Abstract

Cholesteric liquid crystals (CLCs) are selectively reflective materials that can exhibit a number of dynamic optical responses. We recently reported on electrically-induced, seven-fold increase in bandwidth in polymer stabilized CLCs (PSCLCs) subjected to DC electric fields. Here, the underlying mechanism of the electrically-controllable bandwidth broadening in PSCLCs is isolated by employing a variety of electro-optic experiments. We conclude that the mechanism is ionic charge trapping by the polymer network which subjects the material system to pitch expansion near the positive electrode and pitch compression near the negative electrode resulting in approximately linear pitch variation throughout the cell thickness.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide tunable laser based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystal

Hongbo Lu, Cheng Wei, Qiang Zhang, Miao Xu, Yunsheng Ding, Guobing Zhang, Jun Zhu, Kang Xie, Xiaojuan Zhang, Zhijia Hu, and Longzhen Qiu
Photon. Res. 7(2) 137-143 (2019)

Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization

Wen-Song Li, Ling-Ling Ma, Ling-Li Gong, Sen-Sen Li, Can Yang, Bin Luo, Wei Hu, and Lu-Jian Chen
Opt. Mater. Express 6(1) 19-28 (2016)

Polymer stabilized cholesteric liquid crystal particles with high thermal stability

Qi Yan, Zhan Wei, Pengcheng Lin, Zhengdong Cheng, Mingrui Pu, Zhuoran Huang, and Wei Lin
Opt. Mater. Express 8(6) 1536-1550 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H.-S. Kitzerow and C. Bahr, Chirality in Liquid Crystals (Springer-Verlag, 2001).
  2. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1995).
  3. L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer, 1994).
  4. M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
    [Crossref] [PubMed]
  5. V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech House, 1999).
  6. D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
    [Crossref]
  7. R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
    [Crossref]
  8. R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
    [Crossref]
  9. T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys. 107(7), 073110 (2010).
    [Crossref]
  10. V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D.-K. Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
    [Crossref]
  11. C. C. Chang, L. C. Chien, and R. B. Meyer, “Piezoelectric effects in cholesteric elastomer gels,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(1), 534–538 (1997).
    [Crossref]
  12. W. Meier and H. Finkelmann, “Piezoelectric effects in cholesteric elastomers. 1. Influence of the helicoidal pitch on the piezoelectric coefficient,” Macromolecules 26(8), 1811–1817 (1993).
    [Crossref]
  13. J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
    [Crossref] [PubMed]
  14. S.-T. Wu and D.-k. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).
  15. N. V. Madhusudana and R. Pratibha, “An experimental investigation of electromechanical coupling in cholesteric liquid crystals,” Liq. Cryst. 5(6), 1827–1840 (1989).
    [Crossref]
  16. H. P. Padmini and N. V. Madhusudana, “Electromechanical effect in cholesteric mixtures with a compensation temperature,” Liq. Cryst. 14(2), 497–511 (1993).
    [Crossref]
  17. M. Scalerandi, P. Pagliusi, G. Cipparrone, and G. Barbero, “Influence of the ions on the dynamical response of a nematic cell submitted to a dc voltage,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051708 (2004).
    [Crossref] [PubMed]
  18. P. Song, L. Yu, A. Jiao, F. Wang, F. Liu, C. Zhang, C. Yang, H. Cao, and H. Yang, “The influence of charged ions on the electro-optical properties of polymer-dispersed liquid crystal films prepared by ultraviolet-initiated cationic polymerization,” J. Appl. Phys. 112(4), 043106 (2012).
    [Crossref]
  19. P. Pagliusi, B. Zappone, G. Cipparrone, and G. Barbero, “Molecular reorientation dynamics due to direct current voltage-induced ion redistribution in undoped nematic planar cell,” J. Appl. Phys. 96(1), 218 (2004).
    [Crossref]
  20. R. Bartolino, A. Ruffolo, F. Simoni, N. Scaramuzza, and U. L. C. Group, “Deformations induced by d. c. electric field in cholesteric liquid crystals,” Nuovo Cimento Soc Ital Fis 1(5), 607–614 (1982).
    [Crossref]
  21. J.-H. Son, S. B. Park, W.-C. Zin, and J.-K. Song, “Ionic impurity control by a photopolymerization process of reactive mesogen,” Liq. Cryst. 40(4), 458–467 (2013).
    [Crossref]
  22. L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(5), 051706 (2012).
    [Crossref] [PubMed]

2013 (1)

J.-H. Son, S. B. Park, W.-C. Zin, and J.-K. Song, “Ionic impurity control by a photopolymerization process of reactive mesogen,” Liq. Cryst. 40(4), 458–467 (2013).
[Crossref]

2012 (3)

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(5), 051706 (2012).
[Crossref] [PubMed]

P. Song, L. Yu, A. Jiao, F. Wang, F. Liu, C. Zhang, C. Yang, H. Cao, and H. Yang, “The influence of charged ions on the electro-optical properties of polymer-dispersed liquid crystal films prepared by ultraviolet-initiated cationic polymerization,” J. Appl. Phys. 112(4), 043106 (2012).
[Crossref]

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

2011 (1)

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D.-K. Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

2010 (1)

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys. 107(7), 073110 (2010).
[Crossref]

2004 (2)

M. Scalerandi, P. Pagliusi, G. Cipparrone, and G. Barbero, “Influence of the ions on the dynamical response of a nematic cell submitted to a dc voltage,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051708 (2004).
[Crossref] [PubMed]

P. Pagliusi, B. Zappone, G. Cipparrone, and G. Barbero, “Molecular reorientation dynamics due to direct current voltage-induced ion redistribution in undoped nematic planar cell,” J. Appl. Phys. 96(1), 218 (2004).
[Crossref]

1999 (1)

R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
[Crossref]

1998 (1)

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

1997 (1)

C. C. Chang, L. C. Chien, and R. B. Meyer, “Piezoelectric effects in cholesteric elastomer gels,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(1), 534–538 (1997).
[Crossref]

1995 (1)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

1993 (2)

W. Meier and H. Finkelmann, “Piezoelectric effects in cholesteric elastomers. 1. Influence of the helicoidal pitch on the piezoelectric coefficient,” Macromolecules 26(8), 1811–1817 (1993).
[Crossref]

H. P. Padmini and N. V. Madhusudana, “Electromechanical effect in cholesteric mixtures with a compensation temperature,” Liq. Cryst. 14(2), 497–511 (1993).
[Crossref]

1989 (1)

N. V. Madhusudana and R. Pratibha, “An experimental investigation of electromechanical coupling in cholesteric liquid crystals,” Liq. Cryst. 5(6), 1827–1840 (1989).
[Crossref]

1987 (1)

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

1982 (1)

R. Bartolino, A. Ruffolo, F. Simoni, N. Scaramuzza, and U. L. C. Group, “Deformations induced by d. c. electric field in cholesteric liquid crystals,” Nuovo Cimento Soc Ital Fis 1(5), 607–614 (1982).
[Crossref]

Bailey, C. A.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D.-K. Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

Barbero, G.

M. Scalerandi, P. Pagliusi, G. Cipparrone, and G. Barbero, “Influence of the ions on the dynamical response of a nematic cell submitted to a dc voltage,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051708 (2004).
[Crossref] [PubMed]

P. Pagliusi, B. Zappone, G. Cipparrone, and G. Barbero, “Molecular reorientation dynamics due to direct current voltage-induced ion redistribution in undoped nematic planar cell,” J. Appl. Phys. 96(1), 218 (2004).
[Crossref]

Bartolino, R.

R. Bartolino, A. Ruffolo, F. Simoni, N. Scaramuzza, and U. L. C. Group, “Deformations induced by d. c. electric field in cholesteric liquid crystals,” Nuovo Cimento Soc Ital Fis 1(5), 607–614 (1982).
[Crossref]

Bos, P. J.

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(5), 051706 (2012).
[Crossref] [PubMed]

Broer, D. J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Bunning, T. J.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D.-K. Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys. 107(7), 073110 (2010).
[Crossref]

Cao, H.

P. Song, L. Yu, A. Jiao, F. Wang, F. Liu, C. Zhang, C. Yang, H. Cao, and H. Yang, “The influence of charged ions on the electro-optical properties of polymer-dispersed liquid crystal films prepared by ultraviolet-initiated cationic polymerization,” J. Appl. Phys. 112(4), 043106 (2012).
[Crossref]

Chang, C. C.

C. C. Chang, L. C. Chien, and R. B. Meyer, “Piezoelectric effects in cholesteric elastomer gels,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(1), 534–538 (1997).
[Crossref]

Chien, L. C.

C. C. Chang, L. C. Chien, and R. B. Meyer, “Piezoelectric effects in cholesteric elastomer gels,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(1), 534–538 (1997).
[Crossref]

Cipparrone, G.

M. Scalerandi, P. Pagliusi, G. Cipparrone, and G. Barbero, “Influence of the ions on the dynamical response of a nematic cell submitted to a dc voltage,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051708 (2004).
[Crossref] [PubMed]

P. Pagliusi, B. Zappone, G. Cipparrone, and G. Barbero, “Molecular reorientation dynamics due to direct current voltage-induced ion redistribution in undoped nematic planar cell,” J. Appl. Phys. 96(1), 218 (2004).
[Crossref]

Duning, M. M.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D.-K. Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

Finkelmann, H.

W. Meier and H. Finkelmann, “Piezoelectric effects in cholesteric elastomers. 1. Influence of the helicoidal pitch on the piezoelectric coefficient,” Macromolecules 26(8), 1811–1817 (1993).
[Crossref]

Freer, A. S.

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys. 107(7), 073110 (2010).
[Crossref]

Group, U. L. C.

R. Bartolino, A. Ruffolo, F. Simoni, N. Scaramuzza, and U. L. C. Group, “Deformations induced by d. c. electric field in cholesteric liquid crystals,” Nuovo Cimento Soc Ital Fis 1(5), 607–614 (1982).
[Crossref]

Hikmet, R. A. M.

R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
[Crossref]

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

Jiao, A.

P. Song, L. Yu, A. Jiao, F. Wang, F. Liu, C. Zhang, C. Yang, H. Cao, and H. Yang, “The influence of charged ions on the electro-optical properties of polymer-dispersed liquid crystal films prepared by ultraviolet-initiated cationic polymerization,” J. Appl. Phys. 112(4), 043106 (2012).
[Crossref]

Kemperman, H.

R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
[Crossref]

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

Liu, F.

P. Song, L. Yu, A. Jiao, F. Wang, F. Liu, C. Zhang, C. Yang, H. Cao, and H. Yang, “The influence of charged ions on the electro-optical properties of polymer-dispersed liquid crystal films prepared by ultraviolet-initiated cationic polymerization,” J. Appl. Phys. 112(4), 043106 (2012).
[Crossref]

Lu, L.

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(5), 051706 (2012).
[Crossref] [PubMed]

Lub, J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Madhusudana, N. V.

H. P. Padmini and N. V. Madhusudana, “Electromechanical effect in cholesteric mixtures with a compensation temperature,” Liq. Cryst. 14(2), 497–511 (1993).
[Crossref]

N. V. Madhusudana and R. Pratibha, “An experimental investigation of electromechanical coupling in cholesteric liquid crystals,” Liq. Cryst. 5(6), 1827–1840 (1989).
[Crossref]

Meier, W.

W. Meier and H. Finkelmann, “Piezoelectric effects in cholesteric elastomers. 1. Influence of the helicoidal pitch on the piezoelectric coefficient,” Macromolecules 26(8), 1811–1817 (1993).
[Crossref]

Meyer, R. B.

C. C. Chang, L. C. Chien, and R. B. Meyer, “Piezoelectric effects in cholesteric elastomer gels,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(1), 534–538 (1997).
[Crossref]

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

Mitov, M.

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

Mol, G. N.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Natarajan, L. V.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D.-K. Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

Padmini, H. P.

H. P. Padmini and N. V. Madhusudana, “Electromechanical effect in cholesteric mixtures with a compensation temperature,” Liq. Cryst. 14(2), 497–511 (1993).
[Crossref]

Pagliusi, P.

M. Scalerandi, P. Pagliusi, G. Cipparrone, and G. Barbero, “Influence of the ions on the dynamical response of a nematic cell submitted to a dc voltage,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051708 (2004).
[Crossref] [PubMed]

P. Pagliusi, B. Zappone, G. Cipparrone, and G. Barbero, “Molecular reorientation dynamics due to direct current voltage-induced ion redistribution in undoped nematic planar cell,” J. Appl. Phys. 96(1), 218 (2004).
[Crossref]

Park, S. B.

J.-H. Son, S. B. Park, W.-C. Zin, and J.-K. Song, “Ionic impurity control by a photopolymerization process of reactive mesogen,” Liq. Cryst. 40(4), 458–467 (2013).
[Crossref]

Patel, J. S.

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

Pratibha, R.

N. V. Madhusudana and R. Pratibha, “An experimental investigation of electromechanical coupling in cholesteric liquid crystals,” Liq. Cryst. 5(6), 1827–1840 (1989).
[Crossref]

Ruffolo, A.

R. Bartolino, A. Ruffolo, F. Simoni, N. Scaramuzza, and U. L. C. Group, “Deformations induced by d. c. electric field in cholesteric liquid crystals,” Nuovo Cimento Soc Ital Fis 1(5), 607–614 (1982).
[Crossref]

Scalerandi, M.

M. Scalerandi, P. Pagliusi, G. Cipparrone, and G. Barbero, “Influence of the ions on the dynamical response of a nematic cell submitted to a dc voltage,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051708 (2004).
[Crossref] [PubMed]

Scaramuzza, N.

R. Bartolino, A. Ruffolo, F. Simoni, N. Scaramuzza, and U. L. C. Group, “Deformations induced by d. c. electric field in cholesteric liquid crystals,” Nuovo Cimento Soc Ital Fis 1(5), 607–614 (1982).
[Crossref]

Sergan, V.

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(5), 051706 (2012).
[Crossref] [PubMed]

Simoni, F.

R. Bartolino, A. Ruffolo, F. Simoni, N. Scaramuzza, and U. L. C. Group, “Deformations induced by d. c. electric field in cholesteric liquid crystals,” Nuovo Cimento Soc Ital Fis 1(5), 607–614 (1982).
[Crossref]

Son, J.-H.

J.-H. Son, S. B. Park, W.-C. Zin, and J.-K. Song, “Ionic impurity control by a photopolymerization process of reactive mesogen,” Liq. Cryst. 40(4), 458–467 (2013).
[Crossref]

Song, J.-K.

J.-H. Son, S. B. Park, W.-C. Zin, and J.-K. Song, “Ionic impurity control by a photopolymerization process of reactive mesogen,” Liq. Cryst. 40(4), 458–467 (2013).
[Crossref]

Song, P.

P. Song, L. Yu, A. Jiao, F. Wang, F. Liu, C. Zhang, C. Yang, H. Cao, and H. Yang, “The influence of charged ions on the electro-optical properties of polymer-dispersed liquid crystal films prepared by ultraviolet-initiated cationic polymerization,” J. Appl. Phys. 112(4), 043106 (2012).
[Crossref]

Sutherland, R. L.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D.-K. Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

Tabiryan, N. V.

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys. 107(7), 073110 (2010).
[Crossref]

Tondiglia, V. P.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D.-K. Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

Voevodin, A.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D.-K. Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

Wang, F.

P. Song, L. Yu, A. Jiao, F. Wang, F. Liu, C. Zhang, C. Yang, H. Cao, and H. Yang, “The influence of charged ions on the electro-optical properties of polymer-dispersed liquid crystal films prepared by ultraviolet-initiated cationic polymerization,” J. Appl. Phys. 112(4), 043106 (2012).
[Crossref]

White, T. J.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D.-K. Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys. 107(7), 073110 (2010).
[Crossref]

Yang, C.

P. Song, L. Yu, A. Jiao, F. Wang, F. Liu, C. Zhang, C. Yang, H. Cao, and H. Yang, “The influence of charged ions on the electro-optical properties of polymer-dispersed liquid crystal films prepared by ultraviolet-initiated cationic polymerization,” J. Appl. Phys. 112(4), 043106 (2012).
[Crossref]

Yang, D.-K.

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D.-K. Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

Yang, H.

P. Song, L. Yu, A. Jiao, F. Wang, F. Liu, C. Zhang, C. Yang, H. Cao, and H. Yang, “The influence of charged ions on the electro-optical properties of polymer-dispersed liquid crystal films prepared by ultraviolet-initiated cationic polymerization,” J. Appl. Phys. 112(4), 043106 (2012).
[Crossref]

Yu, L.

P. Song, L. Yu, A. Jiao, F. Wang, F. Liu, C. Zhang, C. Yang, H. Cao, and H. Yang, “The influence of charged ions on the electro-optical properties of polymer-dispersed liquid crystal films prepared by ultraviolet-initiated cationic polymerization,” J. Appl. Phys. 112(4), 043106 (2012).
[Crossref]

Zappone, B.

P. Pagliusi, B. Zappone, G. Cipparrone, and G. Barbero, “Molecular reorientation dynamics due to direct current voltage-induced ion redistribution in undoped nematic planar cell,” J. Appl. Phys. 96(1), 218 (2004).
[Crossref]

Zhang, C.

P. Song, L. Yu, A. Jiao, F. Wang, F. Liu, C. Zhang, C. Yang, H. Cao, and H. Yang, “The influence of charged ions on the electro-optical properties of polymer-dispersed liquid crystal films prepared by ultraviolet-initiated cationic polymerization,” J. Appl. Phys. 112(4), 043106 (2012).
[Crossref]

Zin, W.-C.

J.-H. Son, S. B. Park, W.-C. Zin, and J.-K. Song, “Ionic impurity control by a photopolymerization process of reactive mesogen,” Liq. Cryst. 40(4), 458–467 (2013).
[Crossref]

Adv. Mater. (1)

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (4)

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys. 107(7), 073110 (2010).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, C. A. Bailey, M. M. Duning, R. L. Sutherland, D.-K. Yang, A. Voevodin, T. J. White, and T. J. Bunning, “Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals,” J. Appl. Phys. 110(5), 053109 (2011).
[Crossref]

P. Song, L. Yu, A. Jiao, F. Wang, F. Liu, C. Zhang, C. Yang, H. Cao, and H. Yang, “The influence of charged ions on the electro-optical properties of polymer-dispersed liquid crystal films prepared by ultraviolet-initiated cationic polymerization,” J. Appl. Phys. 112(4), 043106 (2012).
[Crossref]

P. Pagliusi, B. Zappone, G. Cipparrone, and G. Barbero, “Molecular reorientation dynamics due to direct current voltage-induced ion redistribution in undoped nematic planar cell,” J. Appl. Phys. 96(1), 218 (2004).
[Crossref]

Liq. Cryst. (4)

J.-H. Son, S. B. Park, W.-C. Zin, and J.-K. Song, “Ionic impurity control by a photopolymerization process of reactive mesogen,” Liq. Cryst. 40(4), 458–467 (2013).
[Crossref]

N. V. Madhusudana and R. Pratibha, “An experimental investigation of electromechanical coupling in cholesteric liquid crystals,” Liq. Cryst. 5(6), 1827–1840 (1989).
[Crossref]

H. P. Padmini and N. V. Madhusudana, “Electromechanical effect in cholesteric mixtures with a compensation temperature,” Liq. Cryst. 14(2), 497–511 (1993).
[Crossref]

R. A. M. Hikmet and H. Kemperman, “Switchable mirrors of chiral liquid crystal gels,” Liq. Cryst. 26(11), 1645–1653 (1999).
[Crossref]

Macromolecules (1)

W. Meier and H. Finkelmann, “Piezoelectric effects in cholesteric elastomers. 1. Influence of the helicoidal pitch on the piezoelectric coefficient,” Macromolecules 26(8), 1811–1817 (1993).
[Crossref]

Nature (2)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

Nuovo Cimento Soc Ital Fis (1)

R. Bartolino, A. Ruffolo, F. Simoni, N. Scaramuzza, and U. L. C. Group, “Deformations induced by d. c. electric field in cholesteric liquid crystals,” Nuovo Cimento Soc Ital Fis 1(5), 607–614 (1982).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(5), 051706 (2012).
[Crossref] [PubMed]

M. Scalerandi, P. Pagliusi, G. Cipparrone, and G. Barbero, “Influence of the ions on the dynamical response of a nematic cell submitted to a dc voltage,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 051708 (2004).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

C. C. Chang, L. C. Chien, and R. B. Meyer, “Piezoelectric effects in cholesteric elastomer gels,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(1), 534–538 (1997).
[Crossref]

Phys. Rev. Lett. (1)

J. S. Patel and R. B. Meyer, “Flexoelectric electro-optics of a cholesteric liquid crystal,” Phys. Rev. Lett. 58(15), 1538–1540 (1987).
[Crossref] [PubMed]

Other (5)

S.-T. Wu and D.-k. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech House, 1999).

H.-S. Kitzerow and C. Bahr, Chirality in Liquid Crystals (Springer-Verlag, 2001).

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1995).

L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer, 1994).

Supplementary Material (2)

» Media 1: AVI (105476 KB)     
» Media 2: AVI (51888 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a) Transmission spectra of a PSCLC cell subjected to DC fields ranging from 0 to 4 V/μm. b) Reflection spectra of a PSCLC cell with zero (), forward (), and reverse () DC bias applied.
Fig. 2
Fig. 2 (a) Representative real (■, ●) and imaginary (□, ○) dielectric spectra at 0 V (red, circles) and 34 V (black, squares) DC bias as a function of frequency. Best fit theoretical curves were calculated from the equivalent circuit model (inset). (b) The effective conductivity (σeff) was calculated from the dielectric spectra and plotted as a function of applied DC field for an unstabilized CLC (●) and PSCLC (■). Optical spectra were simultaneously collected during dielectric analysis and used to calculate the measured percent change in pitch (Δp/po, %) as a function of electric field for the PSCLC sample.
Fig. 3
Fig. 3 Transmission of unstabilized (■) and polymer stabilized (●) twisted nematic cells under DC fields from 0 to 5.5 V/μm.
Fig. 4
Fig. 4 Transmission micrographs of cells prepared with patterned (interdigitated) electrodes. (i) Bright field transmission micrograph of a cell with 15 μm (spacing between electrodes) x 15 μm (electrode width) x 9 μm (cell gap thickness). (ii) Polarized optical micrograph taken between crossed polarizers of a polymer stabilized nematic when subjected to a + 25 V DC field. See Media 2. (iii) Polarized optical micrograph taken between crossed polarizers of a polymer stabilized nematic when subjected to a −25 V DC field. (iv) Polarized optical micrograph taken between crossed polarizers of an unstabilized nematic when subjected to a 15 V DC field. See Media 1. (Inset) Images (ii-iv) were collected with the nematic director aligned to the polarizer and analyzer as shown. Images (i-iv) are collected with the magnification, resolution, and sizing to enable direct comparison.
Fig. 5
Fig. 5 Illustration of the ionic charge trapping mechanism proposed here. a) Before application of the DC bias the CLC director configuration (gray) is uniform across the cell gap. The polymer network (blue lines), anionic (-) and cationic ( + ) contaminants, and bound cations () on the polymer network are illustrated. b) After applying a DC bias above the voltage threshold, a fully developed ionic double layer is formed resulting in an electric field (EDL) that opposes the applied electric field (EAP). However EDL is insufficient to effectively screen EAP from the bulk PSCLC. This results in an interaction between the net electric field (E) with the bound cations, deforming the polymer network, and a deformation of the CLC director configuration.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔλΔn p o =( n e n o ) p o

Metrics