Abstract

Abstract: A novel near-infrared (NIR) quantum cutting KCaGd(PO4)2:Ce3+,Yb3+ phosphor was successfully developed. Due to the cooperative energy transfer from one Ce3+ to two Yb3+, an intense NIR emission around 1021 nm of Yb3+:2F5/2-2F7/2 transition was obtained under 324 nm excitation. Yb3+ concentration dependent quantum efficiency has been calculated and the theoretical maximum efficiency approaches up to 158.2%. Because the emission of Yb3+ around 1021 nm is matched with the band gap of crystalline Si, the phosphors could be a potential candidate for silicon-based solar cells.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Morton, “Solar energy: A new day dawning? Silicon Valley sunrise,” Nature443(7107), 19–22 (2006).
    [CrossRef] [PubMed]
  2. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
    [CrossRef] [PubMed]
  3. B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
    [CrossRef]
  4. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
    [CrossRef]
  5. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
    [CrossRef]
  6. Q. Zhang, J. Wang, G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in Novel Quantum Cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ Phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
    [CrossRef]
  7. Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
    [CrossRef] [PubMed]
  8. P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
    [CrossRef]
  9. G. Lakshminarayana and J. Qiu, “Near-infrared quantum cutting in Re3+/Yb3+ (Re=Pr, Tb, and Tm): GeO2–B2O3–ZnO–LaF3 glasses via downconversion,” J. Alloy. Comp.481(1-2), 582–589 (2009).
    [CrossRef]
  10. Z. Wang, Y. Wang, Y. Li, and H. Zhang, “Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion,” J. Mater. Res.26(05), 693–696 (2011).
    [CrossRef]
  11. W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, and X. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys.14(19), 6974–6980 (2012).
    [CrossRef]
  12. J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through Downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
    [CrossRef]
  13. G. Gao and L. Wondraczek, “Near-infrared down-conversion in Mn2+–Yb3+ Co-Doped Zn2GeO4,” J. Mater. Chem. C1(10), 1952–1958 (2013).
    [CrossRef]
  14. T. Yu, J. Zhou, S. Ye, and J. Qiu, “Broadband near-infrared quantum cutting in Eu2+ and Yb3+ Ions Co-Doped CaAl2O4 Phosphor,” J. Electrochem. Soc.157(10), A1073–A1075 (2010).
    [CrossRef]
  15. H. Lin, S. Zhou, H. Teng, Y. Li, W. Li, X. Hou, and T. Jia, “Near infrared quantum cutting in heavy Yb doped Ce0.03Yb3xY(2.97−3x)Al5O12 transparent ceramics for crystalline silicon solar cells,” J. Appl. Phys.107(4), 043107 (2010).
    [CrossRef]
  16. J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ Co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
    [CrossRef]
  17. J. Chen, H. Zhang, F. Li, and H. Guo, “High efficient near-infrared quantum cutting in Ce3+,Yb3+ co-doped LuBO3 phosphors,” Mater. Chem. Phys.128(1-2), 191–194 (2011).
    [CrossRef]
  18. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
    [CrossRef]
  19. Z. Zhang, J. Yuan, S. Chen, H. Chen, X. Yang, J. Zhao, G. Zhang, and C. Shi, “Investigation on the luminescence of Re3+ (Re=Ce, Tb, Eu and Tm) in KMGd(PO4)2 (M=Ca, Sr) phosphates,” Opt. Mater.30(12), 1848–1853 (2008).
    [CrossRef]
  20. D. Geng, M. Shang, D. Yang, Y. Zhang, Z. Cheng, and J. Lin, “Tunable luminescence and energy transfer properties in KCaGd(PO4)2:Ln3+/Mn2+ (Ln = Tb, Dy, Eu, Tm; Ce, Tb/Dy) phosphors with high quantum efficiencies,” J. Mater. Chem.22(45), 23789 (2012).
    [CrossRef]
  21. Q. Zhang, B. Zhu, Y. Zhuang, G. Chen, X. Liu, G. Zhang, J. Qiu, and D. Chen, “Quantum cutting in Tm3+/Yb3+-co-doped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
    [CrossRef]
  22. C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem.51(16), 8802–8809 (2012).
    [CrossRef] [PubMed]
  23. L. Y. Yang, N. L. Dai, Z. J. Liu, Z. W. Jiang, J. G. Peng, H. Q. Li, J. Y. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274 (2011).
    [CrossRef]
  24. L. Y. Yang, M. Yamashita, and T. Akai, “Green and red high-silica luminous glass suitable for near-ultraviolet excitation,” Opt. Express17(8), 6688–6695 (2009).
    [CrossRef] [PubMed]
  25. X. Wang, J. Zheng, Y. Xuan, and X. Yan, “Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation,” Opt. Express21(18), 21596–21606 (2013).
    [CrossRef] [PubMed]
  26. J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
    [CrossRef]
  27. J. Zheng, X. F. Wang, W. Y. He, Y. Y. Bu, and X. H. Yan, “Seven-photon ultraviolet upconversion emission of Er3+ induced by 1,540-nm laser excitation,” Appl. Phys. B115(4), 443–449 (2014).
    [CrossRef]
  28. J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater.9(3), 230–232 (1997).
    [CrossRef]

2014 (1)

J. Zheng, X. F. Wang, W. Y. He, Y. Y. Bu, and X. H. Yan, “Seven-photon ultraviolet upconversion emission of Er3+ induced by 1,540-nm laser excitation,” Appl. Phys. B115(4), 443–449 (2014).
[CrossRef]

2013 (2)

2012 (3)

W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, and X. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys.14(19), 6974–6980 (2012).
[CrossRef]

D. Geng, M. Shang, D. Yang, Y. Zhang, Z. Cheng, and J. Lin, “Tunable luminescence and energy transfer properties in KCaGd(PO4)2:Ln3+/Mn2+ (Ln = Tb, Dy, Eu, Tm; Ce, Tb/Dy) phosphors with high quantum efficiencies,” J. Mater. Chem.22(45), 23789 (2012).
[CrossRef]

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem.51(16), 8802–8809 (2012).
[CrossRef] [PubMed]

2011 (3)

L. Y. Yang, N. L. Dai, Z. J. Liu, Z. W. Jiang, J. G. Peng, H. Q. Li, J. Y. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274 (2011).
[CrossRef]

J. Chen, H. Zhang, F. Li, and H. Guo, “High efficient near-infrared quantum cutting in Ce3+,Yb3+ co-doped LuBO3 phosphors,” Mater. Chem. Phys.128(1-2), 191–194 (2011).
[CrossRef]

Z. Wang, Y. Wang, Y. Li, and H. Zhang, “Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion,” J. Mater. Res.26(05), 693–696 (2011).
[CrossRef]

2010 (6)

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

Q. Zhang, B. Zhu, Y. Zhuang, G. Chen, X. Liu, G. Zhang, J. Qiu, and D. Chen, “Quantum cutting in Tm3+/Yb3+-co-doped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through Downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

T. Yu, J. Zhou, S. Ye, and J. Qiu, “Broadband near-infrared quantum cutting in Eu2+ and Yb3+ Ions Co-Doped CaAl2O4 Phosphor,” J. Electrochem. Soc.157(10), A1073–A1075 (2010).
[CrossRef]

H. Lin, S. Zhou, H. Teng, Y. Li, W. Li, X. Hou, and T. Jia, “Near infrared quantum cutting in heavy Yb doped Ce0.03Yb3xY(2.97−3x)Al5O12 transparent ceramics for crystalline silicon solar cells,” J. Appl. Phys.107(4), 043107 (2010).
[CrossRef]

J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ Co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
[CrossRef]

2009 (4)

G. Lakshminarayana and J. Qiu, “Near-infrared quantum cutting in Re3+/Yb3+ (Re=Pr, Tb, and Tm): GeO2–B2O3–ZnO–LaF3 glasses via downconversion,” J. Alloy. Comp.481(1-2), 582–589 (2009).
[CrossRef]

L. Y. Yang, M. Yamashita, and T. Akai, “Green and red high-silica luminous glass suitable for near-ultraviolet excitation,” Opt. Express17(8), 6688–6695 (2009).
[CrossRef] [PubMed]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

Q. Zhang, J. Wang, G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in Novel Quantum Cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ Phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

2008 (3)

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
[CrossRef]

Z. Zhang, J. Yuan, S. Chen, H. Chen, X. Yang, J. Zhao, G. Zhang, and C. Shi, “Investigation on the luminescence of Re3+ (Re=Ce, Tb, Eu and Tm) in KMGd(PO4)2 (M=Ca, Sr) phosphates,” Opt. Mater.30(12), 1848–1853 (2008).
[CrossRef]

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

2006 (4)

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
[CrossRef]

O. Morton, “Solar energy: A new day dawning? Silicon Valley sunrise,” Nature443(7107), 19–22 (2006).
[CrossRef] [PubMed]

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

2005 (1)

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

1997 (1)

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater.9(3), 230–232 (1997).
[CrossRef]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

Akai, T.

L. Y. Yang, N. L. Dai, Z. J. Liu, Z. W. Jiang, J. G. Peng, H. Q. Li, J. Y. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274 (2011).
[CrossRef]

L. Y. Yang, M. Yamashita, and T. Akai, “Green and red high-silica luminous glass suitable for near-ultraviolet excitation,” Opt. Express17(8), 6688–6695 (2009).
[CrossRef] [PubMed]

Baldo, M. A.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Biner, D.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through Downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

Bu, Y. Y.

J. Zheng, X. F. Wang, W. Y. He, Y. Y. Bu, and X. H. Yan, “Seven-photon ultraviolet upconversion emission of Er3+ induced by 1,540-nm laser excitation,” Appl. Phys. B115(4), 443–449 (2014).
[CrossRef]

Chen, D.

Q. Zhang, B. Zhu, Y. Zhuang, G. Chen, X. Liu, G. Zhang, J. Qiu, and D. Chen, “Quantum cutting in Tm3+/Yb3+-co-doped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
[CrossRef]

Chen, G.

Q. Zhang, B. Zhu, Y. Zhuang, G. Chen, X. Liu, G. Zhang, J. Qiu, and D. Chen, “Quantum cutting in Tm3+/Yb3+-co-doped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

Chen, H.

Z. Zhang, J. Yuan, S. Chen, H. Chen, X. Yang, J. Zhao, G. Zhang, and C. Shi, “Investigation on the luminescence of Re3+ (Re=Ce, Tb, Eu and Tm) in KMGd(PO4)2 (M=Ca, Sr) phosphates,” Opt. Mater.30(12), 1848–1853 (2008).
[CrossRef]

Chen, J.

J. Chen, H. Zhang, F. Li, and H. Guo, “High efficient near-infrared quantum cutting in Ce3+,Yb3+ co-doped LuBO3 phosphors,” Mater. Chem. Phys.128(1-2), 191–194 (2011).
[CrossRef]

J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ Co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
[CrossRef]

Chen, S.

Z. Zhang, J. Yuan, S. Chen, H. Chen, X. Yang, J. Zhao, G. Zhang, and C. Shi, “Investigation on the luminescence of Re3+ (Re=Ce, Tb, Eu and Tm) in KMGd(PO4)2 (M=Ca, Sr) phosphates,” Opt. Mater.30(12), 1848–1853 (2008).
[CrossRef]

Chen, X.

W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, and X. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys.14(19), 6974–6980 (2012).
[CrossRef]

Cheng, Z.

D. Geng, M. Shang, D. Yang, Y. Zhang, Z. Cheng, and J. Lin, “Tunable luminescence and energy transfer properties in KCaGd(PO4)2:Ln3+/Mn2+ (Ln = Tb, Dy, Eu, Tm; Ce, Tb/Dy) phosphors with high quantum efficiencies,” J. Mater. Chem.22(45), 23789 (2012).
[CrossRef]

Currie, M. J.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Dai, N. L.

L. Y. Yang, N. L. Dai, Z. J. Liu, Z. W. Jiang, J. G. Peng, H. Q. Li, J. Y. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274 (2011).
[CrossRef]

de Mello, J. C.

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater.9(3), 230–232 (1997).
[CrossRef]

den Hertog, M.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Eilers, J. J.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through Downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Friend, R. H.

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater.9(3), 230–232 (1997).
[CrossRef]

Gao, G.

G. Gao and L. Wondraczek, “Near-infrared down-conversion in Mn2+–Yb3+ Co-Doped Zn2GeO4,” J. Mater. Chem. C1(10), 1952–1958 (2013).
[CrossRef]

Geng, D.

D. Geng, M. Shang, D. Yang, Y. Zhang, Z. Cheng, and J. Lin, “Tunable luminescence and energy transfer properties in KCaGd(PO4)2:Ln3+/Mn2+ (Ln = Tb, Dy, Eu, Tm; Ce, Tb/Dy) phosphors with high quantum efficiencies,” J. Mater. Chem.22(45), 23789 (2012).
[CrossRef]

Goffri, S.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Grimm, J.

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

Güdel, H. U.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through Downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

Guo, H.

J. Chen, H. Zhang, F. Li, and H. Guo, “High efficient near-infrared quantum cutting in Ce3+,Yb3+ co-doped LuBO3 phosphors,” Mater. Chem. Phys.128(1-2), 191–194 (2011).
[CrossRef]

J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ Co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
[CrossRef]

He, W. Y.

J. Zheng, X. F. Wang, W. Y. He, Y. Y. Bu, and X. H. Yan, “Seven-photon ultraviolet upconversion emission of Er3+ induced by 1,540-nm laser excitation,” Appl. Phys. B115(4), 443–449 (2014).
[CrossRef]

Heidel, T. D.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Hou, X.

H. Lin, S. Zhou, H. Teng, Y. Li, W. Li, X. Hou, and T. Jia, “Near infrared quantum cutting in heavy Yb doped Ce0.03Yb3xY(2.97−3x)Al5O12 transparent ceramics for crystalline silicon solar cells,” J. Appl. Phys.107(4), 043107 (2010).
[CrossRef]

Huang, P.

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
[CrossRef]

Jia, T.

H. Lin, S. Zhou, H. Teng, Y. Li, W. Li, X. Hou, and T. Jia, “Near infrared quantum cutting in heavy Yb doped Ce0.03Yb3xY(2.97−3x)Al5O12 transparent ceramics for crystalline silicon solar cells,” J. Appl. Phys.107(4), 043107 (2010).
[CrossRef]

Jiang, Z. W.

L. Y. Yang, N. L. Dai, Z. J. Liu, Z. W. Jiang, J. G. Peng, H. Q. Li, J. Y. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274 (2011).
[CrossRef]

Kox, M.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Krämer, K.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through Downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Krämer, K. W.

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

Kuang, X.

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem.51(16), 8802–8809 (2012).
[CrossRef] [PubMed]

Lakshminarayana, G.

G. Lakshminarayana and J. Qiu, “Near-infrared quantum cutting in Re3+/Yb3+ (Re=Pr, Tb, and Tm): GeO2–B2O3–ZnO–LaF3 glasses via downconversion,” J. Alloy. Comp.481(1-2), 582–589 (2009).
[CrossRef]

Li, F.

J. Chen, H. Zhang, F. Li, and H. Guo, “High efficient near-infrared quantum cutting in Ce3+,Yb3+ co-doped LuBO3 phosphors,” Mater. Chem. Phys.128(1-2), 191–194 (2011).
[CrossRef]

Li, H. Q.

L. Y. Yang, N. L. Dai, Z. J. Liu, Z. W. Jiang, J. G. Peng, H. Q. Li, J. Y. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274 (2011).
[CrossRef]

Li, J. Y.

L. Y. Yang, N. L. Dai, Z. J. Liu, Z. W. Jiang, J. G. Peng, H. Q. Li, J. Y. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274 (2011).
[CrossRef]

Li, R.

W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, and X. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys.14(19), 6974–6980 (2012).
[CrossRef]

Li, W.

H. Lin, S. Zhou, H. Teng, Y. Li, W. Li, X. Hou, and T. Jia, “Near infrared quantum cutting in heavy Yb doped Ce0.03Yb3xY(2.97−3x)Al5O12 transparent ceramics for crystalline silicon solar cells,” J. Appl. Phys.107(4), 043107 (2010).
[CrossRef]

Li, Y.

Z. Wang, Y. Wang, Y. Li, and H. Zhang, “Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion,” J. Mater. Res.26(05), 693–696 (2011).
[CrossRef]

H. Lin, S. Zhou, H. Teng, Y. Li, W. Li, X. Hou, and T. Jia, “Near infrared quantum cutting in heavy Yb doped Ce0.03Yb3xY(2.97−3x)Al5O12 transparent ceramics for crystalline silicon solar cells,” J. Appl. Phys.107(4), 043107 (2010).
[CrossRef]

Li, Z.

J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ Co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
[CrossRef]

Liang, H.

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem.51(16), 8802–8809 (2012).
[CrossRef] [PubMed]

Lin, H.

H. Lin, S. Zhou, H. Teng, Y. Li, W. Li, X. Hou, and T. Jia, “Near infrared quantum cutting in heavy Yb doped Ce0.03Yb3xY(2.97−3x)Al5O12 transparent ceramics for crystalline silicon solar cells,” J. Appl. Phys.107(4), 043107 (2010).
[CrossRef]

Lin, J.

D. Geng, M. Shang, D. Yang, Y. Zhang, Z. Cheng, and J. Lin, “Tunable luminescence and energy transfer properties in KCaGd(PO4)2:Ln3+/Mn2+ (Ln = Tb, Dy, Eu, Tm; Ce, Tb/Dy) phosphors with high quantum efficiencies,” J. Mater. Chem.22(45), 23789 (2012).
[CrossRef]

Liu, C.

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem.51(16), 8802–8809 (2012).
[CrossRef] [PubMed]

Liu, X.

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

Q. Zhang, B. Zhu, Y. Zhuang, G. Chen, X. Liu, G. Zhang, J. Qiu, and D. Chen, “Quantum cutting in Tm3+/Yb3+-co-doped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

Liu, Y.

W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, and X. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys.14(19), 6974–6980 (2012).
[CrossRef]

Liu, Z. J.

L. Y. Yang, N. L. Dai, Z. J. Liu, Z. W. Jiang, J. G. Peng, H. Q. Li, J. Y. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274 (2011).
[CrossRef]

Luo, W.

W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, and X. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys.14(19), 6974–6980 (2012).
[CrossRef]

Mapel, J. K.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Meijerink, A.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through Downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Morton, O.

O. Morton, “Solar energy: A new day dawning? Silicon Valley sunrise,” Nature443(7107), 19–22 (2006).
[CrossRef] [PubMed]

Peng, J. G.

L. Y. Yang, N. L. Dai, Z. J. Liu, Z. W. Jiang, J. G. Peng, H. Q. Li, J. Y. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274 (2011).
[CrossRef]

Qiu, J.

T. Yu, J. Zhou, S. Ye, and J. Qiu, “Broadband near-infrared quantum cutting in Eu2+ and Yb3+ Ions Co-Doped CaAl2O4 Phosphor,” J. Electrochem. Soc.157(10), A1073–A1075 (2010).
[CrossRef]

Q. Zhang, B. Zhu, Y. Zhuang, G. Chen, X. Liu, G. Zhang, J. Qiu, and D. Chen, “Quantum cutting in Tm3+/Yb3+-co-doped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

G. Lakshminarayana and J. Qiu, “Near-infrared quantum cutting in Re3+/Yb3+ (Re=Pr, Tb, and Tm): GeO2–B2O3–ZnO–LaF3 glasses via downconversion,” J. Alloy. Comp.481(1-2), 582–589 (2009).
[CrossRef]

Richards, B. S.

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
[CrossRef]

Shang, M.

D. Geng, M. Shang, D. Yang, Y. Zhang, Z. Cheng, and J. Lin, “Tunable luminescence and energy transfer properties in KCaGd(PO4)2:Ln3+/Mn2+ (Ln = Tb, Dy, Eu, Tm; Ce, Tb/Dy) phosphors with high quantum efficiencies,” J. Mater. Chem.22(45), 23789 (2012).
[CrossRef]

Shi, C.

Z. Zhang, J. Yuan, S. Chen, H. Chen, X. Yang, J. Zhao, G. Zhang, and C. Shi, “Investigation on the luminescence of Re3+ (Re=Ce, Tb, Eu and Tm) in KMGd(PO4)2 (M=Ca, Sr) phosphates,” Opt. Mater.30(12), 1848–1853 (2008).
[CrossRef]

Su, Q.

Q. Zhang, J. Wang, G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in Novel Quantum Cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ Phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

Sun, S.

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem.51(16), 8802–8809 (2012).
[CrossRef] [PubMed]

Suyver, J. F.

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

Tao, Y.

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem.51(16), 8802–8809 (2012).
[CrossRef] [PubMed]

Teng, H.

H. Lin, S. Zhou, H. Teng, Y. Li, W. Li, X. Hou, and T. Jia, “Near infrared quantum cutting in heavy Yb doped Ce0.03Yb3xY(2.97−3x)Al5O12 transparent ceramics for crystalline silicon solar cells,” J. Appl. Phys.107(4), 043107 (2010).
[CrossRef]

Teng, Y.

Tu, D.

W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, and X. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys.14(19), 6974–6980 (2012).
[CrossRef]

van der Eerden, J.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

Van Veen, M. K.

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

van Wijngaarden, J. T.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through Downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Vergeer, P.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Vlugt, T.

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Wang, J.

Q. Zhang, J. Wang, G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in Novel Quantum Cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ Phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

Wang, X.

Wang, X. F.

J. Zheng, X. F. Wang, W. Y. He, Y. Y. Bu, and X. H. Yan, “Seven-photon ultraviolet upconversion emission of Er3+ induced by 1,540-nm laser excitation,” Appl. Phys. B115(4), 443–449 (2014).
[CrossRef]

Wang, Y.

Z. Wang, Y. Wang, Y. Li, and H. Zhang, “Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion,” J. Mater. Res.26(05), 693–696 (2011).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
[CrossRef]

Wang, Z.

Z. Wang, Y. Wang, Y. Li, and H. Zhang, “Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion,” J. Mater. Res.26(05), 693–696 (2011).
[CrossRef]

Weng, F.

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
[CrossRef]

Wittmann, H. F.

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater.9(3), 230–232 (1997).
[CrossRef]

Wondraczek, L.

G. Gao and L. Wondraczek, “Near-infrared down-conversion in Mn2+–Yb3+ Co-Doped Zn2GeO4,” J. Mater. Chem. C1(10), 1952–1958 (2013).
[CrossRef]

Xuan, Y.

Yamashita, M.

L. Y. Yang, N. L. Dai, Z. J. Liu, Z. W. Jiang, J. G. Peng, H. Q. Li, J. Y. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274 (2011).
[CrossRef]

L. Y. Yang, M. Yamashita, and T. Akai, “Green and red high-silica luminous glass suitable for near-ultraviolet excitation,” Opt. Express17(8), 6688–6695 (2009).
[CrossRef] [PubMed]

Yan, X.

Yan, X. H.

J. Zheng, X. F. Wang, W. Y. He, Y. Y. Bu, and X. H. Yan, “Seven-photon ultraviolet upconversion emission of Er3+ induced by 1,540-nm laser excitation,” Appl. Phys. B115(4), 443–449 (2014).
[CrossRef]

Yang, D.

D. Geng, M. Shang, D. Yang, Y. Zhang, Z. Cheng, and J. Lin, “Tunable luminescence and energy transfer properties in KCaGd(PO4)2:Ln3+/Mn2+ (Ln = Tb, Dy, Eu, Tm; Ce, Tb/Dy) phosphors with high quantum efficiencies,” J. Mater. Chem.22(45), 23789 (2012).
[CrossRef]

Yang, L. Y.

L. Y. Yang, N. L. Dai, Z. J. Liu, Z. W. Jiang, J. G. Peng, H. Q. Li, J. Y. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274 (2011).
[CrossRef]

L. Y. Yang, M. Yamashita, and T. Akai, “Green and red high-silica luminous glass suitable for near-ultraviolet excitation,” Opt. Express17(8), 6688–6695 (2009).
[CrossRef] [PubMed]

Yang, X.

Z. Zhang, J. Yuan, S. Chen, H. Chen, X. Yang, J. Zhao, G. Zhang, and C. Shi, “Investigation on the luminescence of Re3+ (Re=Ce, Tb, Eu and Tm) in KMGd(PO4)2 (M=Ca, Sr) phosphates,” Opt. Mater.30(12), 1848–1853 (2008).
[CrossRef]

Ye, S.

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

T. Yu, J. Zhou, S. Ye, and J. Qiu, “Broadband near-infrared quantum cutting in Eu2+ and Yb3+ Ions Co-Doped CaAl2O4 Phosphor,” J. Electrochem. Soc.157(10), A1073–A1075 (2010).
[CrossRef]

Yu, T.

T. Yu, J. Zhou, S. Ye, and J. Qiu, “Broadband near-infrared quantum cutting in Eu2+ and Yb3+ Ions Co-Doped CaAl2O4 Phosphor,” J. Electrochem. Soc.157(10), A1073–A1075 (2010).
[CrossRef]

Yu, Y.

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
[CrossRef]

Yuan, J.

Z. Zhang, J. Yuan, S. Chen, H. Chen, X. Yang, J. Zhao, G. Zhang, and C. Shi, “Investigation on the luminescence of Re3+ (Re=Ce, Tb, Eu and Tm) in KMGd(PO4)2 (M=Ca, Sr) phosphates,” Opt. Mater.30(12), 1848–1853 (2008).
[CrossRef]

Zhang, G.

Q. Zhang, B. Zhu, Y. Zhuang, G. Chen, X. Liu, G. Zhang, J. Qiu, and D. Chen, “Quantum cutting in Tm3+/Yb3+-co-doped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

Q. Zhang, J. Wang, G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in Novel Quantum Cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ Phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

Z. Zhang, J. Yuan, S. Chen, H. Chen, X. Yang, J. Zhao, G. Zhang, and C. Shi, “Investigation on the luminescence of Re3+ (Re=Ce, Tb, Eu and Tm) in KMGd(PO4)2 (M=Ca, Sr) phosphates,” Opt. Mater.30(12), 1848–1853 (2008).
[CrossRef]

Zhang, H.

J. Chen, H. Zhang, F. Li, and H. Guo, “High efficient near-infrared quantum cutting in Ce3+,Yb3+ co-doped LuBO3 phosphors,” Mater. Chem. Phys.128(1-2), 191–194 (2011).
[CrossRef]

Z. Wang, Y. Wang, Y. Li, and H. Zhang, “Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion,” J. Mater. Res.26(05), 693–696 (2011).
[CrossRef]

J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ Co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
[CrossRef]

Zhang, Q.

Q. Zhang, B. Zhu, Y. Zhuang, G. Chen, X. Liu, G. Zhang, J. Qiu, and D. Chen, “Quantum cutting in Tm3+/Yb3+-co-doped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

Q. Zhang, J. Wang, G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in Novel Quantum Cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ Phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

Zhang, Y.

D. Geng, M. Shang, D. Yang, Y. Zhang, Z. Cheng, and J. Lin, “Tunable luminescence and energy transfer properties in KCaGd(PO4)2:Ln3+/Mn2+ (Ln = Tb, Dy, Eu, Tm; Ce, Tb/Dy) phosphors with high quantum efficiencies,” J. Mater. Chem.22(45), 23789 (2012).
[CrossRef]

Zhang, Z.

Z. Zhang, J. Yuan, S. Chen, H. Chen, X. Yang, J. Zhao, G. Zhang, and C. Shi, “Investigation on the luminescence of Re3+ (Re=Ce, Tb, Eu and Tm) in KMGd(PO4)2 (M=Ca, Sr) phosphates,” Opt. Mater.30(12), 1848–1853 (2008).
[CrossRef]

Zhao, J.

Z. Zhang, J. Yuan, S. Chen, H. Chen, X. Yang, J. Zhao, G. Zhang, and C. Shi, “Investigation on the luminescence of Re3+ (Re=Ce, Tb, Eu and Tm) in KMGd(PO4)2 (M=Ca, Sr) phosphates,” Opt. Mater.30(12), 1848–1853 (2008).
[CrossRef]

Zheng, J.

J. Zheng, X. F. Wang, W. Y. He, Y. Y. Bu, and X. H. Yan, “Seven-photon ultraviolet upconversion emission of Er3+ induced by 1,540-nm laser excitation,” Appl. Phys. B115(4), 443–449 (2014).
[CrossRef]

X. Wang, J. Zheng, Y. Xuan, and X. Yan, “Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation,” Opt. Express21(18), 21596–21606 (2013).
[CrossRef] [PubMed]

Zheng, W.

W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, and X. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys.14(19), 6974–6980 (2012).
[CrossRef]

Zhong, J.

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem.51(16), 8802–8809 (2012).
[CrossRef] [PubMed]

Zhou, J.

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

T. Yu, J. Zhou, S. Ye, and J. Qiu, “Broadband near-infrared quantum cutting in Eu2+ and Yb3+ Ions Co-Doped CaAl2O4 Phosphor,” J. Electrochem. Soc.157(10), A1073–A1075 (2010).
[CrossRef]

Zhou, S.

H. Lin, S. Zhou, H. Teng, Y. Li, W. Li, X. Hou, and T. Jia, “Near infrared quantum cutting in heavy Yb doped Ce0.03Yb3xY(2.97−3x)Al5O12 transparent ceramics for crystalline silicon solar cells,” J. Appl. Phys.107(4), 043107 (2010).
[CrossRef]

Zhu, B.

Q. Zhang, B. Zhu, Y. Zhuang, G. Chen, X. Liu, G. Zhang, J. Qiu, and D. Chen, “Quantum cutting in Tm3+/Yb3+-co-doped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

Zhu, H.

W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, and X. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys.14(19), 6974–6980 (2012).
[CrossRef]

Zhuang, Y.

Q. Zhang, B. Zhu, Y. Zhuang, G. Chen, X. Liu, G. Zhang, J. Qiu, and D. Chen, “Quantum cutting in Tm3+/Yb3+-co-doped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ Co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
[CrossRef]

Adv. Mater. (2)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater.9(3), 230–232 (1997).
[CrossRef]

Appl. Phys. B (1)

J. Zheng, X. F. Wang, W. Y. He, Y. Y. Bu, and X. H. Yan, “Seven-photon ultraviolet upconversion emission of Er3+ induced by 1,540-nm laser excitation,” Appl. Phys. B115(4), 443–449 (2014).
[CrossRef]

Appl. Phys. Lett. (1)

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H. U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through Downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Inorg. Chem. (1)

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem.51(16), 8802–8809 (2012).
[CrossRef] [PubMed]

J. Alloy. Comp. (1)

G. Lakshminarayana and J. Qiu, “Near-infrared quantum cutting in Re3+/Yb3+ (Re=Pr, Tb, and Tm): GeO2–B2O3–ZnO–LaF3 glasses via downconversion,” J. Alloy. Comp.481(1-2), 582–589 (2009).
[CrossRef]

J. Am. Ceram. Soc. (1)

Q. Zhang, B. Zhu, Y. Zhuang, G. Chen, X. Liu, G. Zhang, J. Qiu, and D. Chen, “Quantum cutting in Tm3+/Yb3+-co-doped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

J. Appl. Phys. (2)

H. Lin, S. Zhou, H. Teng, Y. Li, W. Li, X. Hou, and T. Jia, “Near infrared quantum cutting in heavy Yb doped Ce0.03Yb3xY(2.97−3x)Al5O12 transparent ceramics for crystalline silicon solar cells,” J. Appl. Phys.107(4), 043107 (2010).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008).
[CrossRef]

J. Electrochem. Soc. (1)

T. Yu, J. Zhou, S. Ye, and J. Qiu, “Broadband near-infrared quantum cutting in Eu2+ and Yb3+ Ions Co-Doped CaAl2O4 Phosphor,” J. Electrochem. Soc.157(10), A1073–A1075 (2010).
[CrossRef]

J. Lumin. (1)

J. F. Suyver, J. Grimm, M. K. Van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin.117(1), 1–12 (2006).
[CrossRef]

J. Mater. Chem. (3)

Q. Zhang, J. Wang, G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in Novel Quantum Cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ Phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

D. Geng, M. Shang, D. Yang, Y. Zhang, Z. Cheng, and J. Lin, “Tunable luminescence and energy transfer properties in KCaGd(PO4)2:Ln3+/Mn2+ (Ln = Tb, Dy, Eu, Tm; Ce, Tb/Dy) phosphors with high quantum efficiencies,” J. Mater. Chem.22(45), 23789 (2012).
[CrossRef]

L. Y. Yang, N. L. Dai, Z. J. Liu, Z. W. Jiang, J. G. Peng, H. Q. Li, J. Y. Li, M. Yamashita, and T. Akai, “Tailoring of clusters of active ions in sintered nanoporous silica glass for white light luminescence,” J. Mater. Chem.21(17), 6274 (2011).
[CrossRef]

J. Mater. Chem. C (1)

G. Gao and L. Wondraczek, “Near-infrared down-conversion in Mn2+–Yb3+ Co-Doped Zn2GeO4,” J. Mater. Chem. C1(10), 1952–1958 (2013).
[CrossRef]

J. Mater. Res. (1)

Z. Wang, Y. Wang, Y. Li, and H. Zhang, “Near-infrared quantum cutting in Tb3+, Yb3+ co-doped calcium tungstate via second-order downconversion,” J. Mater. Res.26(05), 693–696 (2011).
[CrossRef]

Mater. Chem. Phys. (1)

J. Chen, H. Zhang, F. Li, and H. Guo, “High efficient near-infrared quantum cutting in Ce3+,Yb3+ co-doped LuBO3 phosphors,” Mater. Chem. Phys.128(1-2), 191–194 (2011).
[CrossRef]

Nature (1)

O. Morton, “Solar energy: A new day dawning? Silicon Valley sunrise,” Nature443(7107), 19–22 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Mater. (2)

Z. Zhang, J. Yuan, S. Chen, H. Chen, X. Yang, J. Zhao, G. Zhang, and C. Shi, “Investigation on the luminescence of Re3+ (Re=Ce, Tb, Eu and Tm) in KMGd(PO4)2 (M=Ca, Sr) phosphates,” Opt. Mater.30(12), 1848–1853 (2008).
[CrossRef]

J. Chen, H. Guo, Z. Li, H. Zhang, and Y. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ Co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, and X. Chen, “Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+, Yb3+ phosphors,” Phys. Chem. Chem. Phys.14(19), 6974–6980 (2012).
[CrossRef]

Phys. Rev. B (1)

P. Vergeer, T. Vlugt, M. Kox, M. den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Science (1)

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Powder XRD patterns of KCaGd0.99-x(PO4)2: 0.01Ce3+, xYb3+(0≤x≤0.2).

Fig. 2
Fig. 2

Rietveld refinement of the powder XRD pattern of KCaGd0.98Ce0.01Yb0.01(PO4)2 (observed—cross, calculated—black line, difference between the observed and the calculated—bottom blue line, and Bragg positions—vertical bars). Inset shows unit cell parameters a (A°), and c (A°) dependence on Yb3 + concentration in KCaGd(PO4)2: 0.01Ce3+, xYb3+(0≤x≤0.2).

Fig. 3
Fig. 3

Absorption spectra of KCaGd(PO4)2: 0.01Ce3+, KCaGd(PO4)2: 0.01Ce3+, 0.2Yb3+ and BaSO4.

Fig. 4
Fig. 4

(a) Excitation (λem = 366nm) and (b) emission (λex = 324nm) spectra of Ce3+ in KCaGd0.99-x(PO4)2: 0.01Ce3+, xYb3+

Fig. 5
Fig. 5

(a) Excitation (λem = 1021 nm) and (b) near-infrared emission (λex = 324 nm) spectra of Yb3+ in KCaGd0.99-x(PO4)2: 0.01Ce3+, xYb3+ and KCaGd0.99-x(PO4)2: 0.01Yb3+.

Fig. 6
Fig. 6

Schematic energy level diagram and cooperative energy transfer mechanism of Ce3+ and Yb3+ in KCaGd(PO4)2: Ce3+, Yb3+.

Fig. 7
Fig. 7

Luminescent decay curves (a) and the fitted decay curves (b) of the 366 nm emission of Ce3+ in KCaGd(PO4)2: Ce3+, Yb3+ samples with different Yb3+ concentration (λex = 324 nm). The scale of y-axis is semi-log.

Fig. 8
Fig. 8

Decay lifetime of Ce3+ and quantum efficiency plotted as a function of Yb3+ concentration.

Tables (1)

Tables Icon

Table 1 The decay lifetime of Ce3+, the energy transfer efficiency ηETE and the quantum efficiency ηQE as a function of Yb3+ doping concentration in KCaGd(PO4)2: Ce3+, Yb3+.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η E T E = 1 I x Y b d t I 0 Y b d t
η Q E = η C e ( 1 η E T E ) + 2 η E T E

Metrics