Abstract

We demonstrate an electro-optic response that is linear in the amplitude but independent of the sign of the applied electric field. The symmetry-preserving linear electro-optic effect emerges at low applied electric fields in freezing nanodisordered KNTN above the dielectric peak temperature, deep into the nominal paraelectric phase. Strong temperature dependence allows us to attribute the phenomenon to an anomalously reduced thermal agitation in the reorientational response of the underlying polar-nanoregions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. V. Shvartsman and D. C. Lupascu, “Lead-Free Relaxor Ferroelectrics,” J. Am. Ceram. Soc.95, 1–26 (2012).
    [CrossRef]
  2. D. Viehland, M. Wuttig, and L. E. Cross, “The glassy behavior of relaxor ferroelectrics,” Ferroelectrics120, 71–77 (1991).
    [CrossRef]
  3. A. A. Bokov and Z. -G. Ye, “Recent progress in relaxor ferroelectrics with perovskite structure,” J. Mater. Sci41, 31–52 (2006).
    [CrossRef]
  4. Z. Kutnjak, R. Blinc, and J. Petzelt, “The giant electromechanical response in ferroelectric relaxors as a critical phenomenon,” Nature441, 956–959 (2006).
    [CrossRef] [PubMed]
  5. E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics5, 39–42 (2011).
    [CrossRef]
  6. J. Parravicini, C. Conti, A. J. Agranat, and E. DelRe, “Programming scale-free optics in disordered ferroelectrics,” Opt. Lett.37, 2355–2357 (2012).
    [CrossRef] [PubMed]
  7. J. Parravicini, A. J. Agranat, C. Conti, and E. DelRe, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101, 111104 (2012).
    [CrossRef]
  8. A. Gumennik, Y. Kurzweil-Segev, and A. J. Agranat, “Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment,” Opt. Mat. Express1, 332–343 (2011).
    [CrossRef]
  9. Y -C. Chang, C. Wang, S. Yin, R. C. Hoffman, and A. G. Mott, “Kovacs effect enhanced broadband large field of view electro-optic modulators in nanodisordered KTN crystals,” Opt. Express21, 17760–17768 (2013).
    [CrossRef] [PubMed]
  10. D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, “Freezing of the polarization fluctuations in lead magnesium niobate relaxors,” J. Appl. Phys.68, 2916–2921 (1990).
    [CrossRef]
  11. A. A. Bokov and Z. -G. Ye, “Dielectric relaxation in relaxor ferroelectrics,” J. Adv. Dielectrics2, 1241010 (2012).
    [CrossRef]
  12. D. Viehland, J. F. Li, S. Jang, M. Wuttig, and L. E. Cross, “Dipolar-glass model for lead magnesium niobate,” Phys. Rev B43, 8316–8320 (1991).
    [CrossRef]
  13. Y-C. Chang, C. Wang, S. Yin, R. C. Hoffman, and A. G. Mott, “Giant electro-optic effect in nanodisordered KTN crystals,” Opt. Lett.38, 4574–4577 (2013).
    [CrossRef] [PubMed]
  14. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  15. J. Toulouse, “The Three Characteristic Temperatures of Relaxor Dynamics and Their Meaning,” Ferroelectrics369, 203–213 (2008).
    [CrossRef]
  16. J. Parravicini, D. Pierangeli, F. Di Mei, A. J. Agranat, C. Conti, and E. DelRe, “Aging solitons in photorefractive dipolar glasses,” Opt. Express21, 30573–30579 (2013).
    [CrossRef]
  17. D. Pierangeli, J. Parravicini, F. Di Mei, GB Parravicini, A. J. Agranat, and E. DelRe, “Photorefractive light needles in glassy nanodisordered KNTN,” Opt. Lett.391657–1660 (2014).
    [CrossRef] [PubMed]
  18. L. A. Knauss, R. Pattnaik, and J. Toulouse, “Polarization dynamics in the mixed ferroelectric KTa1−xNbxO3,” Phys. Rev. B55, 3472–3479 (1997).
    [CrossRef]
  19. M. D. Glinchuk, E. Eliseev, and A. Morozovska, “Superparaelectric phase in the ensemble of noninteracting ferroelectric nanoparticles,” Phys. Rev. B78, 134107 (2008).
    [CrossRef]

2014

2013

2012

J. Parravicini, C. Conti, A. J. Agranat, and E. DelRe, “Programming scale-free optics in disordered ferroelectrics,” Opt. Lett.37, 2355–2357 (2012).
[CrossRef] [PubMed]

J. Parravicini, A. J. Agranat, C. Conti, and E. DelRe, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101, 111104 (2012).
[CrossRef]

V. V. Shvartsman and D. C. Lupascu, “Lead-Free Relaxor Ferroelectrics,” J. Am. Ceram. Soc.95, 1–26 (2012).
[CrossRef]

A. A. Bokov and Z. -G. Ye, “Dielectric relaxation in relaxor ferroelectrics,” J. Adv. Dielectrics2, 1241010 (2012).
[CrossRef]

2011

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics5, 39–42 (2011).
[CrossRef]

A. Gumennik, Y. Kurzweil-Segev, and A. J. Agranat, “Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment,” Opt. Mat. Express1, 332–343 (2011).
[CrossRef]

2008

J. Toulouse, “The Three Characteristic Temperatures of Relaxor Dynamics and Their Meaning,” Ferroelectrics369, 203–213 (2008).
[CrossRef]

M. D. Glinchuk, E. Eliseev, and A. Morozovska, “Superparaelectric phase in the ensemble of noninteracting ferroelectric nanoparticles,” Phys. Rev. B78, 134107 (2008).
[CrossRef]

2006

A. A. Bokov and Z. -G. Ye, “Recent progress in relaxor ferroelectrics with perovskite structure,” J. Mater. Sci41, 31–52 (2006).
[CrossRef]

Z. Kutnjak, R. Blinc, and J. Petzelt, “The giant electromechanical response in ferroelectric relaxors as a critical phenomenon,” Nature441, 956–959 (2006).
[CrossRef] [PubMed]

1997

L. A. Knauss, R. Pattnaik, and J. Toulouse, “Polarization dynamics in the mixed ferroelectric KTa1−xNbxO3,” Phys. Rev. B55, 3472–3479 (1997).
[CrossRef]

1991

D. Viehland, J. F. Li, S. Jang, M. Wuttig, and L. E. Cross, “Dipolar-glass model for lead magnesium niobate,” Phys. Rev B43, 8316–8320 (1991).
[CrossRef]

D. Viehland, M. Wuttig, and L. E. Cross, “The glassy behavior of relaxor ferroelectrics,” Ferroelectrics120, 71–77 (1991).
[CrossRef]

1990

D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, “Freezing of the polarization fluctuations in lead magnesium niobate relaxors,” J. Appl. Phys.68, 2916–2921 (1990).
[CrossRef]

Agranat, A. J.

D. Pierangeli, J. Parravicini, F. Di Mei, GB Parravicini, A. J. Agranat, and E. DelRe, “Photorefractive light needles in glassy nanodisordered KNTN,” Opt. Lett.391657–1660 (2014).
[CrossRef] [PubMed]

J. Parravicini, D. Pierangeli, F. Di Mei, A. J. Agranat, C. Conti, and E. DelRe, “Aging solitons in photorefractive dipolar glasses,” Opt. Express21, 30573–30579 (2013).
[CrossRef]

J. Parravicini, C. Conti, A. J. Agranat, and E. DelRe, “Programming scale-free optics in disordered ferroelectrics,” Opt. Lett.37, 2355–2357 (2012).
[CrossRef] [PubMed]

J. Parravicini, A. J. Agranat, C. Conti, and E. DelRe, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101, 111104 (2012).
[CrossRef]

A. Gumennik, Y. Kurzweil-Segev, and A. J. Agranat, “Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment,” Opt. Mat. Express1, 332–343 (2011).
[CrossRef]

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics5, 39–42 (2011).
[CrossRef]

Blinc, R.

Z. Kutnjak, R. Blinc, and J. Petzelt, “The giant electromechanical response in ferroelectric relaxors as a critical phenomenon,” Nature441, 956–959 (2006).
[CrossRef] [PubMed]

Bokov, A. A.

A. A. Bokov and Z. -G. Ye, “Dielectric relaxation in relaxor ferroelectrics,” J. Adv. Dielectrics2, 1241010 (2012).
[CrossRef]

A. A. Bokov and Z. -G. Ye, “Recent progress in relaxor ferroelectrics with perovskite structure,” J. Mater. Sci41, 31–52 (2006).
[CrossRef]

Chang, Y -C.

Chang, Y-C.

Conti, C.

J. Parravicini, D. Pierangeli, F. Di Mei, A. J. Agranat, C. Conti, and E. DelRe, “Aging solitons in photorefractive dipolar glasses,” Opt. Express21, 30573–30579 (2013).
[CrossRef]

J. Parravicini, A. J. Agranat, C. Conti, and E. DelRe, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101, 111104 (2012).
[CrossRef]

J. Parravicini, C. Conti, A. J. Agranat, and E. DelRe, “Programming scale-free optics in disordered ferroelectrics,” Opt. Lett.37, 2355–2357 (2012).
[CrossRef] [PubMed]

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics5, 39–42 (2011).
[CrossRef]

Cross, L. E.

D. Viehland, M. Wuttig, and L. E. Cross, “The glassy behavior of relaxor ferroelectrics,” Ferroelectrics120, 71–77 (1991).
[CrossRef]

D. Viehland, J. F. Li, S. Jang, M. Wuttig, and L. E. Cross, “Dipolar-glass model for lead magnesium niobate,” Phys. Rev B43, 8316–8320 (1991).
[CrossRef]

D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, “Freezing of the polarization fluctuations in lead magnesium niobate relaxors,” J. Appl. Phys.68, 2916–2921 (1990).
[CrossRef]

DelRe, E.

Di Mei, F.

Eliseev, E.

M. D. Glinchuk, E. Eliseev, and A. Morozovska, “Superparaelectric phase in the ensemble of noninteracting ferroelectric nanoparticles,” Phys. Rev. B78, 134107 (2008).
[CrossRef]

Glinchuk, M. D.

M. D. Glinchuk, E. Eliseev, and A. Morozovska, “Superparaelectric phase in the ensemble of noninteracting ferroelectric nanoparticles,” Phys. Rev. B78, 134107 (2008).
[CrossRef]

Gumennik, A.

A. Gumennik, Y. Kurzweil-Segev, and A. J. Agranat, “Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment,” Opt. Mat. Express1, 332–343 (2011).
[CrossRef]

Hoffman, R. C.

Jang, S.

D. Viehland, J. F. Li, S. Jang, M. Wuttig, and L. E. Cross, “Dipolar-glass model for lead magnesium niobate,” Phys. Rev B43, 8316–8320 (1991).
[CrossRef]

Jang, S. J.

D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, “Freezing of the polarization fluctuations in lead magnesium niobate relaxors,” J. Appl. Phys.68, 2916–2921 (1990).
[CrossRef]

Knauss, L. A.

L. A. Knauss, R. Pattnaik, and J. Toulouse, “Polarization dynamics in the mixed ferroelectric KTa1−xNbxO3,” Phys. Rev. B55, 3472–3479 (1997).
[CrossRef]

Kurzweil-Segev, Y.

A. Gumennik, Y. Kurzweil-Segev, and A. J. Agranat, “Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment,” Opt. Mat. Express1, 332–343 (2011).
[CrossRef]

Kutnjak, Z.

Z. Kutnjak, R. Blinc, and J. Petzelt, “The giant electromechanical response in ferroelectric relaxors as a critical phenomenon,” Nature441, 956–959 (2006).
[CrossRef] [PubMed]

Li, J. F.

D. Viehland, J. F. Li, S. Jang, M. Wuttig, and L. E. Cross, “Dipolar-glass model for lead magnesium niobate,” Phys. Rev B43, 8316–8320 (1991).
[CrossRef]

Lupascu, D. C.

V. V. Shvartsman and D. C. Lupascu, “Lead-Free Relaxor Ferroelectrics,” J. Am. Ceram. Soc.95, 1–26 (2012).
[CrossRef]

Morozovska, A.

M. D. Glinchuk, E. Eliseev, and A. Morozovska, “Superparaelectric phase in the ensemble of noninteracting ferroelectric nanoparticles,” Phys. Rev. B78, 134107 (2008).
[CrossRef]

Mott, A. G.

Parravicini, GB

Parravicini, J.

Pattnaik, R.

L. A. Knauss, R. Pattnaik, and J. Toulouse, “Polarization dynamics in the mixed ferroelectric KTa1−xNbxO3,” Phys. Rev. B55, 3472–3479 (1997).
[CrossRef]

Petzelt, J.

Z. Kutnjak, R. Blinc, and J. Petzelt, “The giant electromechanical response in ferroelectric relaxors as a critical phenomenon,” Nature441, 956–959 (2006).
[CrossRef] [PubMed]

Pierangeli, D.

Shvartsman, V. V.

V. V. Shvartsman and D. C. Lupascu, “Lead-Free Relaxor Ferroelectrics,” J. Am. Ceram. Soc.95, 1–26 (2012).
[CrossRef]

Spinozzi, E.

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics5, 39–42 (2011).
[CrossRef]

Toulouse, J.

J. Toulouse, “The Three Characteristic Temperatures of Relaxor Dynamics and Their Meaning,” Ferroelectrics369, 203–213 (2008).
[CrossRef]

L. A. Knauss, R. Pattnaik, and J. Toulouse, “Polarization dynamics in the mixed ferroelectric KTa1−xNbxO3,” Phys. Rev. B55, 3472–3479 (1997).
[CrossRef]

Viehland, D.

D. Viehland, M. Wuttig, and L. E. Cross, “The glassy behavior of relaxor ferroelectrics,” Ferroelectrics120, 71–77 (1991).
[CrossRef]

D. Viehland, J. F. Li, S. Jang, M. Wuttig, and L. E. Cross, “Dipolar-glass model for lead magnesium niobate,” Phys. Rev B43, 8316–8320 (1991).
[CrossRef]

D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, “Freezing of the polarization fluctuations in lead magnesium niobate relaxors,” J. Appl. Phys.68, 2916–2921 (1990).
[CrossRef]

Wang, C.

Wuttig, M.

D. Viehland, J. F. Li, S. Jang, M. Wuttig, and L. E. Cross, “Dipolar-glass model for lead magnesium niobate,” Phys. Rev B43, 8316–8320 (1991).
[CrossRef]

D. Viehland, M. Wuttig, and L. E. Cross, “The glassy behavior of relaxor ferroelectrics,” Ferroelectrics120, 71–77 (1991).
[CrossRef]

D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, “Freezing of the polarization fluctuations in lead magnesium niobate relaxors,” J. Appl. Phys.68, 2916–2921 (1990).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Ye, Z. -G.

A. A. Bokov and Z. -G. Ye, “Dielectric relaxation in relaxor ferroelectrics,” J. Adv. Dielectrics2, 1241010 (2012).
[CrossRef]

A. A. Bokov and Z. -G. Ye, “Recent progress in relaxor ferroelectrics with perovskite structure,” J. Mater. Sci41, 31–52 (2006).
[CrossRef]

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Yin, S.

Appl. Phys. Lett.

J. Parravicini, A. J. Agranat, C. Conti, and E. DelRe, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101, 111104 (2012).
[CrossRef]

Ferroelectrics

D. Viehland, M. Wuttig, and L. E. Cross, “The glassy behavior of relaxor ferroelectrics,” Ferroelectrics120, 71–77 (1991).
[CrossRef]

J. Toulouse, “The Three Characteristic Temperatures of Relaxor Dynamics and Their Meaning,” Ferroelectrics369, 203–213 (2008).
[CrossRef]

J. Adv. Dielectrics

A. A. Bokov and Z. -G. Ye, “Dielectric relaxation in relaxor ferroelectrics,” J. Adv. Dielectrics2, 1241010 (2012).
[CrossRef]

J. Am. Ceram. Soc.

V. V. Shvartsman and D. C. Lupascu, “Lead-Free Relaxor Ferroelectrics,” J. Am. Ceram. Soc.95, 1–26 (2012).
[CrossRef]

J. Appl. Phys.

D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, “Freezing of the polarization fluctuations in lead magnesium niobate relaxors,” J. Appl. Phys.68, 2916–2921 (1990).
[CrossRef]

J. Mater. Sci

A. A. Bokov and Z. -G. Ye, “Recent progress in relaxor ferroelectrics with perovskite structure,” J. Mater. Sci41, 31–52 (2006).
[CrossRef]

Nat. Photonics

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics5, 39–42 (2011).
[CrossRef]

Nature

Z. Kutnjak, R. Blinc, and J. Petzelt, “The giant electromechanical response in ferroelectric relaxors as a critical phenomenon,” Nature441, 956–959 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mat. Express

A. Gumennik, Y. Kurzweil-Segev, and A. J. Agranat, “Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment,” Opt. Mat. Express1, 332–343 (2011).
[CrossRef]

Phys. Rev B

D. Viehland, J. F. Li, S. Jang, M. Wuttig, and L. E. Cross, “Dipolar-glass model for lead magnesium niobate,” Phys. Rev B43, 8316–8320 (1991).
[CrossRef]

Phys. Rev. B

L. A. Knauss, R. Pattnaik, and J. Toulouse, “Polarization dynamics in the mixed ferroelectric KTa1−xNbxO3,” Phys. Rev. B55, 3472–3479 (1997).
[CrossRef]

M. D. Glinchuk, E. Eliseev, and A. Morozovska, “Superparaelectric phase in the ensemble of noninteracting ferroelectric nanoparticles,” Phys. Rev. B78, 134107 (2008).
[CrossRef]

Other

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dielectric spectroscopy: Real part of the KNTN dielectric constant in the quasi-static temperature regime (cooling rate α ≃ ±0.1mK/s) manifesting dispersion. The inset shows (at 1KHz) the ergodicity breaking below Tm, signalled by marked thermal hysteresis for cooling/heating curves at the same α, and the deviation from Curie-Weiss mean-field behavior (black dashed line) in the region T < T* = 305K.

Fig. 2
Fig. 2

(a) Cross-polarizer setup and (b) transmission microscopy images (intensity is in arbitrary units) in zero-field-cooling at T = 287K and (c) at T = Tm = 285.5K; (d) applying a 0.85kV/cm dc field the glassy state at Tm turns into ferroelectric domains with geometrically fixed boundaries at 45° with respect to the principal axes of the crystal. Normalized intensity Fourier transform (insets in (b), (c) and (d)) that highlights the appearance of a diagonal feature in the spectrum associated to ferroelectric domains. The added spectrum in (d) is continuous, with no fixed periodicity, typical of a globally disordered state.

Fig. 3
Fig. 3

Transmission I/I0 of light through crossed polarizers as a function of E for different temperatures: (a) for T = 301K, (b) 298K, (c) 295K, (d) 293K, and (e) 290K. In the latter case the natural birefringence of the KNTN sample has been compensated with a λ/4 waveplate. Note the decreasing visibility in the fringe pattern for high fields and lower temperatures, as expected in PNR dominated media. (f) Summary and comparison of Δn versus E for the different temperatures signalling the spike-like distortion (highlighted in the inset for 290 and 293 K, lines are fits with −Δn ∝ |E|) of the expected parabolic dependence as Tm is approached.

Fig. 4
Fig. 4

(a) The P versus E relationship as a function of T from the measured values of P = ± ( 2 Δ n / n 0 3 ( g 11 g 12 ) ) 1 / 2, the sign depending on the sign of E) indicates a temperature dependent distortion of linearity towards an S-shaped behavior. Full lines represent the fit with the super-polarization model of Eq. (1). (b) Linear temperature scaling of the inverse fit parameter c (see text) that gives the shift temperature T0 = (283 ± 2)K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P = p PNR + p χ p = ρ p 0 tanh [ p 0 | E | k B ( T T 0 ) ] u + ε 0 χ p E ,
Δ n = ( 1 / 2 ) n 3 g eff ε 0 2 ( ε r 1 ) 2 E 2 n 3 g eff ρ p 0 tanh [ p 0 | E | k ( T T 0 ) ] ε 0 ( ε r 1 ) | E | ( 1 / 2 ) n 3 g eff ρ 2 p 0 2 tanh [ p 0 | E | k ( T T 0 ) ] .

Metrics