Abstract

The photosensitivity of highly Er/Yb doped and undoped phosphate glass fibers is characterized under irradiation with intense pulsed 193 nm light from an ArF excimer laser through a phase mask. The ultraviolet photosensitivity of the active fibers is shown to be roughly half that of the passive fibers. We also demonstrate that the strong growth of the fiber Bragg grating reflectivity observed upon heating at temperatures between 100 – 250 °C is directly related to the UV irradiation time, but not to the size of the index modulation of the seed grating or even to the fiber type (Er/Yb doped or undoped). The conditions to reliably obtain final index modulations amplitudes between 5 and 10 × 10−5 are given.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
    [CrossRef]
  2. L. Fletcher, J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses,” Opt. Mater. Express1(5), 845–855 (2011).
    [CrossRef]
  3. D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg Gratings Made With a Femtosecond Laser in Heavily Doped Er–Yb Phosphate Glass Fiber,” IEEE Photon. Technol. Lett.19(12), 943–945 (2007).
    [CrossRef]
  4. M. Sozzi, A. Rahman, and S. Pissadakis, “Non-monotonous refractive index changes recorded in a phosphate glass optical fibre using 248nm, 500fs laser radiation,” Opt. Mater. Express1(1), 121 (2011).
    [CrossRef]
  5. P. Hofmann, C. Voigtlander, S. Nolte, N. Peyghambarian, and A. Schülzgen, “550-mW Output Power From a Narrow Linewidth All-Phosphate Fiber Laser,” J. Lightwave Technol.31(5), 756–760 (2013).
    [CrossRef]
  6. J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett.89(10), 101127 (2006).
    [CrossRef]
  7. R. M. Rogojan, A. Schülzgen, N. Peyghambarian, A. Laronche, and J. Albert, “Photo-thermal gratings in Er3+/Yb3+-doped core phosphate glass single mode fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (OSA, 2007), p. BTuC3.
  8. L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “Photo-thermal growth of unsaturated and saturated Bragg gratings in phosphate glass fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (OSA, 2010), p. BTuB1.
  9. A. Schülzgen, L. Li, D. Nguyen, Ch. Spiegelberg, R. M. Rogojan, A. Laronche, J. Albert, and N. Peyghambarian, “Distributed feedback fiber laser pumped by multimode laser diodes,” Opt. Lett.33(6), 614–616 (2008).
    [CrossRef] [PubMed]
  10. L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1 W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett.92(5), 051111 (2008).
    [CrossRef]
  11. A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, and I. Riant, “Temperature-induced reversible changes in the spectral characteristics of fiber Bragg gratings,” Appl. Opt.40(16), 2632–2642 (2001).
    [CrossRef] [PubMed]
  12. K. Seneschal, F. Smektala, B. Bureau, M. Le Floch, S. Jiang, T. Luo, J. Lucas, and N. Peyghambarian, “Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers,” Mater. Res. Bull.40(9), 1433–1442 (2005).
    [CrossRef]
  13. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett.33(16), 1917–1919 (2008).
    [CrossRef] [PubMed]
  14. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108(3), 033110 (2010).
    [CrossRef]
  15. S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glas. Sci.3(4), 332–348 (2012).
    [CrossRef]
  16. R. Kashyap, Fiber Bragg Gratings, 2nd Edition. (Academic Press, 2009).
  17. S. Yliniemi, S. Honkanen, A. Ianoul, A. Laronche, and J. Albert, “Photosensitivity and volume gratings in phosphate glasses for rare-earth-doped ion-exchanged optical waveguide lasers,” J. Opt. Soc. Am. B23(12), 2470–2478 (2006).
    [CrossRef]
  18. D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoride–phosphate glasses,” J. Non-Cryst. Solids263–264, 240–250 (2000).
    [CrossRef]
  19. L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “Deep UV-induced near-infrared photodarkening of Er/Yb-doped and undoped phosphate fibers,” Opt. Lett.38(20), 4193–4196 (2013).
    [CrossRef] [PubMed]
  20. J. Albert, “Permanent photoinduced changes for bragg gratings in silicate glass waveguides and fibers,” MRS Bull.23, 36–42 (1998).

2013 (2)

2012 (1)

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glas. Sci.3(4), 332–348 (2012).
[CrossRef]

2011 (2)

2010 (1)

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108(3), 033110 (2010).
[CrossRef]

2008 (3)

2007 (1)

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg Gratings Made With a Femtosecond Laser in Heavily Doped Er–Yb Phosphate Glass Fiber,” IEEE Photon. Technol. Lett.19(12), 943–945 (2007).
[CrossRef]

2006 (2)

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett.89(10), 101127 (2006).
[CrossRef]

S. Yliniemi, S. Honkanen, A. Ianoul, A. Laronche, and J. Albert, “Photosensitivity and volume gratings in phosphate glasses for rare-earth-doped ion-exchanged optical waveguide lasers,” J. Opt. Soc. Am. B23(12), 2470–2478 (2006).
[CrossRef]

2005 (1)

K. Seneschal, F. Smektala, B. Bureau, M. Le Floch, S. Jiang, T. Luo, J. Lucas, and N. Peyghambarian, “Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers,” Mater. Res. Bull.40(9), 1433–1442 (2005).
[CrossRef]

2001 (1)

2000 (1)

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoride–phosphate glasses,” J. Non-Cryst. Solids263–264, 240–250 (2000).
[CrossRef]

1999 (1)

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
[CrossRef]

1998 (1)

J. Albert, “Permanent photoinduced changes for bragg gratings in silicate glass waveguides and fibers,” MRS Bull.23, 36–42 (1998).

Albert, J.

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “Deep UV-induced near-infrared photodarkening of Er/Yb-doped and undoped phosphate fibers,” Opt. Lett.38(20), 4193–4196 (2013).
[CrossRef] [PubMed]

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1 W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett.92(5), 051111 (2008).
[CrossRef]

A. Schülzgen, L. Li, D. Nguyen, Ch. Spiegelberg, R. M. Rogojan, A. Laronche, J. Albert, and N. Peyghambarian, “Distributed feedback fiber laser pumped by multimode laser diodes,” Opt. Lett.33(6), 614–616 (2008).
[CrossRef] [PubMed]

S. Yliniemi, S. Honkanen, A. Ianoul, A. Laronche, and J. Albert, “Photosensitivity and volume gratings in phosphate glasses for rare-earth-doped ion-exchanged optical waveguide lasers,” J. Opt. Soc. Am. B23(12), 2470–2478 (2006).
[CrossRef]

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett.89(10), 101127 (2006).
[CrossRef]

J. Albert, “Permanent photoinduced changes for bragg gratings in silicate glass waveguides and fibers,” MRS Bull.23, 36–42 (1998).

Ams, M.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glas. Sci.3(4), 332–348 (2012).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108(3), 033110 (2010).
[CrossRef]

Bandyopadhyay, S.

Brow, R. K.

Bureau, B.

K. Seneschal, F. Smektala, B. Bureau, M. Le Floch, S. Jiang, T. Luo, J. Lucas, and N. Peyghambarian, “Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers,” Mater. Res. Bull.40(9), 1433–1442 (2005).
[CrossRef]

Canning, J.

Cook, K.

Croteau, A.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg Gratings Made With a Femtosecond Laser in Heavily Doped Er–Yb Phosphate Glass Fiber,” IEEE Photon. Technol. Lett.19(12), 943–945 (2007).
[CrossRef]

Dekker, P.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108(3), 033110 (2010).
[CrossRef]

Douay, M.

Ebeling, P.

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoride–phosphate glasses,” J. Non-Cryst. Solids263–264, 240–250 (2000).
[CrossRef]

Ebendorff-Heidepriem, H.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glas. Sci.3(4), 332–348 (2012).
[CrossRef]

Ehrt, D.

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoride–phosphate glasses,” J. Non-Cryst. Solids263–264, 240–250 (2000).
[CrossRef]

Fletcher, L.

Fuerbach, A.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glas. Sci.3(4), 332–348 (2012).
[CrossRef]

Grobnic, D.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg Gratings Made With a Femtosecond Laser in Heavily Doped Er–Yb Phosphate Glass Fiber,” IEEE Photon. Technol. Lett.19(12), 943–945 (2007).
[CrossRef]

Gross, S.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glas. Sci.3(4), 332–348 (2012).
[CrossRef]

Hidayat, A.

Hofmann, P.

Honkanen, S.

S. Yliniemi, S. Honkanen, A. Ianoul, A. Laronche, and J. Albert, “Photosensitivity and volume gratings in phosphate glasses for rare-earth-doped ion-exchanged optical waveguide lasers,” J. Opt. Soc. Am. B23(12), 2470–2478 (2006).
[CrossRef]

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett.89(10), 101127 (2006).
[CrossRef]

Ianoul, A.

Jiang, S.

K. Seneschal, F. Smektala, B. Bureau, M. Le Floch, S. Jiang, T. Luo, J. Lucas, and N. Peyghambarian, “Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers,” Mater. Res. Bull.40(9), 1433–1442 (2005).
[CrossRef]

Kherbouche, F.

Krol, D. M.

Lafond, C.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg Gratings Made With a Femtosecond Laser in Heavily Doped Er–Yb Phosphate Glass Fiber,” IEEE Photon. Technol. Lett.19(12), 943–945 (2007).
[CrossRef]

Lancaster, D. G.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glas. Sci.3(4), 332–348 (2012).
[CrossRef]

Laporta, P.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
[CrossRef]

Laronche, A.

Le Floch, M.

K. Seneschal, F. Smektala, B. Bureau, M. Le Floch, S. Jiang, T. Luo, J. Lucas, and N. Peyghambarian, “Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers,” Mater. Res. Bull.40(9), 1433–1442 (2005).
[CrossRef]

Li, L.

A. Schülzgen, L. Li, D. Nguyen, Ch. Spiegelberg, R. M. Rogojan, A. Laronche, J. Albert, and N. Peyghambarian, “Distributed feedback fiber laser pumped by multimode laser diodes,” Opt. Lett.33(6), 614–616 (2008).
[CrossRef] [PubMed]

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1 W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett.92(5), 051111 (2008).
[CrossRef]

Little, D. J.

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108(3), 033110 (2010).
[CrossRef]

Longhi, S.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
[CrossRef]

Lucas, J.

K. Seneschal, F. Smektala, B. Bureau, M. Le Floch, S. Jiang, T. Luo, J. Lucas, and N. Peyghambarian, “Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers,” Mater. Res. Bull.40(9), 1433–1442 (2005).
[CrossRef]

Luo, T.

K. Seneschal, F. Smektala, B. Bureau, M. Le Floch, S. Jiang, T. Luo, J. Lucas, and N. Peyghambarian, “Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers,” Mater. Res. Bull.40(9), 1433–1442 (2005).
[CrossRef]

Marshall, G. D.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glas. Sci.3(4), 332–348 (2012).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108(3), 033110 (2010).
[CrossRef]

Miese, C. T.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glas. Sci.3(4), 332–348 (2012).
[CrossRef]

Mihailov, S. J.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg Gratings Made With a Femtosecond Laser in Heavily Doped Er–Yb Phosphate Glass Fiber,” IEEE Photon. Technol. Lett.19(12), 943–945 (2007).
[CrossRef]

Moloney, J. V.

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1 W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett.92(5), 051111 (2008).
[CrossRef]

Natura, U.

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoride–phosphate glasses,” J. Non-Cryst. Solids263–264, 240–250 (2000).
[CrossRef]

Nguyen, D.

Niay, P.

Nolte, S.

Osellame, R.

Palmer, G.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glas. Sci.3(4), 332–348 (2012).
[CrossRef]

Peyghambarian, N.

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “Deep UV-induced near-infrared photodarkening of Er/Yb-doped and undoped phosphate fibers,” Opt. Lett.38(20), 4193–4196 (2013).
[CrossRef] [PubMed]

P. Hofmann, C. Voigtlander, S. Nolte, N. Peyghambarian, and A. Schülzgen, “550-mW Output Power From a Narrow Linewidth All-Phosphate Fiber Laser,” J. Lightwave Technol.31(5), 756–760 (2013).
[CrossRef]

A. Schülzgen, L. Li, D. Nguyen, Ch. Spiegelberg, R. M. Rogojan, A. Laronche, J. Albert, and N. Peyghambarian, “Distributed feedback fiber laser pumped by multimode laser diodes,” Opt. Lett.33(6), 614–616 (2008).
[CrossRef] [PubMed]

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1 W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett.92(5), 051111 (2008).
[CrossRef]

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett.89(10), 101127 (2006).
[CrossRef]

K. Seneschal, F. Smektala, B. Bureau, M. Le Floch, S. Jiang, T. Luo, J. Lucas, and N. Peyghambarian, “Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers,” Mater. Res. Bull.40(9), 1433–1442 (2005).
[CrossRef]

Pissadakis, S.

Poumellec, B.

Rahman, A.

Reis, S. T.

Riant, I.

Rogojan, R. M.

Schülzgen, A.

Seneschal, K.

K. Seneschal, F. Smektala, B. Bureau, M. Le Floch, S. Jiang, T. Luo, J. Lucas, and N. Peyghambarian, “Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers,” Mater. Res. Bull.40(9), 1433–1442 (2005).
[CrossRef]

Smektala, F.

K. Seneschal, F. Smektala, B. Bureau, M. Le Floch, S. Jiang, T. Luo, J. Lucas, and N. Peyghambarian, “Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers,” Mater. Res. Bull.40(9), 1433–1442 (2005).
[CrossRef]

Smelser, C. W.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg Gratings Made With a Femtosecond Laser in Heavily Doped Er–Yb Phosphate Glass Fiber,” IEEE Photon. Technol. Lett.19(12), 943–945 (2007).
[CrossRef]

Sozzi, M.

Spiegelberg, Ch.

Stevenson, M.

Svelto, C.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
[CrossRef]

Svelto, O.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
[CrossRef]

Taccheo, S.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
[CrossRef]

Temyanko, V. L.

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett.89(10), 101127 (2006).
[CrossRef]

Troy, N.

Vazquez, R. M.

Voigtlander, C.

Walker, R. B.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg Gratings Made With a Femtosecond Laser in Heavily Doped Er–Yb Phosphate Glass Fiber,” IEEE Photon. Technol. Lett.19(12), 943–945 (2007).
[CrossRef]

Wang, Q.

Williams, R. J.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glas. Sci.3(4), 332–348 (2012).
[CrossRef]

Witcher, J.

Withford, M. J.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glas. Sci.3(4), 332–348 (2012).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108(3), 033110 (2010).
[CrossRef]

Xiong, L.

Yliniemi, S.

Zhu, X.

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1 W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett.92(5), 051111 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett.89(10), 101127 (2006).
[CrossRef]

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1 W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett.92(5), 051111 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond, and A. Croteau, “Bragg Gratings Made With a Femtosecond Laser in Heavily Doped Er–Yb Phosphate Glass Fiber,” IEEE Photon. Technol. Lett.19(12), 943–945 (2007).
[CrossRef]

Int. J. Appl. Glas. Sci. (1)

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast laser inscription in soft glasses: a comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glas. Sci.3(4), 332–348 (2012).
[CrossRef]

J. Appl. Phys. (1)

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” J. Appl. Phys.108(3), 033110 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

D. Ehrt, P. Ebeling, and U. Natura, “UV Transmission and radiation-induced defects in phosphate and fluoride–phosphate glasses,” J. Non-Cryst. Solids263–264, 240–250 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mater. Res. Bull. (1)

K. Seneschal, F. Smektala, B. Bureau, M. Le Floch, S. Jiang, T. Luo, J. Lucas, and N. Peyghambarian, “Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers,” Mater. Res. Bull.40(9), 1433–1442 (2005).
[CrossRef]

MRS Bull. (1)

J. Albert, “Permanent photoinduced changes for bragg gratings in silicate glass waveguides and fibers,” MRS Bull.23, 36–42 (1998).

Opt. Lett. (3)

Opt. Mater. (1)

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium–ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater.11(2-3), 269–288 (1999).
[CrossRef]

Opt. Mater. Express (2)

Other (3)

R. M. Rogojan, A. Schülzgen, N. Peyghambarian, A. Laronche, and J. Albert, “Photo-thermal gratings in Er3+/Yb3+-doped core phosphate glass single mode fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (OSA, 2007), p. BTuC3.

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “Photo-thermal growth of unsaturated and saturated Bragg gratings in phosphate glass fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (OSA, 2010), p. BTuB1.

R. Kashyap, Fiber Bragg Gratings, 2nd Edition. (Academic Press, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Refractive index changes during fabrication of 2 cm-long gratings in passive and active phosphate fibers: (a) ∆navg in passive fibers (samples P1-P8), (b) ∆navg in active fibers (samples A1-A4), (c) ∆nmod in passive fibers and (d) ∆nmod in active fibers. Green solid and dash lines are fitted stretched exponential curves and their respective 95% prediction bands.

Fig. 2
Fig. 2

Thermal evolution of the transmission notch depths for gratings in passive (P1, P6, P8) and active (A1, A4) phosphate fibers during step-wise annealing between 100 – 300 °C, in 50 °C steps for 9-11 days at each step and return to room temperature between steps. See text for further details.

Fig. 3
Fig. 3

Evolution of transmission spectra of grating P2 measured at room temperature, starting from the UV induced seed and after each thermal annealing step.

Fig. 4
Fig. 4

Thermally induced decay of the average refractive index change ∆navg relative to its initial value for gratings in passive and active phosphate glass fibers during the annealing described in the caption of Fig. 2. The initial absolute value of ∆navg for each sample is included in the legend labels.

Fig. 5
Fig. 5

Thermally induced change of refractive index modulation ∆nmod at the end of the 250 °C anneal step versus the UV irradiation time applied to produce the seed gratings.

Fig. 6
Fig. 6

Phenomenological model of photo-induced index change (black line), thermal annealing (green arrows) and final index changes (red line) for (a) short UV irradiation and (b) long UV irradiation. See text for details.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n avg = Δ λ B 2Λη
Δ n mod =tan h 1 ( R ) λ B πLη

Metrics