Abstract

We report for the first time use of 3D-printed metal extrusion dies for the extrusion of an optical material into an extrudate at elevated temperatures. Using lead-silicate glass as the material to be extruded, the 3D-printed dies demonstrated the same glass flow behavior as conventionally machined metal dies. Evaluation of the extrusion force at set temperature and extrusion speed revealed that the metal-type of the dies used did not affect the glass flow behavior. Using 3D-printed dies as delivered, the high surface roughness of the 3D-printed dies resulted in high preform surface roughness. However, this effect was overcome by finishing the easily accessible internal die surfaces over 1-2mm length upstream from the die exit. The opportunity of using 3D-printed dies offers unprecedented flexibility in the die design for unlimited tailoring of fluid flow within the die, which paves the way towards extruded items of arbitrary shape.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006).
    [CrossRef]
  2. H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow during extrusion of optical fiber preforms,” Opt. Mater. Express2(3), 304–320 (2012).
    [CrossRef]
  3. J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Reduction of scattering loss in fluoroindate glass fibers,” Opt. Mater. Express3(9), 1285–1301 (2013).
    [CrossRef]
  4. G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett.37(13), 2751–2753 (2012).
    [CrossRef] [PubMed]
  5. H. Ebendorff-Heidepriem, T. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA polymer microstructured fiber,” Opt. Commun.273, 133–137 (2007).
    [CrossRef]
  6. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–15062 (2009).
    [CrossRef] [PubMed]
  7. S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photonics Journal1(6), 286–292 (2009).
    [CrossRef]
  8. V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, and A. J. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express10(25), 1520–1525 (2002).
    [CrossRef] [PubMed]
  9. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003).
    [CrossRef] [PubMed]
  10. J. Y. Y. Leong, P. Petropoulos, J. V. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol.24(1), 183–190 (2006).
    [CrossRef]
  11. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007).
    [CrossRef] [PubMed]
  12. X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express17(22), 20249–20255 (2009).
    [CrossRef] [PubMed]
  13. W. Q. Zhang, S. Manning, H. Ebendorff-Heidepriem, and T. M. Monro, “Lead silicate microstructured optical fibres for electro-optical applications,” Opt. Express21(25), 31309–31317 (2013).
    [CrossRef] [PubMed]
  14. H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fibre,” Electron. Lett.43(24), 1343–1345 (2007).
    [CrossRef]
  15. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009).
    [CrossRef] [PubMed]
  16. K. J. Rowland, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Antiresonance guiding in soft-glass hollow-core microstructured fibres; fabrication and spectra properties,” Australian Conference on Optical Fibre Technology (ACOFT‘2009), Adelaide, 29 Nov – 3 Dec 2009, paper 161.
  17. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T.-C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17(21), 18533–18542 (2009).
    [CrossRef] [PubMed]
  18. H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” Journal of Materials Chemistry C1(41), 6782–6789 (2013).
    [CrossRef]
  19. K. J. Rowland, H. Ebendorff-Heidepriem, S. Afshar, G. Tsiminis, and T. M. Monro, “Extruded soft glass single-ring hollow core fibres”, Australian and New Zealand Conference on Optics and Photonics (ANZCOP’2013), Fremantle, Western Australia, Australia, 8–11 Dec 2013.
  20. M. Trabelssi, H. Ebendorff-Heidepriem, K. C. Richardson, T. M. Monro, and P. F. Joseph, “Computational modeling of die swell of extruded glass preforms at high viscosity,” J. Am. Ceram. Soc. (accepted).
  21. V. V. Kumar, A. K. George, J. C. Knight, and P. Russell, “Tellurite photonic crystal fiber,” Opt. Express11(20), 2641–2645 (2003).
    [CrossRef] [PubMed]
  22. X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett.41(15), 835–836 (2005).
    [CrossRef]
  23. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express16(18), 13651–13656 (2008).
    [CrossRef] [PubMed]
  24. M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24(7), 578–580 (2012).
    [CrossRef]
  25. H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express2(4), 432–442 (2012).
    [CrossRef]
  26. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004).
    [CrossRef] [PubMed]
  27. W. Q. Zhang, H. Ebendorff-Heidepriem, T. M. Monro, and S. Afshar V., “Supercontinuum generation in bismuth microstructured optical fiber with three zero dispersion wavelengths,” Opt. Express19, 21135–21144 (2011).
  28. H. T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, D. Manzani, L. Wondraczek, S. Afshar V., T. M. Monro, and H. Ebendorff-Heidepriem, “Lead-germanate glasses and fibers; a practical alternative to tellurite fore nonlinear fiber applications,” Opt. Mater. Express3, 1488–1503 (2013).
  29. E. T. Y. Lee, “Development and characterisation of phosphate glasses for athermalisation,” PhD thesis, University of Southampton (2004).
  30. D. Furniss and A. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids256-257, 232–236 (1999).
  31. S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids354(29), 3418–3427 (2008).
    [CrossRef]
  32. Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
    [CrossRef]
  33. G. Tao, A. F. Abouraddy, and A. M. Stolyarov, “Multimaterial fibers,” Int. J. Appl. Glass Sci.3(4), 349–368 (2012).
    [CrossRef] [PubMed]
  34. K. Bhowmick, H. P. Morvan, D. Furniss, A. S. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: Prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc.96(1), 118–124 (2013).
    [CrossRef]
  35. K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
    [CrossRef]
  36. H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008).
    [CrossRef] [PubMed]
  37. H. Ebendorff-Heidepriem, D. G. Lancaster, K. Kuan, R. C. Moore, S. Sarker, and T. M. Monro, “Extruded fluoride fiber for 2.3μm laser application”, International Quantum Electronics Conference (IQEC)/The Conference on Lasers and Electro-Optics (CLEO) Pacific Rim Conference, Sydney, Australia, Aug-Sep 2011.
  38. J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express3(3), 318–328 (2013).
    [CrossRef]
  39. C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express2(1), 62–70 (2012).
    [CrossRef]
  40. C. R. Garcia, R. C. Rumpf, H. H. Tsang, and J. H. Barton, “Effects of extreme surface roughness on 3D printed horn antenna,” Electron. Lett.49(12), 734–736 (2013).
    [CrossRef]
  41. S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, and H. J. Maier, “On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance,” Int. J. Fatigue48, 300–307 (2013).
    [CrossRef]
  42. R. Hölker, A. Jäger, N. B. Khalifa, and A. E. Tekkaya, “Controlling heat balance in hot aluminum extrusion by additive manufactured extrusion dies with conformal cooling channels,” International Journal of Precision Engineering and Manufacturing14(8), 1487–1493 (2013).
    [CrossRef]
  43. http://www.eos.info/material-m .

2013 (9)

H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” Journal of Materials Chemistry C1(41), 6782–6789 (2013).
[CrossRef]

K. Bhowmick, H. P. Morvan, D. Furniss, A. S. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: Prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc.96(1), 118–124 (2013).
[CrossRef]

C. R. Garcia, R. C. Rumpf, H. H. Tsang, and J. H. Barton, “Effects of extreme surface roughness on 3D printed horn antenna,” Electron. Lett.49(12), 734–736 (2013).
[CrossRef]

S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, and H. J. Maier, “On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance,” Int. J. Fatigue48, 300–307 (2013).
[CrossRef]

R. Hölker, A. Jäger, N. B. Khalifa, and A. E. Tekkaya, “Controlling heat balance in hot aluminum extrusion by additive manufactured extrusion dies with conformal cooling channels,” International Journal of Precision Engineering and Manufacturing14(8), 1487–1493 (2013).
[CrossRef]

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express3(3), 318–328 (2013).
[CrossRef]

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Reduction of scattering loss in fluoroindate glass fibers,” Opt. Mater. Express3(9), 1285–1301 (2013).
[CrossRef]

H. T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, D. Manzani, L. Wondraczek, S. Afshar V., T. M. Monro, and H. Ebendorff-Heidepriem, “Lead-germanate glasses and fibers; a practical alternative to tellurite fore nonlinear fiber applications,” Opt. Mater. Express3, 1488–1503 (2013).

W. Q. Zhang, S. Manning, H. Ebendorff-Heidepriem, and T. M. Monro, “Lead silicate microstructured optical fibres for electro-optical applications,” Opt. Express21(25), 31309–31317 (2013).
[CrossRef] [PubMed]

2012 (6)

2011 (1)

2009 (6)

2008 (3)

2007 (3)

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fibre,” Electron. Lett.43(24), 1343–1345 (2007).
[CrossRef]

H. Ebendorff-Heidepriem, T. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA polymer microstructured fiber,” Opt. Commun.273, 133–137 (2007).
[CrossRef]

2006 (2)

2005 (1)

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett.41(15), 835–836 (2005).
[CrossRef]

2004 (1)

2003 (2)

2002 (1)

1999 (1)

D. Furniss and A. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids256-257, 232–236 (1999).

1994 (1)

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
[CrossRef]

Abbott, D.

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–15062 (2009).
[CrossRef] [PubMed]

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photonics Journal1(6), 286–292 (2009).
[CrossRef]

Abouraddy, A. F.

Afshar V, S.

Afshar V., S.

Asimakis, S.

Atakaramians, S.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photonics Journal1(6), 286–292 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–15062 (2009).
[CrossRef] [PubMed]

Banaei, E.-H.

Barton, J. H.

C. R. Garcia, R. C. Rumpf, H. H. Tsang, and J. H. Barton, “Effects of extreme surface roughness on 3D printed horn antenna,” Electron. Lett.49(12), 734–736 (2013).
[CrossRef]

Bei, J.

Benson, T. M.

K. Bhowmick, H. P. Morvan, D. Furniss, A. S. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: Prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc.96(1), 118–124 (2013).
[CrossRef]

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

Bhowmick, K.

K. Bhowmick, H. P. Morvan, D. Furniss, A. S. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: Prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc.96(1), 118–124 (2013).
[CrossRef]

Camerlingo, A.

Canning, J.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photonics Journal1(6), 286–292 (2009).
[CrossRef]

Cook, K.

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photonics Journal1(6), 286–292 (2009).
[CrossRef]

Dasgupta, S.

Davis, C.

Ebendorff-Heidepriem, H.

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Reduction of scattering loss in fluoroindate glass fibers,” Opt. Mater. Express3(9), 1285–1301 (2013).
[CrossRef]

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express3(3), 318–328 (2013).
[CrossRef]

W. Q. Zhang, S. Manning, H. Ebendorff-Heidepriem, and T. M. Monro, “Lead silicate microstructured optical fibres for electro-optical applications,” Opt. Express21(25), 31309–31317 (2013).
[CrossRef] [PubMed]

H. T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, D. Manzani, L. Wondraczek, S. Afshar V., T. M. Monro, and H. Ebendorff-Heidepriem, “Lead-germanate glasses and fibers; a practical alternative to tellurite fore nonlinear fiber applications,” Opt. Mater. Express3, 1488–1503 (2013).

H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” Journal of Materials Chemistry C1(41), 6782–6789 (2013).
[CrossRef]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express2(1), 62–70 (2012).
[CrossRef]

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24(7), 578–580 (2012).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow during extrusion of optical fiber preforms,” Opt. Mater. Express2(3), 304–320 (2012).
[CrossRef]

H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express2(4), 432–442 (2012).
[CrossRef]

W. Q. Zhang, H. Ebendorff-Heidepriem, T. M. Monro, and S. Afshar V., “Supercontinuum generation in bismuth microstructured optical fiber with three zero dispersion wavelengths,” Opt. Express19, 21135–21144 (2011).

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T.-C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17(21), 18533–18542 (2009).
[CrossRef] [PubMed]

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–15062 (2009).
[CrossRef] [PubMed]

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photonics Journal1(6), 286–292 (2009).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, T. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA polymer microstructured fiber,” Opt. Commun.273, 133–137 (2007).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fibre,” Electron. Lett.43(24), 1343–1345 (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. V. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol.24(1), 183–190 (2006).
[CrossRef]

T. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004).
[CrossRef] [PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003).
[CrossRef] [PubMed]

M. Trabelssi, H. Ebendorff-Heidepriem, K. C. Richardson, T. M. Monro, and P. F. Joseph, “Computational modeling of die swell of extruded glass preforms at high viscosity,” J. Am. Ceram. Soc. (accepted).

Feng, X.

Finazzi, V.

Fischer, B. M.

Flanagan, J. C.

Foo, H. T. C.

H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” Journal of Materials Chemistry C1(41), 6782–6789 (2013).
[CrossRef]

Foo, T.-C.

Frampton, K.

Frampton, K. E.

Furniss, D.

K. Bhowmick, H. P. Morvan, D. Furniss, A. S. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: Prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc.96(1), 118–124 (2013).
[CrossRef]

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids354(29), 3418–3427 (2008).
[CrossRef]

D. Furniss and A. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids256-257, 232–236 (1999).

Garcia, C. R.

C. R. Garcia, R. C. Rumpf, H. H. Tsang, and J. H. Barton, “Effects of extreme surface roughness on 3D printed horn antenna,” Electron. Lett.49(12), 734–736 (2013).
[CrossRef]

George, A. K.

Hemming, A.

Hölker, R.

R. Hölker, A. Jäger, N. B. Khalifa, and A. E. Tekkaya, “Controlling heat balance in hot aluminum extrusion by additive manufactured extrusion dies with conformal cooling channels,” International Journal of Precision Engineering and Manufacturing14(8), 1487–1493 (2013).
[CrossRef]

Horak, P.

Itoh, K.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
[CrossRef]

Iwakura, M.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
[CrossRef]

Jäger, A.

R. Hölker, A. Jäger, N. B. Khalifa, and A. E. Tekkaya, “Controlling heat balance in hot aluminum extrusion by additive manufactured extrusion dies with conformal cooling channels,” International Journal of Precision Engineering and Manufacturing14(8), 1487–1493 (2013).
[CrossRef]

Joseph, P. F.

M. Trabelssi, H. Ebendorff-Heidepriem, K. C. Richardson, T. M. Monro, and P. F. Joseph, “Computational modeling of die swell of extruded glass preforms at high viscosity,” J. Am. Ceram. Soc. (accepted).

Kalnins, C. A. G.

Kaufman, J. J.

Khalifa, N. B.

R. Hölker, A. Jäger, N. B. Khalifa, and A. E. Tekkaya, “Controlling heat balance in hot aluminum extrusion by additive manufactured extrusion dies with conformal cooling channels,” International Journal of Precision Engineering and Manufacturing14(8), 1487–1493 (2013).
[CrossRef]

Knight, J. C.

Knight, K.

Koizumi, F.

Kuan, K.

Kumar, V. V.

Kumar, V. V. R. K.

Lancaster, D. G.

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24(7), 578–580 (2012).
[CrossRef]

H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008).
[CrossRef] [PubMed]

Large, M. C. J.

H. Ebendorff-Heidepriem, T. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA polymer microstructured fiber,” Opt. Commun.273, 133–137 (2007).
[CrossRef]

Leong, J. Y. Y.

Leuders, S.

S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, and H. J. Maier, “On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance,” Int. J. Fatigue48, 300–307 (2013).
[CrossRef]

Li, Q. Q.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

Li, Y.

Lian, Z. G.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

Loh, W. H.

Maier, H. J.

S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, and H. J. Maier, “On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance,” Int. J. Fatigue48, 300–307 (2013).
[CrossRef]

Manning, S.

Manzani, D.

Masuda, I.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
[CrossRef]

Miller, C. A.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids354(29), 3418–3427 (2008).
[CrossRef]

Miura, K.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
[CrossRef]

Monro, T.

H. Ebendorff-Heidepriem, T. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA polymer microstructured fiber,” Opt. Commun.273, 133–137 (2007).
[CrossRef]

T. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006).
[CrossRef]

Monro, T. M.

H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” Journal of Materials Chemistry C1(41), 6782–6789 (2013).
[CrossRef]

H. T. Munasinghe, A. Winterstein-Beckmann, C. Schiele, D. Manzani, L. Wondraczek, S. Afshar V., T. M. Monro, and H. Ebendorff-Heidepriem, “Lead-germanate glasses and fibers; a practical alternative to tellurite fore nonlinear fiber applications,” Opt. Mater. Express3, 1488–1503 (2013).

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Reduction of scattering loss in fluoroindate glass fibers,” Opt. Mater. Express3(9), 1285–1301 (2013).
[CrossRef]

W. Q. Zhang, S. Manning, H. Ebendorff-Heidepriem, and T. M. Monro, “Lead silicate microstructured optical fibres for electro-optical applications,” Opt. Express21(25), 31309–31317 (2013).
[CrossRef] [PubMed]

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express3(3), 318–328 (2013).
[CrossRef]

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24(7), 578–580 (2012).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow during extrusion of optical fiber preforms,” Opt. Mater. Express2(3), 304–320 (2012).
[CrossRef]

H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express2(4), 432–442 (2012).
[CrossRef]

C. A. G. Kalnins, H. Ebendorff-Heidepriem, N. A. Spooner, and T. M. Monro, “Radiation dosimetry using optically stimulated luminescence in fluoride phosphate optical fibres,” Opt. Mater. Express2(1), 62–70 (2012).
[CrossRef]

W. Q. Zhang, H. Ebendorff-Heidepriem, T. M. Monro, and S. Afshar V., “Supercontinuum generation in bismuth microstructured optical fiber with three zero dispersion wavelengths,” Opt. Express19, 21135–21144 (2011).

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T.-C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17(21), 18533–18542 (2009).
[CrossRef] [PubMed]

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–15062 (2009).
[CrossRef] [PubMed]

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photonics Journal1(6), 286–292 (2009).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fibre,” Electron. Lett.43(24), 1343–1345 (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. V. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol.24(1), 183–190 (2006).
[CrossRef]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett.41(15), 835–836 (2005).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004).
[CrossRef] [PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003).
[CrossRef] [PubMed]

M. Trabelssi, H. Ebendorff-Heidepriem, K. C. Richardson, T. M. Monro, and P. F. Joseph, “Computational modeling of die swell of extruded glass preforms at high viscosity,” J. Am. Ceram. Soc. (accepted).

Moore, R.

Moore, R. C.

Morvan, H. P.

K. Bhowmick, H. P. Morvan, D. Furniss, A. S. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: Prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc.96(1), 118–124 (2013).
[CrossRef]

Munasinghe, H. T.

Nagel, M.

Niendorf, T.

S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, and H. J. Maier, “On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance,” Int. J. Fatigue48, 300–307 (2013).
[CrossRef]

Oermann, M. R.

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24(7), 578–580 (2012).
[CrossRef]

H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express2(4), 432–442 (2012).
[CrossRef]

Omenetto, F. G.

Ottaway, D. J.

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24(7), 578–580 (2012).
[CrossRef]

Parmigiani, F.

Petropoulos, P.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express16(18), 13651–13656 (2008).
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. V. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol.24(1), 183–190 (2006).
[CrossRef]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett.41(15), 835–836 (2005).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004).
[CrossRef] [PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003).
[CrossRef] [PubMed]

Poletti, F.

Price, J. H. V.

Price, J. V. H.

Reeves, W. H.

Richard, H. A.

S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, and H. J. Maier, “On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance,” Int. J. Fatigue48, 300–307 (2013).
[CrossRef]

Richardson, D. J.

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express16(18), 13651–13656 (2008).
[CrossRef] [PubMed]

J. Y. Y. Leong, P. Petropoulos, J. V. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-µm pumped supercontinuum generation,” J. Lightwave Technol.24(1), 183–190 (2006).
[CrossRef]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett.41(15), 835–836 (2005).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004).
[CrossRef] [PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003).
[CrossRef] [PubMed]

Richardson, K. C.

M. Trabelssi, H. Ebendorff-Heidepriem, K. C. Richardson, T. M. Monro, and P. F. Joseph, “Computational modeling of die swell of extruded glass preforms at high viscosity,” J. Am. Ceram. Soc. (accepted).

Riemer, A.

S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, and H. J. Maier, “On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance,” Int. J. Fatigue48, 300–307 (2013).
[CrossRef]

Rumpf, R. C.

C. R. Garcia, R. C. Rumpf, H. H. Tsang, and J. H. Barton, “Effects of extreme surface roughness on 3D printed horn antenna,” Electron. Lett.49(12), 734–736 (2013).
[CrossRef]

Russell, P.

Russell, P. St. J.

Rutt, H. N.

Savage, S. D.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids354(29), 3418–3427 (2008).
[CrossRef]

Schiele, C.

Seddon, A.

D. Furniss and A. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids256-257, 232–236 (1999).

Seddon, A. B.

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids354(29), 3418–3427 (2008).
[CrossRef]

Seddon, A. S.

K. Bhowmick, H. P. Morvan, D. Furniss, A. S. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: Prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc.96(1), 118–124 (2013).
[CrossRef]

Shabahang, S.

Spooner, N. A.

Stolyarov, A. M.

G. Tao, A. F. Abouraddy, and A. M. Stolyarov, “Multimaterial fibers,” Int. J. Appl. Glass Sci.3(4), 349–368 (2012).
[CrossRef] [PubMed]

Sumby, C. J.

H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” Journal of Materials Chemistry C1(41), 6782–6789 (2013).
[CrossRef]

Tao, G.

Taylor, A. J.

Tekkaya, A. E.

R. Hölker, A. Jäger, N. B. Khalifa, and A. E. Tekkaya, “Controlling heat balance in hot aluminum extrusion by additive manufactured extrusion dies with conformal cooling channels,” International Journal of Precision Engineering and Manufacturing14(8), 1487–1493 (2013).
[CrossRef]

Thöne, M.

S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, and H. J. Maier, “On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance,” Int. J. Fatigue48, 300–307 (2013).
[CrossRef]

Trabelssi, M.

M. Trabelssi, H. Ebendorff-Heidepriem, K. C. Richardson, T. M. Monro, and P. F. Joseph, “Computational modeling of die swell of extruded glass preforms at high viscosity,” J. Am. Ceram. Soc. (accepted).

Tröster, T.

S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, and H. J. Maier, “On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance,” Int. J. Fatigue48, 300–307 (2013).
[CrossRef]

Tsang, H. H.

C. R. Garcia, R. C. Rumpf, H. H. Tsang, and J. H. Barton, “Effects of extreme surface roughness on 3D printed horn antenna,” Electron. Lett.49(12), 734–736 (2013).
[CrossRef]

van Eijkelenborg, M. A.

H. Ebendorff-Heidepriem, T. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA polymer microstructured fiber,” Opt. Commun.273, 133–137 (2007).
[CrossRef]

Veitch, P. J.

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24(7), 578–580 (2012).
[CrossRef]

Warren-Smith, S. C.

White, N. M.

Winterstein-Beckmann, A.

Wondraczek, L.

Yamashita, T.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
[CrossRef]

Zhang, W.

Zhang, W. Q.

Annu. Rev. Mater. Res. (1)

T. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36(1), 467–495 (2006).
[CrossRef]

Electron. Lett. (3)

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fibre,” Electron. Lett.43(24), 1343–1345 (2007).
[CrossRef]

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinearity, tellurite glass holey fibre,” Electron. Lett.41(15), 835–836 (2005).
[CrossRef]

C. R. Garcia, R. C. Rumpf, H. H. Tsang, and J. H. Barton, “Effects of extreme surface roughness on 3D printed horn antenna,” Electron. Lett.49(12), 734–736 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. R. Oermann, H. Ebendorff-Heidepriem, D. J. Ottaway, D. G. Lancaster, P. J. Veitch, and T. M. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24(7), 578–580 (2012).
[CrossRef]

Z. G. Lian, Q. Q. Li, D. Furniss, T. M. Benson, and A. B. Seddon, “Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions,” IEEE Photon. Technol. Lett.21(24), 1804–1806 (2009).
[CrossRef]

IEEE Photonics Journal (1)

S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photonics Journal1(6), 286–292 (2009).
[CrossRef]

Int. J. Appl. Glass Sci. (1)

G. Tao, A. F. Abouraddy, and A. M. Stolyarov, “Multimaterial fibers,” Int. J. Appl. Glass Sci.3(4), 349–368 (2012).
[CrossRef] [PubMed]

Int. J. Fatigue (1)

S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, and H. J. Maier, “On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance,” Int. J. Fatigue48, 300–307 (2013).
[CrossRef]

International Journal of Precision Engineering and Manufacturing (1)

R. Hölker, A. Jäger, N. B. Khalifa, and A. E. Tekkaya, “Controlling heat balance in hot aluminum extrusion by additive manufactured extrusion dies with conformal cooling channels,” International Journal of Precision Engineering and Manufacturing14(8), 1487–1493 (2013).
[CrossRef]

J. Am. Ceram. Soc. (1)

K. Bhowmick, H. P. Morvan, D. Furniss, A. S. Seddon, and T. M. Benson, “Co-extrusion of multilayer glass fiber-optic preforms: Prediction of layer dimensions in the extrudate,” J. Am. Ceram. Soc.96(1), 118–124 (2013).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (3)

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids167(1-2), 112–116 (1994).
[CrossRef]

D. Furniss and A. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids256-257, 232–236 (1999).

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids354(29), 3418–3427 (2008).
[CrossRef]

Journal of Materials Chemistry C (1)

H. T. C. Foo, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Towards microstructured optical fibre sensors: surface analysis of silanised lead silicate glass,” Journal of Materials Chemistry C1(41), 6782–6789 (2013).
[CrossRef]

Opt. Commun. (1)

H. Ebendorff-Heidepriem, T. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA polymer microstructured fiber,” Opt. Commun.273, 133–137 (2007).
[CrossRef]

Opt. Express (12)

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17(16), 14053–15062 (2009).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007).
[CrossRef] [PubMed]

X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W. H. Loh, and D. J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55 microm,” Opt. Express17(22), 20249–20255 (2009).
[CrossRef] [PubMed]

W. Q. Zhang, S. Manning, H. Ebendorff-Heidepriem, and T. M. Monro, “Lead silicate microstructured optical fibres for electro-optical applications,” Opt. Express21(25), 31309–31317 (2013).
[CrossRef] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T.-C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17(21), 18533–18542 (2009).
[CrossRef] [PubMed]

V. V. R. K. Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, and A. J. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express10(25), 1520–1525 (2002).
[CrossRef] [PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express11(26), 3568–3573 (2003).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express16(18), 13651–13656 (2008).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express12(21), 5082–5087 (2004).
[CrossRef] [PubMed]

W. Q. Zhang, H. Ebendorff-Heidepriem, T. M. Monro, and S. Afshar V., “Supercontinuum generation in bismuth microstructured optical fiber with three zero dispersion wavelengths,” Opt. Express19, 21135–21144 (2011).

V. V. Kumar, A. K. George, J. C. Knight, and P. Russell, “Tellurite photonic crystal fiber,” Opt. Express11(20), 2641–2645 (2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (6)

Other (6)

E. T. Y. Lee, “Development and characterisation of phosphate glasses for athermalisation,” PhD thesis, University of Southampton (2004).

H. Ebendorff-Heidepriem, D. G. Lancaster, K. Kuan, R. C. Moore, S. Sarker, and T. M. Monro, “Extruded fluoride fiber for 2.3μm laser application”, International Quantum Electronics Conference (IQEC)/The Conference on Lasers and Electro-Optics (CLEO) Pacific Rim Conference, Sydney, Australia, Aug-Sep 2011.

K. J. Rowland, H. Ebendorff-Heidepriem, S. Afshar, G. Tsiminis, and T. M. Monro, “Extruded soft glass single-ring hollow core fibres”, Australian and New Zealand Conference on Optics and Photonics (ANZCOP’2013), Fremantle, Western Australia, Australia, 8–11 Dec 2013.

M. Trabelssi, H. Ebendorff-Heidepriem, K. C. Richardson, T. M. Monro, and P. F. Joseph, “Computational modeling of die swell of extruded glass preforms at high viscosity,” J. Am. Ceram. Soc. (accepted).

K. J. Rowland, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Antiresonance guiding in soft-glass hollow-core microstructured fibres; fabrication and spectra properties,” Australian Conference on Optical Fibre Technology (ACOFT‘2009), Adelaide, 29 Nov – 3 Dec 2009, paper 161.

http://www.eos.info/material-m .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of die profiles in axial direction and of the glass flow direction for the two die designs used in this study.

Fig. 2
Fig. 2

(a) Die constant calculated using the extrusion processing parameters and (b) cross-sectional area of the die welding chambers of the four extrusion trials considered here.

Fig. 3
Fig. 3

Optical profiler images of 3D-printed Ti alloy die (a) media-blasted surface and (b) smoothed surface using conventional machining tool, and optical profiler image of (c) conventionally machined steel die surface. Details of die surface treatment are given in the text. The images have different vertical scale. The total range of the vertical scale is given as Δz. The average Sq values for the corresponding surfaces are also given.

Fig. 4
Fig. 4

Optical profiler images of F2 glass preforms of extrusion trials A-E. The preforms were extruded through 3D-printed and conventionally machined dies. The images have different vertical scale. The total range of the vertical scale is given as Δz. The average Sq values for the corresponding surfaces are also given.

Fig. 5
Fig. 5

Surface roughness Sq of (a) dies with different surface finish, and (b) preforms of the four extrusion trials considered here. Note the different Sq scale for the die and preform surfaces.

Tables (1)

Tables Icon

Table 1 Die design and metal type, ram speed v0, extrusion set temperature Tset, die temperature Tdie, log of the glass viscosity ηglass, ram force F, welding chamber cross section Achamber, and die constant Kdie calculated using the extrusion conditions for the four extrusion trials considered in this study.

Metrics