Fujimura, H. Tsuchimoto, and T. Suhara, “Yb-diffused LiNbO3 annealed/proton-exchanged waveguide lasers,” IEEE Photon. Technol. Lett. 17(1), 130–132 (2005).
[Crossref]

Tai, C. Y.

Tai, C.-Y.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

Thomson, R. R.

Townsend, P. D.

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi 3-level 1.03μm laser operation of a planar ion-implanted Yb-YAG waveguide,” Opt. Commun. 99(3–4), 211–215 (1993).
[Crossref]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

J. K. Jones, J. P. de Sandro, M. Hempstead, D. P. Shepherd, A. C. Large, A. C. Tropper, and J. S. Wilkinson, “Channel waveguide laser at 1 μm in Yb-indiffused LiNbO3,” Opt. Lett. 20(13), 1477–1479 (1995).
[Crossref] [PubMed]

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi 3-level 1.03μm laser operation of a planar ion-implanted Yb-YAG waveguide,” Opt. Commun. 99(3–4), 211–215 (1993).
[Crossref]

Tsuchimoto, H.

M. Fujimura, H. Tsuchimoto, and T. Suhara, “Yb-diffused LiNbO3 annealed/proton-exchanged waveguide lasers,” IEEE Photon. Technol. Lett. 17(1), 130–132 (2005).
[Crossref]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Unal, B.

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

van Dam, C.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. M. W. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

van den Hoven, G. N.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. M. W. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

Van Stryland, E. W.

van Uffelen, J. M. W.

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. M. W. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

van Wolferen, H. A. G. M.

Wang, G.

Y. Yu, Y. Huang, L. Zhang, Z. Lin, and G. Wang, “Growth and spectral assessment of Yb3+-doped KBaGd(MoO4)3 crystal: a candidate for ultrashort pulse and tunable lasers,” PLoS ONE 8(1), e54450 (2013).
[Crossref] [PubMed]

Wilkinson, J. S.

Winick, K. A.

Withford, M. J.

Wörhoff, K.

Yu, Y.

Y. Yu, Y. Huang, L. Zhang, Z. Lin, and G. Wang, “Growth and spectral assessment of Yb3+-doped KBaGd(MoO4)3 crystal: a candidate for ultrashort pulse and tunable lasers,” PLoS ONE 8(1), e54450 (2013).
[Crossref] [PubMed]

Zervas, M. N.

Zhang, G.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Zhang, L.

Y. Yu, Y. Huang, L. Zhang, Z. Lin, and G. Wang, “Growth and spectral assessment of Yb3+-doped KBaGd(MoO4)3 crystal: a candidate for ultrashort pulse and tunable lasers,” PLoS ONE 8(1), e54450 (2013).
[Crossref] [PubMed]

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi 3-level 1.03μm laser operation of a planar ion-implanted Yb-YAG waveguide,” Opt. Commun. 99(3–4), 211–215 (1993).
[Crossref]

Adv. Mater. (1)

D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. B (1)

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Appl. Phys. Lett. (1)

G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. M. W. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[Crossref]

Electron. Lett. (1)

J. Y. Allain, M. Monerie, and H. Poignant, “Ytterbium-doped fluoride fibre laser operating at 1.02 µm,” Electron. Lett. 28(11), 988–989 (1992).
[Crossref]

IEEE J. Quantum Electron. (2)

P. Nandi and G. Jose, “Ytterbium-Doped P2O5 -TeO5 Glass for Laser Applications,” IEEE J. Quantum Electron. 42(11), 1115–1121 (2006).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

W. F. Krupke, “Ytterbium solid-state lasers. the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[Crossref]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Fujimura, H. Tsuchimoto, and T. Suhara, “Yb-diffused LiNbO3 annealed/proton-exchanged waveguide lasers,” IEEE Photon. Technol. Lett. 17(1), 130–132 (2005).
[Crossref]

J. Lightwave Technol. (2)

J. Quantum Electron. (2)

B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” J. Quantum Electron. 41(12), 1565–1573 (2005).
[Crossref]

R. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” J. Quantum Electron. 27(8), 1971–1974 (1991).
[Crossref]

Laser Phys. Lett. (1)

D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Gunther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009).
[Crossref]

Mater. Sci. Eng. Rep. (1)

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998).
[Crossref]

Nat. Photonics (1)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010).
[Crossref]

Opt. Commun. (1)

D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi 3-level 1.03μm laser operation of a planar ion-implanted Yb-YAG waveguide,” Opt. Commun. 99(3–4), 211–215 (1993).
[Crossref]

Opt. Express (5)

Opt. Lett. (8)

J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010).
[Crossref] [PubMed]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2.,” Opt. Lett. 22(17), 1317–1319 (1997).
[Crossref] [PubMed]

N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2.,” Opt. Lett. 22(17), 1317–1319 (1997).
[Crossref] [PubMed]

M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34(3), 247–249 (2009).
[Crossref] [PubMed]

R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett. 37(10), 1691–1693 (2012).
[Crossref] [PubMed]

E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+.,” Opt. Lett. 36(5), 603–605 (2011).
[Crossref] [PubMed]

W. Bolaños, F. Starecki, A. Braud, J.-L. Doualan, R. Moncorgé, and P. Camy, “2.8 W end-pumped Yb3+:LiYF4 waveguide laser,” Opt. Lett. 38(24), 5377–5380 (2013).
[Crossref] [PubMed]

J. K. Jones, J. P. de Sandro, M. Hempstead, D. P. Shepherd, A. C. Large, A. C. Tropper, and J. S. Wilkinson, “Channel waveguide laser at 1 μm in Yb-indiffused LiNbO3,” Opt. Lett. 20(13), 1477–1479 (1995).
[Crossref] [PubMed]

Photon. Technol. Lett. (1)

A. Z. Subramanian, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” Photon. Technol. Lett. 22(21), 1571–1573 (2010).
[Crossref]

Phys. Rev. (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

PLoS ONE (1)

Y. Yu, Y. Huang, L. Zhang, Z. Lin, and G. Wang, “Growth and spectral assessment of Yb3+-doped KBaGd(MoO4)3 crystal: a candidate for ultrashort pulse and tunable lasers,” PLoS ONE 8(1), e54450 (2013).
[Crossref] [PubMed]

Other (3)

T. Y. Fan, “Quasi-three-level lasers” in Solid State Lasers: New Development and Applications, M. Inguscio and R. Wallenstein, eds. (Plenum Press, 1993)

A. Subramanian, “Tantalum pentoxide waveguide amplifier and laser for planar lightwave circuits,” Ph.D. thesis, University of Southampton, UK (2011).

A. Choudhary, W. Bolaños, P. Kannan, J. J. Carvajal, M. Aguilo, F. Diaz, and D. P. Shepherd, “Low-threshold, mirrorless emission at 981 nm in an Yb, Gd, Lu:KYW inverted rib waveguide laser,” Conference on Solid State Lasers XXII - Technology and Devices, San Francisco, USA (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Cross-section of the partially etched rib waveguide design.
Fig. 2
Fig. 2 COMSOL simulation of fundamental mode field for a rib waveguide with an etch depth of 150 nm: a) Normalised electric field for a rib width of 1 μm b) Electric field profiles in the horizontal and vertical directions; c) Modal spotsizes at FWHM intensity vs. rib width.
Fig. 3
Fig. 3 SEM cross-section of a 3 μm wide rib waveguide showing the different optical layers. The lower layers are the silicon substrate with thermally-grown under-clad silica layer; the upper layers are the deposited Yb-doped Ta2O5 (light grey region) and silica over-clad.
Fig. 4
Fig. 4 Experimental mode profile for a 5 μm wide rib waveguide
Fig. 5
Fig. 5 Yb:Ta2O5 absorption cross-section.
Fig. 6
Fig. 6 Yb:Ta2O5 emission cross-section spectrum.
Fig. 7
Fig. 7 Radiative decay curve.

Tables (1)

Tables Icon

Table 1 Comparison of the spectroscopic properties of the Yb:Ta2O5 studied in this work (column 2) with other Yb-doped glass (columns 3-6) and crystal (columns 7-8) material systems

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ a b s = ln ( T ) / N L
g mat =4.34 N inv σ em

Metrics