Abstract

Laser oscillation was demonstrated using a 1 at.% Nd3+-doped Lu2O3 (Nd3+:Lu2O3) transparent ceramic produced by spark plasma sintering. Nd2O3, Lu2O3, and LiF commercial powders were mixed by ball milling and were sintered at 1723 K using a two-step sintering profile. After the transparent Nd3+:Lu2O3 ceramic was annealed in air, its transmittance at 1076 nm reached 81.8%, which was close to the theoretical value for Lu2O3 (82.2%). The absorption cross-section at 806 nm was 1.29 × 10−20 cm2, and the fluorescence decay time at 1076 nm was 229 μs. The laser oscillation of Nd3+:Lu2O3 ceramic for the transition from 4F3/2 to 4I11/2—specifically, at 1076.7 and 1080.8 nm—was simultaneously obtained, with a laser output of 0.21 W and slope efficiency of 14%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
    [CrossRef]
  2. L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol.34(2), 255–260 (1999).
    [CrossRef]
  3. U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express12(14), 3125–3130 (2004).
    [CrossRef] [PubMed]
  4. J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett.81(23), 4324–4326 (2002).
    [CrossRef]
  5. K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics- a novel gain material for high-power solid-state lasers,” Phys. Status Solidi202(1), R1–R3 (2005).
    [CrossRef]
  6. A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characteriazation of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett.3(8), 375–379 (2006).
    [CrossRef]
  7. M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express14(26), 12832–12838 (2006).
    [CrossRef] [PubMed]
  8. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett.33(12), 1380–1382 (2008).
    [CrossRef] [PubMed]
  9. J. Sanghera, J. Frantz, W. Kim, G. Villalobos, C. Baker, B. Shaw, B. Sadowski, M. Hunt, F. Miklos, A. Lutz, and I. Aggarwal, “10% Yb3+-Lu2O3 ceramic laser with 74% efficiency,” Opt. Lett.36(4), 576–578 (2011).
    [CrossRef] [PubMed]
  10. W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
    [CrossRef]
  11. W. Kim, C. Baker, S. Bowman, C. Florea, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Laser oscillation from Ho3+ doped Lu2O3 ceramics,” Opt. Mater. Express3(7), 913–919 (2013).
    [CrossRef]
  12. O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express2(2), 183–189 (2012).
    [CrossRef]
  13. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express20(17), 19349–19354 (2012).
    [CrossRef] [PubMed]
  14. A. A. Kaminskii, “Laser crystal and ceramics: recent advances,” Laser Photon. Rev.1(2), 93–177 (2007).
    [CrossRef]
  15. L. Hao, K. Wu, H. Cong, H. Yu, H. Zhang, Z. Wang, and J. Wang, “Spectroscopy and laser performance of Nd:Lu2O3 crystal,” Opt. Express19(18), 17774–17779 (2011).
    [CrossRef] [PubMed]
  16. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011).
    [CrossRef] [PubMed]
  17. T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics,” Opt. Mater. Express1(5), 1040–1050 (2011).
    [CrossRef]
  18. R. Chaim, Z. Shen, and M. Nygren, “Transparent nanocrystalline MgO by rapid and low temperature spark plasma sintering,” J. Mater. Res.19(9), 2527–2531 (2004).
    [CrossRef]
  19. L. An, A. Ito, and T. Goto, “Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering,” J. Eur. Ceram. Soc.31(9), 1597–1602 (2011).
    [CrossRef]
  20. R. Boulesteix, R. Epherre, S. Noyau, M. Vandenhende, A. Maître, C. Sallé, G. Alombert-Goget, Y. Guyot, and A. Brenier, “Highly transparent Nd:Lu2O3 cermaics obtained by coupling slip-casting and spark plasma sintering,” Scr. Mater.75, 54–57 (2014).
    [CrossRef]
  21. L. An, A. Ito, and T. Goto, “Effect of LiF addition on spark plasma sintering of transparent Nd-doped Lu2O3 bodies,” J. Asian Ceram. Soc.2(2), 154–157 (2014).
    [CrossRef]
  22. M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc.52(8), 443–446 (1969).
    [CrossRef]
  23. A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008).
    [CrossRef]
  24. L. An, A. Ito, and T. Goto, “Effects of ball milling and post-annealing on the transparency of spark plasma sintered Lu2O3,” Ceram. Int.37(7), 2263–2267 (2011).
    [CrossRef]
  25. D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 Produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
    [CrossRef]
  26. U. Anselmi-Tamburini, J. Woolman, and Z. Munir, “Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering,” Adv. Funct. Mater.17(16), 3267–3273 (2007).
    [CrossRef]
  27. L. D. Merkle, M. Dubinskii, K. L. Schepler, and S. M. Hegde, “Concentration quenching in fine-grained ceramic Nd:YAG,” Opt. Express14(9), 3893–3905 (2006).
    [CrossRef] [PubMed]
  28. M. Pokhrel, N. Ray, G. A. Kumar, and D. K. Sardar, “Comparative studies of the spectroscopic properties of Nd3+: YAG nanocrystals, transparent ceramic and single crystal,” Opt. Mater. Express2(3), 235–249 (2012).
    [CrossRef]
  29. Y. Sato, T. Taira, and A. Ikesue, “Spectral Parameters of Nd3+-ion in the polycrystalline Solid-solution Composed of Y3Al5O12 and Y3Sc2Al3O12,” Jpn. J. Appl. Phys.42(8), 5071–5074 (2003).
  30. Y. Sato, I. Shijo, S. Kurimura, T. Taira, and A. Ikesue, “Spectroscopic properties of neodymium-doped Y2O3 ceramics,” OSA TOPS50, 417–421 (2001).
  31. N. Frage, S. Kalabukhov, N. Sverdlov, V. Ezersky, and M. P. Dariel, “Densification of transparent yttrium aluminum garnet (YAG) by SPS processing,” J. Eur. Ceram. Soc.30(16), 3331–3337 (2010).
    [CrossRef]
  32. M. Tokita, “Industrial applications of advanced spark plasma sintering,” Am. Ceram. Soc. Bull.85, 32–34 (2006).
  33. E. A. Olevsky, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: I. experimental analysis of scalability,” J. Am. Ceram. Soc.95(8), 2406–2413 (2012).
    [CrossRef]
  34. E. A. Olevsky, C. Garcia-Cardona, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: II. finite element analysis of scalability,” J. Am. Ceram. Soc.95(8), 2414–2422 (2012).
    [CrossRef]
  35. T. B. Holland, U. Anselmi-Tamburini, and A. K. Mukherjee, “Electric fields and the future of scalability in spark plasma sintering,” Scr. Mater.69(2), 117–121 (2013).
    [CrossRef]
  36. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, “Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments,” Adv. Eng. Mater. (to be published), doi:.
    [CrossRef]

2014 (2)

R. Boulesteix, R. Epherre, S. Noyau, M. Vandenhende, A. Maître, C. Sallé, G. Alombert-Goget, Y. Guyot, and A. Brenier, “Highly transparent Nd:Lu2O3 cermaics obtained by coupling slip-casting and spark plasma sintering,” Scr. Mater.75, 54–57 (2014).
[CrossRef]

L. An, A. Ito, and T. Goto, “Effect of LiF addition on spark plasma sintering of transparent Nd-doped Lu2O3 bodies,” J. Asian Ceram. Soc.2(2), 154–157 (2014).
[CrossRef]

2013 (2)

W. Kim, C. Baker, S. Bowman, C. Florea, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Laser oscillation from Ho3+ doped Lu2O3 ceramics,” Opt. Mater. Express3(7), 913–919 (2013).
[CrossRef]

T. B. Holland, U. Anselmi-Tamburini, and A. K. Mukherjee, “Electric fields and the future of scalability in spark plasma sintering,” Scr. Mater.69(2), 117–121 (2013).
[CrossRef]

2012 (5)

O. L. Antipov, A. A. Novikov, N. G. Zakharov, and A. P. Zinoviev, “Optical properties and efficient laser oscillation at 2066 nm of novel Tm:Lu2O3 ceramics,” Opt. Mater. Express2(2), 183–189 (2012).
[CrossRef]

A. A. Lagatsky, O. L. Antipov, and W. Sibbett, “Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm,” Opt. Express20(17), 19349–19354 (2012).
[CrossRef] [PubMed]

M. Pokhrel, N. Ray, G. A. Kumar, and D. K. Sardar, “Comparative studies of the spectroscopic properties of Nd3+: YAG nanocrystals, transparent ceramic and single crystal,” Opt. Mater. Express2(3), 235–249 (2012).
[CrossRef]

E. A. Olevsky, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: I. experimental analysis of scalability,” J. Am. Ceram. Soc.95(8), 2406–2413 (2012).
[CrossRef]

E. A. Olevsky, C. Garcia-Cardona, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: II. finite element analysis of scalability,” J. Am. Ceram. Soc.95(8), 2414–2422 (2012).
[CrossRef]

2011 (7)

L. An, A. Ito, and T. Goto, “Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering,” J. Eur. Ceram. Soc.31(9), 1597–1602 (2011).
[CrossRef]

J. Sanghera, J. Frantz, W. Kim, G. Villalobos, C. Baker, B. Shaw, B. Sadowski, M. Hunt, F. Miklos, A. Lutz, and I. Aggarwal, “10% Yb3+-Lu2O3 ceramic laser with 74% efficiency,” Opt. Lett.36(4), 576–578 (2011).
[CrossRef] [PubMed]

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

L. An, A. Ito, and T. Goto, “Effects of ball milling and post-annealing on the transparency of spark plasma sintered Lu2O3,” Ceram. Int.37(7), 2263–2267 (2011).
[CrossRef]

L. Hao, K. Wu, H. Cong, H. Yu, H. Zhang, Z. Wang, and J. Wang, “Spectroscopy and laser performance of Nd:Lu2O3 crystal,” Opt. Express19(18), 17774–17779 (2011).
[CrossRef] [PubMed]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011).
[CrossRef] [PubMed]

T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics,” Opt. Mater. Express1(5), 1040–1050 (2011).
[CrossRef]

2010 (1)

N. Frage, S. Kalabukhov, N. Sverdlov, V. Ezersky, and M. P. Dariel, “Densification of transparent yttrium aluminum garnet (YAG) by SPS processing,” J. Eur. Ceram. Soc.30(16), 3331–3337 (2010).
[CrossRef]

2008 (3)

A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008).
[CrossRef]

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 Produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett.33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

2007 (2)

A. A. Kaminskii, “Laser crystal and ceramics: recent advances,” Laser Photon. Rev.1(2), 93–177 (2007).
[CrossRef]

U. Anselmi-Tamburini, J. Woolman, and Z. Munir, “Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering,” Adv. Funct. Mater.17(16), 3267–3273 (2007).
[CrossRef]

2006 (4)

L. D. Merkle, M. Dubinskii, K. L. Schepler, and S. M. Hegde, “Concentration quenching in fine-grained ceramic Nd:YAG,” Opt. Express14(9), 3893–3905 (2006).
[CrossRef] [PubMed]

M. Tokita, “Industrial applications of advanced spark plasma sintering,” Am. Ceram. Soc. Bull.85, 32–34 (2006).

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characteriazation of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett.3(8), 375–379 (2006).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

2005 (1)

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics- a novel gain material for high-power solid-state lasers,” Phys. Status Solidi202(1), R1–R3 (2005).
[CrossRef]

2004 (2)

U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express12(14), 3125–3130 (2004).
[CrossRef] [PubMed]

R. Chaim, Z. Shen, and M. Nygren, “Transparent nanocrystalline MgO by rapid and low temperature spark plasma sintering,” J. Mater. Res.19(9), 2527–2531 (2004).
[CrossRef]

2003 (1)

Y. Sato, T. Taira, and A. Ikesue, “Spectral Parameters of Nd3+-ion in the polycrystalline Solid-solution Composed of Y3Al5O12 and Y3Sc2Al3O12,” Jpn. J. Appl. Phys.42(8), 5071–5074 (2003).

2002 (1)

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett.81(23), 4324–4326 (2002).
[CrossRef]

2001 (1)

Y. Sato, I. Shijo, S. Kurimura, T. Taira, and A. Ikesue, “Spectroscopic properties of neodymium-doped Y2O3 ceramics,” OSA TOPS50, 417–421 (2001).

1999 (1)

L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol.34(2), 255–260 (1999).
[CrossRef]

1995 (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

1969 (1)

M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc.52(8), 443–446 (1969).
[CrossRef]

Aggarwal, I.

Akchurin, M. S.

A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008).
[CrossRef]

Alombert-Goget, G.

R. Boulesteix, R. Epherre, S. Noyau, M. Vandenhende, A. Maître, C. Sallé, G. Alombert-Goget, Y. Guyot, and A. Brenier, “Highly transparent Nd:Lu2O3 cermaics obtained by coupling slip-casting and spark plasma sintering,” Scr. Mater.75, 54–57 (2014).
[CrossRef]

An, L.

L. An, A. Ito, and T. Goto, “Effect of LiF addition on spark plasma sintering of transparent Nd-doped Lu2O3 bodies,” J. Asian Ceram. Soc.2(2), 154–157 (2014).
[CrossRef]

L. An, A. Ito, and T. Goto, “Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering,” J. Eur. Ceram. Soc.31(9), 1597–1602 (2011).
[CrossRef]

L. An, A. Ito, and T. Goto, “Effects of ball milling and post-annealing on the transparency of spark plasma sintered Lu2O3,” Ceram. Int.37(7), 2263–2267 (2011).
[CrossRef]

Anselmi-Tamburini, U.

T. B. Holland, U. Anselmi-Tamburini, and A. K. Mukherjee, “Electric fields and the future of scalability in spark plasma sintering,” Scr. Mater.69(2), 117–121 (2013).
[CrossRef]

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 Produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

U. Anselmi-Tamburini, J. Woolman, and Z. Munir, “Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering,” Adv. Funct. Mater.17(16), 3267–3273 (2007).
[CrossRef]

Antipov, O. L.

Bagayev, S. N.

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characteriazation of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett.3(8), 375–379 (2006).
[CrossRef]

Baker, C.

Becker, P.

A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008).
[CrossRef]

Bohatý, L.

A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008).
[CrossRef]

Boulesteix, R.

R. Boulesteix, R. Epherre, S. Noyau, M. Vandenhende, A. Maître, C. Sallé, G. Alombert-Goget, Y. Guyot, and A. Brenier, “Highly transparent Nd:Lu2O3 cermaics obtained by coupling slip-casting and spark plasma sintering,” Scr. Mater.75, 54–57 (2014).
[CrossRef]

Bowman, S.

Bradbury, W. L.

E. A. Olevsky, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: I. experimental analysis of scalability,” J. Am. Ceram. Soc.95(8), 2406–2413 (2012).
[CrossRef]

E. A. Olevsky, C. Garcia-Cardona, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: II. finite element analysis of scalability,” J. Am. Ceram. Soc.95(8), 2414–2422 (2012).
[CrossRef]

Brenier, A.

R. Boulesteix, R. Epherre, S. Noyau, M. Vandenhende, A. Maître, C. Sallé, G. Alombert-Goget, Y. Guyot, and A. Brenier, “Highly transparent Nd:Lu2O3 cermaics obtained by coupling slip-casting and spark plasma sintering,” Scr. Mater.75, 54–57 (2014).
[CrossRef]

Chaim, R.

R. Chaim, Z. Shen, and M. Nygren, “Transparent nanocrystalline MgO by rapid and low temperature spark plasma sintering,” J. Mater. Res.19(9), 2527–2531 (2004).
[CrossRef]

Cong, H.

Dargatz, B.

O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, “Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments,” Adv. Eng. Mater. (to be published), doi:.
[CrossRef]

Dariel, M. P.

N. Frage, S. Kalabukhov, N. Sverdlov, V. Ezersky, and M. P. Dariel, “Densification of transparent yttrium aluminum garnet (YAG) by SPS processing,” J. Eur. Ceram. Soc.30(16), 3331–3337 (2010).
[CrossRef]

Dong, J.

A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008).
[CrossRef]

Dubinskii, M.

Epherre, R.

R. Boulesteix, R. Epherre, S. Noyau, M. Vandenhende, A. Maître, C. Sallé, G. Alombert-Goget, Y. Guyot, and A. Brenier, “Highly transparent Nd:Lu2O3 cermaics obtained by coupling slip-casting and spark plasma sintering,” Scr. Mater.75, 54–57 (2014).
[CrossRef]

Ezersky, V.

N. Frage, S. Kalabukhov, N. Sverdlov, V. Ezersky, and M. P. Dariel, “Densification of transparent yttrium aluminum garnet (YAG) by SPS processing,” J. Eur. Ceram. Soc.30(16), 3331–3337 (2010).
[CrossRef]

Florea, C.

Fornasiero, L.

L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol.34(2), 255–260 (1999).
[CrossRef]

Frage, N.

N. Frage, S. Kalabukhov, N. Sverdlov, V. Ezersky, and M. P. Dariel, “Densification of transparent yttrium aluminum garnet (YAG) by SPS processing,” J. Eur. Ceram. Soc.30(16), 3331–3337 (2010).
[CrossRef]

Frantz, J.

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

J. Sanghera, J. Frantz, W. Kim, G. Villalobos, C. Baker, B. Shaw, B. Sadowski, M. Hunt, F. Miklos, A. Lutz, and I. Aggarwal, “10% Yb3+-Lu2O3 ceramic laser with 74% efficiency,” Opt. Lett.36(4), 576–578 (2011).
[CrossRef] [PubMed]

Garcia-Cardona, C.

E. A. Olevsky, C. Garcia-Cardona, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: II. finite element analysis of scalability,” J. Am. Ceram. Soc.95(8), 2414–2422 (2012).
[CrossRef]

Gonzalez-Julian, J.

O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, “Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments,” Adv. Eng. Mater. (to be published), doi:.
[CrossRef]

Goto, T.

L. An, A. Ito, and T. Goto, “Effect of LiF addition on spark plasma sintering of transparent Nd-doped Lu2O3 bodies,” J. Asian Ceram. Soc.2(2), 154–157 (2014).
[CrossRef]

L. An, A. Ito, and T. Goto, “Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering,” J. Eur. Ceram. Soc.31(9), 1597–1602 (2011).
[CrossRef]

L. An, A. Ito, and T. Goto, “Effects of ball milling and post-annealing on the transparency of spark plasma sintered Lu2O3,” Ceram. Int.37(7), 2263–2267 (2011).
[CrossRef]

Griebner, U.

Guillon, O.

O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, “Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments,” Adv. Eng. Mater. (to be published), doi:.
[CrossRef]

Guyot, Y.

R. Boulesteix, R. Epherre, S. Noyau, M. Vandenhende, A. Maître, C. Sallé, G. Alombert-Goget, Y. Guyot, and A. Brenier, “Highly transparent Nd:Lu2O3 cermaics obtained by coupling slip-casting and spark plasma sintering,” Scr. Mater.75, 54–57 (2014).
[CrossRef]

Haines, C. D.

E. A. Olevsky, C. Garcia-Cardona, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: II. finite element analysis of scalability,” J. Am. Ceram. Soc.95(8), 2414–2422 (2012).
[CrossRef]

E. A. Olevsky, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: I. experimental analysis of scalability,” J. Am. Ceram. Soc.95(8), 2406–2413 (2012).
[CrossRef]

Hao, L.

Hegde, S. M.

Herrmann, M.

O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, “Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments,” Adv. Eng. Mater. (to be published), doi:.
[CrossRef]

Holland, T. B.

T. B. Holland, U. Anselmi-Tamburini, and A. K. Mukherjee, “Electric fields and the future of scalability in spark plasma sintering,” Scr. Mater.69(2), 117–121 (2013).
[CrossRef]

Hosokawa, S.

Huber, G.

L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol.34(2), 255–260 (1999).
[CrossRef]

Hulbert, D. M.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 Produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

Hunt, M.

Ikesue, A.

Y. Sato, T. Taira, and A. Ikesue, “Spectral Parameters of Nd3+-ion in the polycrystalline Solid-solution Composed of Y3Al5O12 and Y3Sc2Al3O12,” Jpn. J. Appl. Phys.42(8), 5071–5074 (2003).

Y. Sato, I. Shijo, S. Kurimura, T. Taira, and A. Ikesue, “Spectroscopic properties of neodymium-doped Y2O3 ceramics,” OSA TOPS50, 417–421 (2001).

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Ito, A.

L. An, A. Ito, and T. Goto, “Effect of LiF addition on spark plasma sintering of transparent Nd-doped Lu2O3 bodies,” J. Asian Ceram. Soc.2(2), 154–157 (2014).
[CrossRef]

L. An, A. Ito, and T. Goto, “Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering,” J. Eur. Ceram. Soc.31(9), 1597–1602 (2011).
[CrossRef]

L. An, A. Ito, and T. Goto, “Effects of ball milling and post-annealing on the transparency of spark plasma sintered Lu2O3,” Ceram. Int.37(7), 2263–2267 (2011).
[CrossRef]

Ivanov, S. N.

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characteriazation of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett.3(8), 375–379 (2006).
[CrossRef]

Jiang, D.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 Produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

Kalabukhov, S.

N. Frage, S. Kalabukhov, N. Sverdlov, V. Ezersky, and M. P. Dariel, “Densification of transparent yttrium aluminum garnet (YAG) by SPS processing,” J. Eur. Ceram. Soc.30(16), 3331–3337 (2010).
[CrossRef]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett.33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

A. A. Kaminskii, “Laser crystal and ceramics: recent advances,” Laser Photon. Rev.1(2), 93–177 (2007).
[CrossRef]

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characteriazation of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett.3(8), 375–379 (2006).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics- a novel gain material for high-power solid-state lasers,” Phys. Status Solidi202(1), R1–R3 (2005).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett.81(23), 4324–4326 (2002).
[CrossRef]

Kapoor, D.

E. A. Olevsky, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: I. experimental analysis of scalability,” J. Am. Ceram. Soc.95(8), 2406–2413 (2012).
[CrossRef]

E. A. Olevsky, C. Garcia-Cardona, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: II. finite element analysis of scalability,” J. Am. Ceram. Soc.95(8), 2414–2422 (2012).
[CrossRef]

Kessel, T.

O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, “Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments,” Adv. Eng. Mater. (to be published), doi:.
[CrossRef]

Khazanov, E. N.

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characteriazation of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett.3(8), 375–379 (2006).
[CrossRef]

Kim, W.

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Kumar, G. A.

Kung, F.

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

Kurimura, S.

Y. Sato, I. Shijo, S. Kurimura, T. Taira, and A. Ikesue, “Spectroscopic properties of neodymium-doped Y2O3 ceramics,” OSA TOPS50, 417–421 (2001).

Lagatsky, A. A.

Land, D.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 Produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

Lu, J.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett.81(23), 4324–4326 (2002).
[CrossRef]

Lutz, A.

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

J. Sanghera, J. Frantz, W. Kim, G. Villalobos, C. Baker, B. Shaw, B. Sadowski, M. Hunt, F. Miklos, A. Lutz, and I. Aggarwal, “10% Yb3+-Lu2O3 ceramic laser with 74% efficiency,” Opt. Lett.36(4), 576–578 (2011).
[CrossRef] [PubMed]

Maître, A.

R. Boulesteix, R. Epherre, S. Noyau, M. Vandenhende, A. Maître, C. Sallé, G. Alombert-Goget, Y. Guyot, and A. Brenier, “Highly transparent Nd:Lu2O3 cermaics obtained by coupling slip-casting and spark plasma sintering,” Scr. Mater.75, 54–57 (2014).
[CrossRef]

Martin, D. G.

E. A. Olevsky, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: I. experimental analysis of scalability,” J. Am. Ceram. Soc.95(8), 2406–2413 (2012).
[CrossRef]

E. A. Olevsky, C. Garcia-Cardona, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: II. finite element analysis of scalability,” J. Am. Ceram. Soc.95(8), 2414–2422 (2012).
[CrossRef]

Mendelson, M. I.

M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc.52(8), 443–446 (1969).
[CrossRef]

Merkle, L. D.

Miklos, F.

Mix, E.

L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol.34(2), 255–260 (1999).
[CrossRef]

Mukherjee, A. K.

T. B. Holland, U. Anselmi-Tamburini, and A. K. Mukherjee, “Electric fields and the future of scalability in spark plasma sintering,” Scr. Mater.69(2), 117–121 (2013).
[CrossRef]

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 Produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

Munir, Z.

U. Anselmi-Tamburini, J. Woolman, and Z. Munir, “Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering,” Adv. Funct. Mater.17(16), 3267–3273 (2007).
[CrossRef]

Musha, M.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett.81(23), 4324–4326 (2002).
[CrossRef]

Ng, T.

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 Produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

Novikov, A. A.

Noyau, S.

R. Boulesteix, R. Epherre, S. Noyau, M. Vandenhende, A. Maître, C. Sallé, G. Alombert-Goget, Y. Guyot, and A. Brenier, “Highly transparent Nd:Lu2O3 cermaics obtained by coupling slip-casting and spark plasma sintering,” Scr. Mater.75, 54–57 (2014).
[CrossRef]

Nygren, M.

R. Chaim, Z. Shen, and M. Nygren, “Transparent nanocrystalline MgO by rapid and low temperature spark plasma sintering,” J. Mater. Res.19(9), 2527–2531 (2004).
[CrossRef]

Olevsky, E. A.

E. A. Olevsky, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: I. experimental analysis of scalability,” J. Am. Ceram. Soc.95(8), 2406–2413 (2012).
[CrossRef]

E. A. Olevsky, C. Garcia-Cardona, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: II. finite element analysis of scalability,” J. Am. Ceram. Soc.95(8), 2414–2422 (2012).
[CrossRef]

Pavel, N.

Peterman, K.

L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol.34(2), 255–260 (1999).
[CrossRef]

Petermann, K.

Peters, V.

U. Griebner, V. Petrov, K. Petermann, and V. Peters, “Passively mode-locked Yb:Lu2O3 laser,” Opt. Express12(14), 3125–3130 (2004).
[CrossRef] [PubMed]

L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol.34(2), 255–260 (1999).
[CrossRef]

Petrov, V.

Pokhrel, M.

Räthel, J.

O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, “Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments,” Adv. Eng. Mater. (to be published), doi:.
[CrossRef]

Ray, N.

Sadowski, B.

Sallé, C.

R. Boulesteix, R. Epherre, S. Noyau, M. Vandenhende, A. Maître, C. Sallé, G. Alombert-Goget, Y. Guyot, and A. Brenier, “Highly transparent Nd:Lu2O3 cermaics obtained by coupling slip-casting and spark plasma sintering,” Scr. Mater.75, 54–57 (2014).
[CrossRef]

Sanghera, J.

Sardar, D. K.

Sato, Y.

Y. Sato, T. Taira, and A. Ikesue, “Spectral Parameters of Nd3+-ion in the polycrystalline Solid-solution Composed of Y3Al5O12 and Y3Sc2Al3O12,” Jpn. J. Appl. Phys.42(8), 5071–5074 (2003).

Y. Sato, I. Shijo, S. Kurimura, T. Taira, and A. Ikesue, “Spectroscopic properties of neodymium-doped Y2O3 ceramics,” OSA TOPS50, 417–421 (2001).

Schepler, K. L.

Schierning, G.

O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, “Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments,” Adv. Eng. Mater. (to be published), doi:.
[CrossRef]

Shaw, B.

Shen, Z.

R. Chaim, Z. Shen, and M. Nygren, “Transparent nanocrystalline MgO by rapid and low temperature spark plasma sintering,” J. Mater. Res.19(9), 2527–2531 (2004).
[CrossRef]

Shijo, I.

Y. Sato, I. Shijo, S. Kurimura, T. Taira, and A. Ikesue, “Spectroscopic properties of neodymium-doped Y2O3 ceramics,” OSA TOPS50, 417–421 (2001).

Shirakawa, A.

A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett.33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characteriazation of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett.3(8), 375–379 (2006).
[CrossRef]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics- a novel gain material for high-power solid-state lasers,” Phys. Status Solidi202(1), R1–R3 (2005).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett.81(23), 4324–4326 (2002).
[CrossRef]

Sibbett, W.

Sverdlov, N.

N. Frage, S. Kalabukhov, N. Sverdlov, V. Ezersky, and M. P. Dariel, “Densification of transparent yttrium aluminum garnet (YAG) by SPS processing,” J. Eur. Ceram. Soc.30(16), 3331–3337 (2010).
[CrossRef]

Taira, T.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011).
[CrossRef] [PubMed]

T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics,” Opt. Mater. Express1(5), 1040–1050 (2011).
[CrossRef]

Y. Sato, T. Taira, and A. Ikesue, “Spectral Parameters of Nd3+-ion in the polycrystalline Solid-solution Composed of Y3Al5O12 and Y3Sc2Al3O12,” Jpn. J. Appl. Phys.42(8), 5071–5074 (2003).

Y. Sato, I. Shijo, S. Kurimura, T. Taira, and A. Ikesue, “Spectroscopic properties of neodymium-doped Y2O3 ceramics,” OSA TOPS50, 417–421 (2001).

Takaichi, K.

A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008).
[CrossRef]

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characteriazation of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett.3(8), 375–379 (2006).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics- a novel gain material for high-power solid-state lasers,” Phys. Status Solidi202(1), R1–R3 (2005).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett.81(23), 4324–4326 (2002).
[CrossRef]

Takurakawa, M.

A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008).
[CrossRef]

Taranov, A. V.

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characteriazation of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett.3(8), 375–379 (2006).
[CrossRef]

Tokita, M.

M. Tokita, “Industrial applications of advanced spark plasma sintering,” Am. Ceram. Soc. Bull.85, 32–34 (2006).

Tokurakawa, M.

Tsunekane, M.

Ueda, K.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett.33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008).
[CrossRef]

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characteriazation of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett.3(8), 375–379 (2006).
[CrossRef]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics- a novel gain material for high-power solid-state lasers,” Phys. Status Solidi202(1), R1–R3 (2005).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett.81(23), 4324–4326 (2002).
[CrossRef]

Uematsu, T.

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett.81(23), 4324–4326 (2002).
[CrossRef]

Vandenhende, M.

R. Boulesteix, R. Epherre, S. Noyau, M. Vandenhende, A. Maître, C. Sallé, G. Alombert-Goget, Y. Guyot, and A. Brenier, “Highly transparent Nd:Lu2O3 cermaics obtained by coupling slip-casting and spark plasma sintering,” Scr. Mater.75, 54–57 (2014).
[CrossRef]

Villalobos, G.

Wang, J.

Wang, Z.

Woolman, J.

U. Anselmi-Tamburini, J. Woolman, and Z. Munir, “Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering,” Adv. Funct. Mater.17(16), 3267–3273 (2007).
[CrossRef]

Wu, K.

Yagi, H.

A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett.33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characteriazation of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett.3(8), 375–379 (2006).
[CrossRef]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics- a novel gain material for high-power solid-state lasers,” Phys. Status Solidi202(1), R1–R3 (2005).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett.81(23), 4324–4326 (2002).
[CrossRef]

Yanagitani, T.

A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett.33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express14(26), 12832–12838 (2006).
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characteriazation of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett.3(8), 375–379 (2006).
[CrossRef]

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics- a novel gain material for high-power solid-state lasers,” Phys. Status Solidi202(1), R1–R3 (2005).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett.81(23), 4324–4326 (2002).
[CrossRef]

Yoshida, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

Yu, H.

Zakharov, N. G.

Zhang, H.

Zinoviev, A. P.

Adv. Funct. Mater. (1)

U. Anselmi-Tamburini, J. Woolman, and Z. Munir, “Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering,” Adv. Funct. Mater.17(16), 3267–3273 (2007).
[CrossRef]

Am. Ceram. Soc. Bull. (1)

M. Tokita, “Industrial applications of advanced spark plasma sintering,” Am. Ceram. Soc. Bull.85, 32–34 (2006).

Appl. Phys. Lett. (1)

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett.81(23), 4324–4326 (2002).
[CrossRef]

Ceram. Int. (1)

L. An, A. Ito, and T. Goto, “Effects of ball milling and post-annealing on the transparency of spark plasma sintered Lu2O3,” Ceram. Int.37(7), 2263–2267 (2011).
[CrossRef]

Cryst. Res. Technol. (1)

L. Fornasiero, E. Mix, V. Peters, K. Peterman, and G. Huber, “New oxide crystals for solid state lasers,” Cryst. Res. Technol.34(2), 255–260 (1999).
[CrossRef]

J. Am. Ceram. Soc. (6)

W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, F. Kung, M. Hunt, J. Sanghera, and I. Aggarwal, “Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers,” J. Am. Ceram. Soc.94(9), 3001–3005 (2011).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc.78(4), 1033–1040 (1995).
[CrossRef]

D. Jiang, D. M. Hulbert, U. Anselmi-Tamburini, T. Ng, D. Land, and A. K. Mukherjee, “Optically transparent polycrystalline Al2O3 Produced by spark plasma sintering,” J. Am. Ceram. Soc.91(1), 151–154 (2008).
[CrossRef]

M. I. Mendelson, “Average grain size in polycrystalline ceramics,” J. Am. Ceram. Soc.52(8), 443–446 (1969).
[CrossRef]

E. A. Olevsky, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: I. experimental analysis of scalability,” J. Am. Ceram. Soc.95(8), 2406–2413 (2012).
[CrossRef]

E. A. Olevsky, C. Garcia-Cardona, W. L. Bradbury, C. D. Haines, D. G. Martin, and D. Kapoor, “Fundamental aspects of spark plasma sintering: II. finite element analysis of scalability,” J. Am. Ceram. Soc.95(8), 2414–2422 (2012).
[CrossRef]

J. Asian Ceram. Soc. (1)

L. An, A. Ito, and T. Goto, “Effect of LiF addition on spark plasma sintering of transparent Nd-doped Lu2O3 bodies,” J. Asian Ceram. Soc.2(2), 154–157 (2014).
[CrossRef]

J. Eur. Ceram. Soc. (2)

L. An, A. Ito, and T. Goto, “Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering,” J. Eur. Ceram. Soc.31(9), 1597–1602 (2011).
[CrossRef]

N. Frage, S. Kalabukhov, N. Sverdlov, V. Ezersky, and M. P. Dariel, “Densification of transparent yttrium aluminum garnet (YAG) by SPS processing,” J. Eur. Ceram. Soc.30(16), 3331–3337 (2010).
[CrossRef]

J. Mater. Res. (1)

R. Chaim, Z. Shen, and M. Nygren, “Transparent nanocrystalline MgO by rapid and low temperature spark plasma sintering,” J. Mater. Res.19(9), 2527–2531 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Sato, T. Taira, and A. Ikesue, “Spectral Parameters of Nd3+-ion in the polycrystalline Solid-solution Composed of Y3Al5O12 and Y3Sc2Al3O12,” Jpn. J. Appl. Phys.42(8), 5071–5074 (2003).

Laser Photon. Rev. (1)

A. A. Kaminskii, “Laser crystal and ceramics: recent advances,” Laser Photon. Rev.1(2), 93–177 (2007).
[CrossRef]

Laser Phys. Lett. (2)

A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani, “New results on characteriazation of highly transparent C-modification Lu2O3 nanocrystalline ceramics: room-temperature tunable CW laser action of Yb3+ ions under LD-pumping and the propagation kinetics of non-equilibrium acoustic phonons,” Laser Phys. Lett.3(8), 375–379 (2006).
[CrossRef]

A. A. Kaminskii, M. S. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett.5(4), 300–303 (2008).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. Express (4)

OSA TOPS (1)

Y. Sato, I. Shijo, S. Kurimura, T. Taira, and A. Ikesue, “Spectroscopic properties of neodymium-doped Y2O3 ceramics,” OSA TOPS50, 417–421 (2001).

Phys. Status Solidi (1)

K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Lu2O3:Yb3+ ceramics- a novel gain material for high-power solid-state lasers,” Phys. Status Solidi202(1), R1–R3 (2005).
[CrossRef]

Scr. Mater. (2)

T. B. Holland, U. Anselmi-Tamburini, and A. K. Mukherjee, “Electric fields and the future of scalability in spark plasma sintering,” Scr. Mater.69(2), 117–121 (2013).
[CrossRef]

R. Boulesteix, R. Epherre, S. Noyau, M. Vandenhende, A. Maître, C. Sallé, G. Alombert-Goget, Y. Guyot, and A. Brenier, “Highly transparent Nd:Lu2O3 cermaics obtained by coupling slip-casting and spark plasma sintering,” Scr. Mater.75, 54–57 (2014).
[CrossRef]

Other (1)

O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, “Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments,” Adv. Eng. Mater. (to be published), doi:.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for laser oscillation.

Fig. 2
Fig. 2

XRD pattern (a) and FESEM image (b) of Nd3+:Lu2O3 calcined powder.

Fig. 3
Fig. 3

Thermally etched (a) and fracture (b) surfaces of Nd3+:Lu2O3 ceramic.

Fig. 4
Fig. 4

Transmittance spectra of Nd3+:Lu2O3 ceramic before and after annealing. The theoretical transmission of Lu2O3 was calculated from the data in [23]. The inset shows photographs of the specimens before (left) and after (right) annealing.

Fig. 5
Fig. 5

Absorption cross-section spectrum of Nd3+:Lu2O3 ceramic after annealing.

Fig. 6
Fig. 6

(a) Emission spectrum of Nd3+:Lu2O3 ceramic pumped by an 808-nm diode laser and (b) fluorescence decay curve at 1076 nm of Nd3+:Lu2O3 ceramic.

Fig. 7
Fig. 7

Output power as a function of the absorbed power for the transparent Nd3+:Lu2O3 ceramic.

Metrics