Abstract

Organic dye-doped deoxyribonucleic acid (DNA)-surfactant complex films for dye lasers were fabricated by immersing non-doped complex films into a solution of hemicyanine dye. The threshold pumping intensity for amplified spontaneous emission was found to be 0.3 mJ/cm2, the value was one order smaller than those obtained for the samples made by conventional methods. Durability under pumping was also significantly improved and laser oscillation under optical excitation was observed. Dye concentration of the final products was estimated to be 10 wt% and there were no deformation of the samples, suggesting that dye molecules in the complex did not necessarily intercalate in DNA strand but replace with surfactant molecules.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-I. Jin and J. Grote, eds., Materials Science of DNA (CRC Press, 2012).
  2. K. Tanaka and Y. Okahata, “A DNA-lipid complex in organic media and formation of an aligned cast film,” J. Am. Chem. Soc. 118(44), 10679–10683 (1996).
    [Crossref]
  3. L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
    [Crossref]
  4. Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81(8), 1372–1374 (2002).
    [Crossref]
  5. Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent dye-doped DNA-surfactant films,” Adv. Mater. 12(17), 1281–1283 (2000).
    [Crossref]
  6. Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46(9), 1507–1513 (2007).
    [Crossref] [PubMed]
  7. L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Bartkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
    [Crossref]
  8. J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
    [Crossref]
  9. T. Chida and Y. Kawabe, “Transient grating formation in azo-doped polymer and its application to DNA-based tunable dye laser,” Opt. Mater. 36(4), 778–781 (2014).
    [Crossref]
  10. M. Honda, N. Nakai, M. Fukuda, and Y. Kawabe, “Optical amplification and laser action in cyanine dyes doped in DNA complex,” Proc. SPIE 6646, 664609 (2007).
    [Crossref]
  11. H. You, H. Spaeth, V. N. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
    [Crossref] [PubMed]
  12. B. A. Armitage, “Cyanine dye-DNA interactions: intercalation, groove binding, and aggregation,” in DNA binders and related subjects, M. J. Waring and J. B. Chaires eds. (Springer, 2005) pp. 55–76.
  13. J.-B. LePecq and C. Paoletti, “A fluorescent complex between ethidium bromide and nucleic acids,” J. Mol. Biol. 27(1), 87–106 (1967).
    [Crossref] [PubMed]
  14. S. M. Yarmoluk, S. S. Lukashov, M. Yu. Losytskyy, B. Akerman, and O. S. Kornyushyna, “Interaction of cyanine dyes with nucleic acids: XXVI. Intercalation of the trimethine cyanine dye Cyan 2 into double-stranded DNA: study by spectral luminescence methods,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(14), 3223–3232 (2002).
    [Crossref] [PubMed]
  15. R. Cao, C. F. Venezia, and B. A. Armitage, “Investigation of DNA binding modes for a symmetrical cyanine dye trication: Effect of DNA sequence and structure,” J. Biomol. Struct. Dyn. 18(6), 844–857 (2001).
    [Crossref] [PubMed]
  16. C. V. Kumar, R. S. Turner, and E. H. Asuncion, “Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect,” J. Photochem. Photobiol. Chem. 74(2-3), 231–238 (1993).
    [Crossref]
  17. F. A. Schaberle, V. A. Kuz’min, and I. E. Borissevitch, “Spectroscopic studies of the interaction of bichromophoric cyanine dyes with DNA. Effect of ionic strength,” Biochim. Biophys. Acta 1621(2), 183–191 (2003).
    [Crossref] [PubMed]
  18. T. Chida and Y. Kawabe, “Hemicyanine-DNA-complex: application to solid-state dye lasers,” Nonlin. Opt. Quant. Opt. 45, 85–91 (2012).
  19. G. S. He, Q. Zheng, P. N. Prasad, J. G. Grote, and F. K. Hopkins, “Infrared two-photon-excited visible lasing from a DNA-surfactant-chromophore complex,” Opt. Lett. 31(3), 359–361 (2006).
    [Crossref] [PubMed]
  20. L. Sznitko, K. Parafiniuk, A. Miniewicz, I. Rau, F. Kajzar, J. Niziol, E. Hebda, J. Pielivhowski, B. Sahraoui, and J. Mysliwiec, “Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid,” Opt. Meter. 35(12), 2389–2393 (2013).
    [Crossref]
  21. J. Mysliwiec, L. Sznitko, A. Szukalski, K. Parafiniuk, S. Bartliewicz, A. Miniewicz, B. Sahraoui, I. Rau, and F. Kajzar, “Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)- 1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices,” Opt. Mater. 34(10), 1725–1728 (2012).
    [Crossref]
  22. J. Mysliwiec, L. Sznitko, S. Bartliewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
    [Crossref]
  23. Y.-C. Hung, C.-H. Su, and H.-W. Huang, “Low threshold amplified spontaneous emission from dye-doped DNA biopolymer,” J. Appl. Phys. 111(11), 113107 (2012).
    [Crossref]
  24. B. Nordén and F. Tjerneld, “Optical studies on complexes between DNA and pseudoisocyanine,” Biophys. Chem. 6(1), 31–45 (1976).
    [Crossref] [PubMed]

2014 (1)

T. Chida and Y. Kawabe, “Transient grating formation in azo-doped polymer and its application to DNA-based tunable dye laser,” Opt. Mater. 36(4), 778–781 (2014).
[Crossref]

2013 (1)

L. Sznitko, K. Parafiniuk, A. Miniewicz, I. Rau, F. Kajzar, J. Niziol, E. Hebda, J. Pielivhowski, B. Sahraoui, and J. Mysliwiec, “Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid,” Opt. Meter. 35(12), 2389–2393 (2013).
[Crossref]

2012 (3)

J. Mysliwiec, L. Sznitko, A. Szukalski, K. Parafiniuk, S. Bartliewicz, A. Miniewicz, B. Sahraoui, I. Rau, and F. Kajzar, “Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)- 1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices,” Opt. Mater. 34(10), 1725–1728 (2012).
[Crossref]

Y.-C. Hung, C.-H. Su, and H.-W. Huang, “Low threshold amplified spontaneous emission from dye-doped DNA biopolymer,” J. Appl. Phys. 111(11), 113107 (2012).
[Crossref]

T. Chida and Y. Kawabe, “Hemicyanine-DNA-complex: application to solid-state dye lasers,” Nonlin. Opt. Quant. Opt. 45, 85–91 (2012).

2011 (1)

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Bartkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

2010 (1)

J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
[Crossref]

2009 (2)

H. You, H. Spaeth, V. N. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[Crossref] [PubMed]

J. Mysliwiec, L. Sznitko, S. Bartliewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

2007 (2)

2006 (1)

2003 (1)

F. A. Schaberle, V. A. Kuz’min, and I. E. Borissevitch, “Spectroscopic studies of the interaction of bichromophoric cyanine dyes with DNA. Effect of ionic strength,” Biochim. Biophys. Acta 1621(2), 183–191 (2003).
[Crossref] [PubMed]

2002 (2)

S. M. Yarmoluk, S. S. Lukashov, M. Yu. Losytskyy, B. Akerman, and O. S. Kornyushyna, “Interaction of cyanine dyes with nucleic acids: XXVI. Intercalation of the trimethine cyanine dye Cyan 2 into double-stranded DNA: study by spectral luminescence methods,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(14), 3223–3232 (2002).
[Crossref] [PubMed]

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81(8), 1372–1374 (2002).
[Crossref]

2001 (2)

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

R. Cao, C. F. Venezia, and B. A. Armitage, “Investigation of DNA binding modes for a symmetrical cyanine dye trication: Effect of DNA sequence and structure,” J. Biomol. Struct. Dyn. 18(6), 844–857 (2001).
[Crossref] [PubMed]

2000 (1)

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent dye-doped DNA-surfactant films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

1996 (1)

K. Tanaka and Y. Okahata, “A DNA-lipid complex in organic media and formation of an aligned cast film,” J. Am. Chem. Soc. 118(44), 10679–10683 (1996).
[Crossref]

1993 (1)

C. V. Kumar, R. S. Turner, and E. H. Asuncion, “Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect,” J. Photochem. Photobiol. Chem. 74(2-3), 231–238 (1993).
[Crossref]

1976 (1)

B. Nordén and F. Tjerneld, “Optical studies on complexes between DNA and pseudoisocyanine,” Biophys. Chem. 6(1), 31–45 (1976).
[Crossref] [PubMed]

1967 (1)

J.-B. LePecq and C. Paoletti, “A fluorescent complex between ethidium bromide and nucleic acids,” J. Mol. Biol. 27(1), 87–106 (1967).
[Crossref] [PubMed]

Akerman, B.

S. M. Yarmoluk, S. S. Lukashov, M. Yu. Losytskyy, B. Akerman, and O. S. Kornyushyna, “Interaction of cyanine dyes with nucleic acids: XXVI. Intercalation of the trimethine cyanine dye Cyan 2 into double-stranded DNA: study by spectral luminescence methods,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(14), 3223–3232 (2002).
[Crossref] [PubMed]

Armitage, B. A.

R. Cao, C. F. Venezia, and B. A. Armitage, “Investigation of DNA binding modes for a symmetrical cyanine dye trication: Effect of DNA sequence and structure,” J. Biomol. Struct. Dyn. 18(6), 844–857 (2001).
[Crossref] [PubMed]

Asuncion, E. H.

C. V. Kumar, R. S. Turner, and E. H. Asuncion, “Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect,” J. Photochem. Photobiol. Chem. 74(2-3), 231–238 (1993).
[Crossref]

Bartkiewicz, S.

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Bartkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
[Crossref]

Bartliewicz, S.

J. Mysliwiec, L. Sznitko, A. Szukalski, K. Parafiniuk, S. Bartliewicz, A. Miniewicz, B. Sahraoui, I. Rau, and F. Kajzar, “Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)- 1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices,” Opt. Mater. 34(10), 1725–1728 (2012).
[Crossref]

J. Mysliwiec, L. Sznitko, S. Bartliewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Borissevitch, I. E.

F. A. Schaberle, V. A. Kuz’min, and I. E. Borissevitch, “Spectroscopic studies of the interaction of bichromophoric cyanine dyes with DNA. Effect of ionic strength,” Biochim. Biophys. Acta 1621(2), 183–191 (2003).
[Crossref] [PubMed]

Cao, R.

R. Cao, C. F. Venezia, and B. A. Armitage, “Investigation of DNA binding modes for a symmetrical cyanine dye trication: Effect of DNA sequence and structure,” J. Biomol. Struct. Dyn. 18(6), 844–857 (2001).
[Crossref] [PubMed]

Chida, T.

T. Chida and Y. Kawabe, “Transient grating formation in azo-doped polymer and its application to DNA-based tunable dye laser,” Opt. Mater. 36(4), 778–781 (2014).
[Crossref]

T. Chida and Y. Kawabe, “Hemicyanine-DNA-complex: application to solid-state dye lasers,” Nonlin. Opt. Quant. Opt. 45, 85–91 (2012).

Essaidi, Z.

J. Mysliwiec, L. Sznitko, S. Bartliewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Fukuda, M.

M. Honda, N. Nakai, M. Fukuda, and Y. Kawabe, “Optical amplification and laser action in cyanine dyes doped in DNA complex,” Proc. SPIE 6646, 664609 (2007).
[Crossref]

Grote, J. G.

Hagen, J. A.

He, G. S.

Hebda, E.

L. Sznitko, K. Parafiniuk, A. Miniewicz, I. Rau, F. Kajzar, J. Niziol, E. Hebda, J. Pielivhowski, B. Sahraoui, and J. Mysliwiec, “Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid,” Opt. Meter. 35(12), 2389–2393 (2013).
[Crossref]

Honda, M.

M. Honda, N. Nakai, M. Fukuda, and Y. Kawabe, “Optical amplification and laser action in cyanine dyes doped in DNA complex,” Proc. SPIE 6646, 664609 (2007).
[Crossref]

Hopkins, F. K.

Horinouchi, S.

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent dye-doped DNA-surfactant films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

Huang, H.-W.

Y.-C. Hung, C.-H. Su, and H.-W. Huang, “Low threshold amplified spontaneous emission from dye-doped DNA biopolymer,” J. Appl. Phys. 111(11), 113107 (2012).
[Crossref]

Hung, Y.-C.

Y.-C. Hung, C.-H. Su, and H.-W. Huang, “Low threshold amplified spontaneous emission from dye-doped DNA biopolymer,” J. Appl. Phys. 111(11), 113107 (2012).
[Crossref]

Kajiyama, T.

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

Kajzar, F.

L. Sznitko, K. Parafiniuk, A. Miniewicz, I. Rau, F. Kajzar, J. Niziol, E. Hebda, J. Pielivhowski, B. Sahraoui, and J. Mysliwiec, “Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid,” Opt. Meter. 35(12), 2389–2393 (2013).
[Crossref]

J. Mysliwiec, L. Sznitko, A. Szukalski, K. Parafiniuk, S. Bartliewicz, A. Miniewicz, B. Sahraoui, I. Rau, and F. Kajzar, “Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)- 1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices,” Opt. Mater. 34(10), 1725–1728 (2012).
[Crossref]

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Bartkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

J. Mysliwiec, L. Sznitko, S. Bartliewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Karpinski, P.

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Bartkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

Kawabe, Y.

T. Chida and Y. Kawabe, “Transient grating formation in azo-doped polymer and its application to DNA-based tunable dye laser,” Opt. Mater. 36(4), 778–781 (2014).
[Crossref]

T. Chida and Y. Kawabe, “Hemicyanine-DNA-complex: application to solid-state dye lasers,” Nonlin. Opt. Quant. Opt. 45, 85–91 (2012).

M. Honda, N. Nakai, M. Fukuda, and Y. Kawabe, “Optical amplification and laser action in cyanine dyes doped in DNA complex,” Proc. SPIE 6646, 664609 (2007).
[Crossref]

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81(8), 1372–1374 (2002).
[Crossref]

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent dye-doped DNA-surfactant films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

Klotzkin, D.

Kornyushyna, O. S.

S. M. Yarmoluk, S. S. Lukashov, M. Yu. Losytskyy, B. Akerman, and O. S. Kornyushyna, “Interaction of cyanine dyes with nucleic acids: XXVI. Intercalation of the trimethine cyanine dye Cyan 2 into double-stranded DNA: study by spectral luminescence methods,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(14), 3223–3232 (2002).
[Crossref] [PubMed]

Kumar, C. V.

C. V. Kumar, R. S. Turner, and E. H. Asuncion, “Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect,” J. Photochem. Photobiol. Chem. 74(2-3), 231–238 (1993).
[Crossref]

Kuz’min, V. A.

F. A. Schaberle, V. A. Kuz’min, and I. E. Borissevitch, “Spectroscopic studies of the interaction of bichromophoric cyanine dyes with DNA. Effect of ionic strength,” Biochim. Biophys. Acta 1621(2), 183–191 (2003).
[Crossref] [PubMed]

LePecq, J.-B.

J.-B. LePecq and C. Paoletti, “A fluorescent complex between ethidium bromide and nucleic acids,” J. Mol. Biol. 27(1), 87–106 (1967).
[Crossref] [PubMed]

Li, W.

Linhard, V. N.

H. You, H. Spaeth, V. N. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[Crossref] [PubMed]

Losytskyy, M. Yu.

S. M. Yarmoluk, S. S. Lukashov, M. Yu. Losytskyy, B. Akerman, and O. S. Kornyushyna, “Interaction of cyanine dyes with nucleic acids: XXVI. Intercalation of the trimethine cyanine dye Cyan 2 into double-stranded DNA: study by spectral luminescence methods,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(14), 3223–3232 (2002).
[Crossref] [PubMed]

Lukashov, S. S.

S. M. Yarmoluk, S. S. Lukashov, M. Yu. Losytskyy, B. Akerman, and O. S. Kornyushyna, “Interaction of cyanine dyes with nucleic acids: XXVI. Intercalation of the trimethine cyanine dye Cyan 2 into double-stranded DNA: study by spectral luminescence methods,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(14), 3223–3232 (2002).
[Crossref] [PubMed]

Miniewicz, A.

L. Sznitko, K. Parafiniuk, A. Miniewicz, I. Rau, F. Kajzar, J. Niziol, E. Hebda, J. Pielivhowski, B. Sahraoui, and J. Mysliwiec, “Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid,” Opt. Meter. 35(12), 2389–2393 (2013).
[Crossref]

J. Mysliwiec, L. Sznitko, A. Szukalski, K. Parafiniuk, S. Bartliewicz, A. Miniewicz, B. Sahraoui, I. Rau, and F. Kajzar, “Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)- 1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices,” Opt. Mater. 34(10), 1725–1728 (2012).
[Crossref]

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Bartkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
[Crossref]

J. Mysliwiec, L. Sznitko, S. Bartliewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Mysliwiec, J.

L. Sznitko, K. Parafiniuk, A. Miniewicz, I. Rau, F. Kajzar, J. Niziol, E. Hebda, J. Pielivhowski, B. Sahraoui, and J. Mysliwiec, “Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid,” Opt. Meter. 35(12), 2389–2393 (2013).
[Crossref]

J. Mysliwiec, L. Sznitko, A. Szukalski, K. Parafiniuk, S. Bartliewicz, A. Miniewicz, B. Sahraoui, I. Rau, and F. Kajzar, “Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)- 1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices,” Opt. Mater. 34(10), 1725–1728 (2012).
[Crossref]

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Bartkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
[Crossref]

J. Mysliwiec, L. Sznitko, S. Bartliewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Nakai, N.

M. Honda, N. Nakai, M. Fukuda, and Y. Kawabe, “Optical amplification and laser action in cyanine dyes doped in DNA complex,” Proc. SPIE 6646, 664609 (2007).
[Crossref]

Nakamura, T.

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81(8), 1372–1374 (2002).
[Crossref]

Niziol, J.

L. Sznitko, K. Parafiniuk, A. Miniewicz, I. Rau, F. Kajzar, J. Niziol, E. Hebda, J. Pielivhowski, B. Sahraoui, and J. Mysliwiec, “Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid,” Opt. Meter. 35(12), 2389–2393 (2013).
[Crossref]

Nordén, B.

B. Nordén and F. Tjerneld, “Optical studies on complexes between DNA and pseudoisocyanine,” Biophys. Chem. 6(1), 31–45 (1976).
[Crossref] [PubMed]

Ogata, N.

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81(8), 1372–1374 (2002).
[Crossref]

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent dye-doped DNA-surfactant films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

Okahata, Y.

K. Tanaka and Y. Okahata, “A DNA-lipid complex in organic media and formation of an aligned cast film,” J. Am. Chem. Soc. 118(44), 10679–10683 (1996).
[Crossref]

Palewska, K.

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Bartkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

Paoletti, C.

J.-B. LePecq and C. Paoletti, “A fluorescent complex between ethidium bromide and nucleic acids,” J. Mol. Biol. 27(1), 87–106 (1967).
[Crossref] [PubMed]

Parafiniuk, K.

L. Sznitko, K. Parafiniuk, A. Miniewicz, I. Rau, F. Kajzar, J. Niziol, E. Hebda, J. Pielivhowski, B. Sahraoui, and J. Mysliwiec, “Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid,” Opt. Meter. 35(12), 2389–2393 (2013).
[Crossref]

J. Mysliwiec, L. Sznitko, A. Szukalski, K. Parafiniuk, S. Bartliewicz, A. Miniewicz, B. Sahraoui, I. Rau, and F. Kajzar, “Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)- 1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices,” Opt. Mater. 34(10), 1725–1728 (2012).
[Crossref]

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Bartkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

Pielivhowski, J.

L. Sznitko, K. Parafiniuk, A. Miniewicz, I. Rau, F. Kajzar, J. Niziol, E. Hebda, J. Pielivhowski, B. Sahraoui, and J. Mysliwiec, “Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid,” Opt. Meter. 35(12), 2389–2393 (2013).
[Crossref]

Prasad, P. N.

Rau, I.

L. Sznitko, K. Parafiniuk, A. Miniewicz, I. Rau, F. Kajzar, J. Niziol, E. Hebda, J. Pielivhowski, B. Sahraoui, and J. Mysliwiec, “Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid,” Opt. Meter. 35(12), 2389–2393 (2013).
[Crossref]

J. Mysliwiec, L. Sznitko, A. Szukalski, K. Parafiniuk, S. Bartliewicz, A. Miniewicz, B. Sahraoui, I. Rau, and F. Kajzar, “Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)- 1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices,” Opt. Mater. 34(10), 1725–1728 (2012).
[Crossref]

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Bartkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

Sahraoui, B.

L. Sznitko, K. Parafiniuk, A. Miniewicz, I. Rau, F. Kajzar, J. Niziol, E. Hebda, J. Pielivhowski, B. Sahraoui, and J. Mysliwiec, “Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid,” Opt. Meter. 35(12), 2389–2393 (2013).
[Crossref]

J. Mysliwiec, L. Sznitko, A. Szukalski, K. Parafiniuk, S. Bartliewicz, A. Miniewicz, B. Sahraoui, I. Rau, and F. Kajzar, “Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)- 1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices,” Opt. Mater. 34(10), 1725–1728 (2012).
[Crossref]

J. Mysliwiec, L. Sznitko, S. Bartliewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Sasaki, S.

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

Schaberle, F. A.

F. A. Schaberle, V. A. Kuz’min, and I. E. Borissevitch, “Spectroscopic studies of the interaction of bichromophoric cyanine dyes with DNA. Effect of ionic strength,” Biochim. Biophys. Acta 1621(2), 183–191 (2003).
[Crossref] [PubMed]

Sobolewska, A.

J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
[Crossref]

Spaeth, H.

H. You, H. Spaeth, V. N. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[Crossref] [PubMed]

Steckl, A. J.

H. You, H. Spaeth, V. N. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[Crossref] [PubMed]

Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46(9), 1507–1513 (2007).
[Crossref] [PubMed]

Su, C.-H.

Y.-C. Hung, C.-H. Su, and H.-W. Huang, “Low threshold amplified spontaneous emission from dye-doped DNA biopolymer,” J. Appl. Phys. 111(11), 113107 (2012).
[Crossref]

Sznitko, L.

L. Sznitko, K. Parafiniuk, A. Miniewicz, I. Rau, F. Kajzar, J. Niziol, E. Hebda, J. Pielivhowski, B. Sahraoui, and J. Mysliwiec, “Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid,” Opt. Meter. 35(12), 2389–2393 (2013).
[Crossref]

J. Mysliwiec, L. Sznitko, A. Szukalski, K. Parafiniuk, S. Bartliewicz, A. Miniewicz, B. Sahraoui, I. Rau, and F. Kajzar, “Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)- 1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices,” Opt. Mater. 34(10), 1725–1728 (2012).
[Crossref]

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Bartkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
[Crossref]

J. Mysliwiec, L. Sznitko, S. Bartliewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

Szukalski, A.

J. Mysliwiec, L. Sznitko, A. Szukalski, K. Parafiniuk, S. Bartliewicz, A. Miniewicz, B. Sahraoui, I. Rau, and F. Kajzar, “Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)- 1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices,” Opt. Mater. 34(10), 1725–1728 (2012).
[Crossref]

Tanaka, K.

K. Tanaka and Y. Okahata, “A DNA-lipid complex in organic media and formation of an aligned cast film,” J. Am. Chem. Soc. 118(44), 10679–10683 (1996).
[Crossref]

Tjerneld, F.

B. Nordén and F. Tjerneld, “Optical studies on complexes between DNA and pseudoisocyanine,” Biophys. Chem. 6(1), 31–45 (1976).
[Crossref] [PubMed]

Turner, R. S.

C. V. Kumar, R. S. Turner, and E. H. Asuncion, “Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect,” J. Photochem. Photobiol. Chem. 74(2-3), 231–238 (1993).
[Crossref]

Venezia, C. F.

R. Cao, C. F. Venezia, and B. A. Armitage, “Investigation of DNA binding modes for a symmetrical cyanine dye trication: Effect of DNA sequence and structure,” J. Biomol. Struct. Dyn. 18(6), 844–857 (2001).
[Crossref] [PubMed]

Wang, L.

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81(8), 1372–1374 (2002).
[Crossref]

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent dye-doped DNA-surfactant films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

Yarmoluk, S. M.

S. M. Yarmoluk, S. S. Lukashov, M. Yu. Losytskyy, B. Akerman, and O. S. Kornyushyna, “Interaction of cyanine dyes with nucleic acids: XXVI. Intercalation of the trimethine cyanine dye Cyan 2 into double-stranded DNA: study by spectral luminescence methods,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(14), 3223–3232 (2002).
[Crossref] [PubMed]

Yoshida, J.

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

You, H.

H. You, H. Spaeth, V. N. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[Crossref] [PubMed]

Yu, Z.

Zheng, Q.

Zhou, Y.

Adv. Mater. (1)

Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent dye-doped DNA-surfactant films,” Adv. Mater. 12(17), 1281–1283 (2000).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81(8), 1372–1374 (2002).
[Crossref]

J. Mysliwiec, L. Sznitko, S. Bartliewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94(24), 241106 (2009).
[Crossref]

L. Sznitko, J. Mysliwiec, P. Karpinski, K. Palewska, K. Parafiniuk, S. Bartkiewicz, I. Rau, F. Kajzar, and A. Miniewicz, “Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing,” Appl. Phys. Lett. 99(3), 031107 (2011).
[Crossref]

J. Mysliwiec, L. Sznitko, A. Sobolewska, S. Bartkiewicz, and A. Miniewicz, “Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system,” Appl. Phys. Lett. 96(14), 141106 (2010).
[Crossref]

Biochim. Biophys. Acta (1)

F. A. Schaberle, V. A. Kuz’min, and I. E. Borissevitch, “Spectroscopic studies of the interaction of bichromophoric cyanine dyes with DNA. Effect of ionic strength,” Biochim. Biophys. Acta 1621(2), 183–191 (2003).
[Crossref] [PubMed]

Biophys. Chem. (1)

B. Nordén and F. Tjerneld, “Optical studies on complexes between DNA and pseudoisocyanine,” Biophys. Chem. 6(1), 31–45 (1976).
[Crossref] [PubMed]

Chem. Mater. (1)

L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater. 13(4), 1273–1281 (2001).
[Crossref]

J. Am. Chem. Soc. (1)

K. Tanaka and Y. Okahata, “A DNA-lipid complex in organic media and formation of an aligned cast film,” J. Am. Chem. Soc. 118(44), 10679–10683 (1996).
[Crossref]

J. Appl. Phys. (1)

Y.-C. Hung, C.-H. Su, and H.-W. Huang, “Low threshold amplified spontaneous emission from dye-doped DNA biopolymer,” J. Appl. Phys. 111(11), 113107 (2012).
[Crossref]

J. Biomol. Struct. Dyn. (1)

R. Cao, C. F. Venezia, and B. A. Armitage, “Investigation of DNA binding modes for a symmetrical cyanine dye trication: Effect of DNA sequence and structure,” J. Biomol. Struct. Dyn. 18(6), 844–857 (2001).
[Crossref] [PubMed]

J. Mol. Biol. (1)

J.-B. LePecq and C. Paoletti, “A fluorescent complex between ethidium bromide and nucleic acids,” J. Mol. Biol. 27(1), 87–106 (1967).
[Crossref] [PubMed]

J. Photochem. Photobiol. Chem. (1)

C. V. Kumar, R. S. Turner, and E. H. Asuncion, “Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect,” J. Photochem. Photobiol. Chem. 74(2-3), 231–238 (1993).
[Crossref]

Langmuir (1)

H. You, H. Spaeth, V. N. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25(19), 11698–11702 (2009).
[Crossref] [PubMed]

Nonlin. Opt. Quant. Opt. (1)

T. Chida and Y. Kawabe, “Hemicyanine-DNA-complex: application to solid-state dye lasers,” Nonlin. Opt. Quant. Opt. 45, 85–91 (2012).

Opt. Lett. (1)

Opt. Mater. (2)

J. Mysliwiec, L. Sznitko, A. Szukalski, K. Parafiniuk, S. Bartliewicz, A. Miniewicz, B. Sahraoui, I. Rau, and F. Kajzar, “Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)- 1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices,” Opt. Mater. 34(10), 1725–1728 (2012).
[Crossref]

T. Chida and Y. Kawabe, “Transient grating formation in azo-doped polymer and its application to DNA-based tunable dye laser,” Opt. Mater. 36(4), 778–781 (2014).
[Crossref]

Opt. Meter. (1)

L. Sznitko, K. Parafiniuk, A. Miniewicz, I. Rau, F. Kajzar, J. Niziol, E. Hebda, J. Pielivhowski, B. Sahraoui, and J. Mysliwiec, “Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid,” Opt. Meter. 35(12), 2389–2393 (2013).
[Crossref]

Proc. SPIE (1)

M. Honda, N. Nakai, M. Fukuda, and Y. Kawabe, “Optical amplification and laser action in cyanine dyes doped in DNA complex,” Proc. SPIE 6646, 664609 (2007).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

S. M. Yarmoluk, S. S. Lukashov, M. Yu. Losytskyy, B. Akerman, and O. S. Kornyushyna, “Interaction of cyanine dyes with nucleic acids: XXVI. Intercalation of the trimethine cyanine dye Cyan 2 into double-stranded DNA: study by spectral luminescence methods,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 58(14), 3223–3232 (2002).
[Crossref] [PubMed]

Other (2)

B. A. Armitage, “Cyanine dye-DNA interactions: intercalation, groove binding, and aggregation,” in DNA binders and related subjects, M. J. Waring and J. B. Chaires eds. (Springer, 2005) pp. 55–76.

J.-I. Jin and J. Grote, eds., Materials Science of DNA (CRC Press, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Chemical structures of the molecules employed in this study: (upper) CTMA chloride, cationic surfactant; (lower) DMASPDB, hemicyanine dye.

Fig. 2
Fig. 2

(a) DNA-CTMA powder was put into an acetone solution of DMASPDB at first. (b) Most of dye was adsorbed into the complex after 3 hours. (c) Films made by the immersion method (left) and that by conventional way (right).

Fig. 3
Fig. 3

Absorption, ASE and lasing spectra of DMASPDB doped DNA-CTMA films prepared by two methods. 1, 3 and 5 are absorption, ASE and laser emission spectra for the film made by immersion, respectively, and 2, 4 are the counterparts for the film prepared by conventional method. Excitation energies for ASE measurements were 0.34 mJ/cm2 for 3 and 10.8 mJ/cm2 for 4. Pump energy for lasing (spectrum 5) was 10 mJ/cm2.

Fig. 4
Fig. 4

Schematic diagram of the experimental setup for the measurement of light emission spectrum.

Fig. 5
Fig. 5

Relationship between pump and emission intensities for DMASPDB-DNA-CTMA films prepared by immersion method (closed squares) and by conventional method (open circles). Lines indicate slope = 1. Vertical position for each data set is artificially shifted for clear view.

Fig. 6
Fig. 6

Intensities of ASE emission under continuous pumping for one hour. (a) result for the sample prepared by the immersion method, (b) result for the sample prepared by conventional way. The pulse energy density per pulse was 10 mJ/cm2 and the repletion rate was 10 Hz, making the total fluence in one hour 360 J/cm2.

Metrics