Abstract

A comprehensive investigation on Cr3+ → Ho3+ energy transfer has been comparatively carried out in Ho3+-doped, Cr3+-doped and Cr3+/Ho3+ co-doped fluorogermanate glasses. Steady and dynamic luminescence spectra of the glass samples are detected under excitation of static/microsecond-pulsed xenon lamps and an 808 nm laser diode, respectively. Through strong sensitization of Cr3+, the 2.0 μm emission of Ho3+: 5I75I8 can be efficiently achieved in an extremely extended excitation band of 325-830 nm. The energy transfer mechanisms involved are rationally discussed in detail for Cr3+/Ho3+ co-doping. On the basis of theoretical and experimental data, the energy transfer efficiency of Cr3+ → Ho3+ is appropriately calculated to be 26.2%. This novel Cr3+/Ho3+ codoping system could provide the experimental basis for obtaining 2.0 μm laser flexibly pumped by the xenon lamp or the 808 nm laser diode.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Zhang, W. J. Zhang, J. Yuan, Q. Qian, and Q. Y. Zhang, “Enhanced 2.0 μm emission and lowered upconversion emission in fluorogermanate glass-ceramic containing LaF3: Ho3+/Yb3+ by codoping Ce3+ ions,” J. Am. Ceram. Soc.96(12), 3836–3841 (2013).
    [CrossRef]
  2. Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband 2.0 μm emission and energy transfer mechanism in Ho–Bi co-doped borophosphate glass,” J. Am. Ceram. Soc.95(10), 3019–3021 (2012).
    [CrossRef]
  3. W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, “Enhanced 2.0 microm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals,” Opt. Express17(23), 20952–20958 (2009).
    [CrossRef] [PubMed]
  4. Z. H. Jiang and Q. Y. Zhang, “The structure of glass: a phase equilibrium diagram approach,” Prog. Mater. Sci.61, 144–215 (2014).
    [CrossRef]
  5. R. R. Xu, J. J. Pan, L. L. Hu, and J. J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb/Ho codoped germanate glass,” J. Appl. Phys.108(4), 043522 (2010).
    [CrossRef]
  6. J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys.113(17), 173507 (2013).
    [CrossRef]
  7. M. J. Weber, “Chromium—rare earth energy transfer in YAlO3,” J. Appl. Phys.44(9), 4058–4064 (1973).
    [CrossRef]
  8. B. T. Wu, S. F. Zhou, J. Ruan, Y. B. Qiao, D. P. Chen, C. S. Zhu, and J. R. Qiu, “Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals,” Opt. Express16(4), 2508–2513 (2008).
    [CrossRef] [PubMed]
  9. F. Rasheed, K. P. O’Donnell, B. Henderson, and D. B. Hollis, “Disorder and the optical spectroscopy of Cr3+-doped glasses: I. Silicate glasses,” J. Phys. Condens. Matter3(12), 1915–1930 (1991).
    [CrossRef]
  10. H. Y. Fu, S. Cui, Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
    [CrossRef]
  11. W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Transition metal (Cr3+) and rare earth (Eu3+, Dy3+) ions used as a spectroscopic probe in compositional-dependent lead borate glasses,” J. Alloy. Comp.484(1-2), 45–49 (2009).
    [CrossRef]
  12. W. M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, “Excited-state absorption in ruby, emerald, and MgO: Cr3+,” Phys. Rev. B11(1), 60–76 (1975).
    [CrossRef]
  13. B. Henderson, M. Yamaga, Y. Gao, and K. P. O’Donnell, “Disorder and nonradiative decay of Cr3+-doped glasses,” Phys. Rev. B Condens. Matter46(2), 652–661 (1992).
    [CrossRef] [PubMed]
  14. L. J. Andrews, A. Lempicki, and B. C. McCollum, “Spectroscopy and photokinetics of chromium (III) in glass,” J. Chem. Phys.74(10), 5526–5538 (1981).
    [CrossRef]
  15. F. Rasheed, K. P. O’Donnell, B. Henderson, and D. B. Hollis, “Disorder and the optical spectroscopy of Cr3+-doped glasses. II. Glasses with high and low ligand fields,” J. Phys. Condens. Matter3(21), 3825–3840 (1991).
    [CrossRef]
  16. S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” J. Appl. Phys.77(6), 818 (2000).
  17. D. L. Russell, K. Holliday, M. Grinberg, and D. Hollis, “Broadening of optical transitions in Cr3+-doped aluminosilicate glasses,” Phys. Rev. B59(21), 13712–13718 (1999).
    [CrossRef]

2014 (1)

Z. H. Jiang and Q. Y. Zhang, “The structure of glass: a phase equilibrium diagram approach,” Prog. Mater. Sci.61, 144–215 (2014).
[CrossRef]

2013 (2)

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys.113(17), 173507 (2013).
[CrossRef]

J. P. Zhang, W. J. Zhang, J. Yuan, Q. Qian, and Q. Y. Zhang, “Enhanced 2.0 μm emission and lowered upconversion emission in fluorogermanate glass-ceramic containing LaF3: Ho3+/Yb3+ by codoping Ce3+ ions,” J. Am. Ceram. Soc.96(12), 3836–3841 (2013).
[CrossRef]

2012 (2)

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband 2.0 μm emission and energy transfer mechanism in Ho–Bi co-doped borophosphate glass,” J. Am. Ceram. Soc.95(10), 3019–3021 (2012).
[CrossRef]

H. Y. Fu, S. Cui, Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

2010 (1)

R. R. Xu, J. J. Pan, L. L. Hu, and J. J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb/Ho codoped germanate glass,” J. Appl. Phys.108(4), 043522 (2010).
[CrossRef]

2009 (2)

W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, “Enhanced 2.0 microm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals,” Opt. Express17(23), 20952–20958 (2009).
[CrossRef] [PubMed]

W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Transition metal (Cr3+) and rare earth (Eu3+, Dy3+) ions used as a spectroscopic probe in compositional-dependent lead borate glasses,” J. Alloy. Comp.484(1-2), 45–49 (2009).
[CrossRef]

2008 (1)

2000 (1)

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” J. Appl. Phys.77(6), 818 (2000).

1999 (1)

D. L. Russell, K. Holliday, M. Grinberg, and D. Hollis, “Broadening of optical transitions in Cr3+-doped aluminosilicate glasses,” Phys. Rev. B59(21), 13712–13718 (1999).
[CrossRef]

1992 (1)

B. Henderson, M. Yamaga, Y. Gao, and K. P. O’Donnell, “Disorder and nonradiative decay of Cr3+-doped glasses,” Phys. Rev. B Condens. Matter46(2), 652–661 (1992).
[CrossRef] [PubMed]

1991 (2)

F. Rasheed, K. P. O’Donnell, B. Henderson, and D. B. Hollis, “Disorder and the optical spectroscopy of Cr3+-doped glasses: I. Silicate glasses,” J. Phys. Condens. Matter3(12), 1915–1930 (1991).
[CrossRef]

F. Rasheed, K. P. O’Donnell, B. Henderson, and D. B. Hollis, “Disorder and the optical spectroscopy of Cr3+-doped glasses. II. Glasses with high and low ligand fields,” J. Phys. Condens. Matter3(21), 3825–3840 (1991).
[CrossRef]

1981 (1)

L. J. Andrews, A. Lempicki, and B. C. McCollum, “Spectroscopy and photokinetics of chromium (III) in glass,” J. Chem. Phys.74(10), 5526–5538 (1981).
[CrossRef]

1975 (1)

W. M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, “Excited-state absorption in ruby, emerald, and MgO: Cr3+,” Phys. Rev. B11(1), 60–76 (1975).
[CrossRef]

1973 (1)

M. J. Weber, “Chromium—rare earth energy transfer in YAlO3,” J. Appl. Phys.44(9), 4058–4064 (1973).
[CrossRef]

Andrews, L. J.

L. J. Andrews, A. Lempicki, and B. C. McCollum, “Spectroscopy and photokinetics of chromium (III) in glass,” J. Chem. Phys.74(10), 5526–5538 (1981).
[CrossRef]

Chen, D. D.

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys.113(17), 173507 (2013).
[CrossRef]

Chen, D. P.

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband 2.0 μm emission and energy transfer mechanism in Ho–Bi co-doped borophosphate glass,” J. Am. Ceram. Soc.95(10), 3019–3021 (2012).
[CrossRef]

B. T. Wu, S. F. Zhou, J. Ruan, Y. B. Qiao, D. P. Chen, C. S. Zhu, and J. R. Qiu, “Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals,” Opt. Express16(4), 2508–2513 (2008).
[CrossRef] [PubMed]

Chen, Q. J.

Cui, S.

H. Y. Fu, S. Cui, Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

Dominiak-Dzik, G.

W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Transition metal (Cr3+) and rare earth (Eu3+, Dy3+) ions used as a spectroscopic probe in compositional-dependent lead borate glasses,” J. Alloy. Comp.484(1-2), 45–49 (2009).
[CrossRef]

Fairbank, W. M.

W. M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, “Excited-state absorption in ruby, emerald, and MgO: Cr3+,” Phys. Rev. B11(1), 60–76 (1975).
[CrossRef]

Fan, X. P.

H. Y. Fu, S. Cui, Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

Feng, X.

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” J. Appl. Phys.77(6), 818 (2000).

Fu, H. Y.

H. Y. Fu, S. Cui, Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

Gao, Y.

B. Henderson, M. Yamaga, Y. Gao, and K. P. O’Donnell, “Disorder and nonradiative decay of Cr3+-doped glasses,” Phys. Rev. B Condens. Matter46(2), 652–661 (1992).
[CrossRef] [PubMed]

Grinberg, M.

D. L. Russell, K. Holliday, M. Grinberg, and D. Hollis, “Broadening of optical transitions in Cr3+-doped aluminosilicate glasses,” Phys. Rev. B59(21), 13712–13718 (1999).
[CrossRef]

Henderson, B.

B. Henderson, M. Yamaga, Y. Gao, and K. P. O’Donnell, “Disorder and nonradiative decay of Cr3+-doped glasses,” Phys. Rev. B Condens. Matter46(2), 652–661 (1992).
[CrossRef] [PubMed]

F. Rasheed, K. P. O’Donnell, B. Henderson, and D. B. Hollis, “Disorder and the optical spectroscopy of Cr3+-doped glasses: I. Silicate glasses,” J. Phys. Condens. Matter3(12), 1915–1930 (1991).
[CrossRef]

F. Rasheed, K. P. O’Donnell, B. Henderson, and D. B. Hollis, “Disorder and the optical spectroscopy of Cr3+-doped glasses. II. Glasses with high and low ligand fields,” J. Phys. Condens. Matter3(21), 3825–3840 (1991).
[CrossRef]

Holliday, K.

D. L. Russell, K. Holliday, M. Grinberg, and D. Hollis, “Broadening of optical transitions in Cr3+-doped aluminosilicate glasses,” Phys. Rev. B59(21), 13712–13718 (1999).
[CrossRef]

Hollis, D.

D. L. Russell, K. Holliday, M. Grinberg, and D. Hollis, “Broadening of optical transitions in Cr3+-doped aluminosilicate glasses,” Phys. Rev. B59(21), 13712–13718 (1999).
[CrossRef]

Hollis, D. B.

F. Rasheed, K. P. O’Donnell, B. Henderson, and D. B. Hollis, “Disorder and the optical spectroscopy of Cr3+-doped glasses. II. Glasses with high and low ligand fields,” J. Phys. Condens. Matter3(21), 3825–3840 (1991).
[CrossRef]

F. Rasheed, K. P. O’Donnell, B. Henderson, and D. B. Hollis, “Disorder and the optical spectroscopy of Cr3+-doped glasses: I. Silicate glasses,” J. Phys. Condens. Matter3(12), 1915–1930 (1991).
[CrossRef]

Hu, L. L.

R. R. Xu, J. J. Pan, L. L. Hu, and J. J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb/Ho codoped germanate glass,” J. Appl. Phys.108(4), 043522 (2010).
[CrossRef]

Huang, P.

Jiang, Z. H.

Z. H. Jiang and Q. Y. Zhang, “The structure of glass: a phase equilibrium diagram approach,” Prog. Mater. Sci.61, 144–215 (2014).
[CrossRef]

Klauminzer, G. K.

W. M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, “Excited-state absorption in ruby, emerald, and MgO: Cr3+,” Phys. Rev. B11(1), 60–76 (1975).
[CrossRef]

Lempicki, A.

L. J. Andrews, A. Lempicki, and B. C. McCollum, “Spectroscopy and photokinetics of chromium (III) in glass,” J. Chem. Phys.74(10), 5526–5538 (1981).
[CrossRef]

Luo, Q.

H. Y. Fu, S. Cui, Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

McCollum, B. C.

L. J. Andrews, A. Lempicki, and B. C. McCollum, “Spectroscopy and photokinetics of chromium (III) in glass,” J. Chem. Phys.74(10), 5526–5538 (1981).
[CrossRef]

O’Donnell, K. P.

B. Henderson, M. Yamaga, Y. Gao, and K. P. O’Donnell, “Disorder and nonradiative decay of Cr3+-doped glasses,” Phys. Rev. B Condens. Matter46(2), 652–661 (1992).
[CrossRef] [PubMed]

F. Rasheed, K. P. O’Donnell, B. Henderson, and D. B. Hollis, “Disorder and the optical spectroscopy of Cr3+-doped glasses: I. Silicate glasses,” J. Phys. Condens. Matter3(12), 1915–1930 (1991).
[CrossRef]

F. Rasheed, K. P. O’Donnell, B. Henderson, and D. B. Hollis, “Disorder and the optical spectroscopy of Cr3+-doped glasses. II. Glasses with high and low ligand fields,” J. Phys. Condens. Matter3(21), 3825–3840 (1991).
[CrossRef]

Pan, J. J.

R. R. Xu, J. J. Pan, L. L. Hu, and J. J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb/Ho codoped germanate glass,” J. Appl. Phys.108(4), 043522 (2010).
[CrossRef]

Peng, M. Y.

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys.113(17), 173507 (2013).
[CrossRef]

Pisarska, J.

W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Transition metal (Cr3+) and rare earth (Eu3+, Dy3+) ions used as a spectroscopic probe in compositional-dependent lead borate glasses,” J. Alloy. Comp.484(1-2), 45–49 (2009).
[CrossRef]

Pisarski, W. A.

W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Transition metal (Cr3+) and rare earth (Eu3+, Dy3+) ions used as a spectroscopic probe in compositional-dependent lead borate glasses,” J. Alloy. Comp.484(1-2), 45–49 (2009).
[CrossRef]

Qian, Q.

J. P. Zhang, W. J. Zhang, J. Yuan, Q. Qian, and Q. Y. Zhang, “Enhanced 2.0 μm emission and lowered upconversion emission in fluorogermanate glass-ceramic containing LaF3: Ho3+/Yb3+ by codoping Ce3+ ions,” J. Am. Ceram. Soc.96(12), 3836–3841 (2013).
[CrossRef]

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys.113(17), 173507 (2013).
[CrossRef]

W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, “Enhanced 2.0 microm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals,” Opt. Express17(23), 20952–20958 (2009).
[CrossRef] [PubMed]

Qiao, X. S.

H. Y. Fu, S. Cui, Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

Qiao, Y. B.

Qiu, J. R.

Rasheed, F.

F. Rasheed, K. P. O’Donnell, B. Henderson, and D. B. Hollis, “Disorder and the optical spectroscopy of Cr3+-doped glasses: I. Silicate glasses,” J. Phys. Condens. Matter3(12), 1915–1930 (1991).
[CrossRef]

F. Rasheed, K. P. O’Donnell, B. Henderson, and D. B. Hollis, “Disorder and the optical spectroscopy of Cr3+-doped glasses. II. Glasses with high and low ligand fields,” J. Phys. Condens. Matter3(21), 3825–3840 (1991).
[CrossRef]

Ruan, J.

Russell, D. L.

D. L. Russell, K. Holliday, M. Grinberg, and D. Hollis, “Broadening of optical transitions in Cr3+-doped aluminosilicate glasses,” Phys. Rev. B59(21), 13712–13718 (1999).
[CrossRef]

Ryba-Romanowski, W.

W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Transition metal (Cr3+) and rare earth (Eu3+, Dy3+) ions used as a spectroscopic probe in compositional-dependent lead borate glasses,” J. Alloy. Comp.484(1-2), 45–49 (2009).
[CrossRef]

Schawlow, A. L.

W. M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, “Excited-state absorption in ruby, emerald, and MgO: Cr3+,” Phys. Rev. B11(1), 60–76 (1975).
[CrossRef]

Shen, S. X.

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys.113(17), 173507 (2013).
[CrossRef]

Sheng, Q. C.

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband 2.0 μm emission and energy transfer mechanism in Ho–Bi co-doped borophosphate glass,” J. Am. Ceram. Soc.95(10), 3019–3021 (2012).
[CrossRef]

Tanabe, S.

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” J. Appl. Phys.77(6), 818 (2000).

Wang, X. L.

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband 2.0 μm emission and energy transfer mechanism in Ho–Bi co-doped borophosphate glass,” J. Am. Ceram. Soc.95(10), 3019–3021 (2012).
[CrossRef]

Wang, Y. S.

Weber, M. J.

M. J. Weber, “Chromium—rare earth energy transfer in YAlO3,” J. Appl. Phys.44(9), 4058–4064 (1973).
[CrossRef]

Wu, B. T.

Xu, R. R.

R. R. Xu, J. J. Pan, L. L. Hu, and J. J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb/Ho codoped germanate glass,” J. Appl. Phys.108(4), 043522 (2010).
[CrossRef]

Yamaga, M.

B. Henderson, M. Yamaga, Y. Gao, and K. P. O’Donnell, “Disorder and nonradiative decay of Cr3+-doped glasses,” Phys. Rev. B Condens. Matter46(2), 652–661 (1992).
[CrossRef] [PubMed]

Yang, Z. M.

Yuan, J.

J. P. Zhang, W. J. Zhang, J. Yuan, Q. Qian, and Q. Y. Zhang, “Enhanced 2.0 μm emission and lowered upconversion emission in fluorogermanate glass-ceramic containing LaF3: Ho3+/Yb3+ by codoping Ce3+ ions,” J. Am. Ceram. Soc.96(12), 3836–3841 (2013).
[CrossRef]

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys.113(17), 173507 (2013).
[CrossRef]

Zhang, J. J.

R. R. Xu, J. J. Pan, L. L. Hu, and J. J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb/Ho codoped germanate glass,” J. Appl. Phys.108(4), 043522 (2010).
[CrossRef]

Zhang, J. P.

J. P. Zhang, W. J. Zhang, J. Yuan, Q. Qian, and Q. Y. Zhang, “Enhanced 2.0 μm emission and lowered upconversion emission in fluorogermanate glass-ceramic containing LaF3: Ho3+/Yb3+ by codoping Ce3+ ions,” J. Am. Ceram. Soc.96(12), 3836–3841 (2013).
[CrossRef]

Zhang, Q. Y.

Z. H. Jiang and Q. Y. Zhang, “The structure of glass: a phase equilibrium diagram approach,” Prog. Mater. Sci.61, 144–215 (2014).
[CrossRef]

J. P. Zhang, W. J. Zhang, J. Yuan, Q. Qian, and Q. Y. Zhang, “Enhanced 2.0 μm emission and lowered upconversion emission in fluorogermanate glass-ceramic containing LaF3: Ho3+/Yb3+ by codoping Ce3+ ions,” J. Am. Ceram. Soc.96(12), 3836–3841 (2013).
[CrossRef]

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys.113(17), 173507 (2013).
[CrossRef]

W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, “Enhanced 2.0 microm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals,” Opt. Express17(23), 20952–20958 (2009).
[CrossRef] [PubMed]

Zhang, W. J.

J. P. Zhang, W. J. Zhang, J. Yuan, Q. Qian, and Q. Y. Zhang, “Enhanced 2.0 μm emission and lowered upconversion emission in fluorogermanate glass-ceramic containing LaF3: Ho3+/Yb3+ by codoping Ce3+ ions,” J. Am. Ceram. Soc.96(12), 3836–3841 (2013).
[CrossRef]

W. J. Zhang, Q. Y. Zhang, Q. J. Chen, Q. Qian, Z. M. Yang, J. R. Qiu, P. Huang, and Y. S. Wang, “Enhanced 2.0 microm emission and gain coefficient of transparent glass ceramic containing BaF2: Ho3+,Tm3+ nanocrystals,” Opt. Express17(23), 20952–20958 (2009).
[CrossRef] [PubMed]

Zhang, X. H.

H. Y. Fu, S. Cui, Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

Zhou, S. F.

Zhu, C. S.

J. Alloy. Comp. (1)

W. A. Pisarski, J. Pisarska, G. Dominiak-Dzik, and W. Ryba-Romanowski, “Transition metal (Cr3+) and rare earth (Eu3+, Dy3+) ions used as a spectroscopic probe in compositional-dependent lead borate glasses,” J. Alloy. Comp.484(1-2), 45–49 (2009).
[CrossRef]

J. Am. Ceram. Soc. (2)

J. P. Zhang, W. J. Zhang, J. Yuan, Q. Qian, and Q. Y. Zhang, “Enhanced 2.0 μm emission and lowered upconversion emission in fluorogermanate glass-ceramic containing LaF3: Ho3+/Yb3+ by codoping Ce3+ ions,” J. Am. Ceram. Soc.96(12), 3836–3841 (2013).
[CrossRef]

Q. C. Sheng, X. L. Wang, and D. P. Chen, “Enhanced broadband 2.0 μm emission and energy transfer mechanism in Ho–Bi co-doped borophosphate glass,” J. Am. Ceram. Soc.95(10), 3019–3021 (2012).
[CrossRef]

J. Appl. Phys. (4)

R. R. Xu, J. J. Pan, L. L. Hu, and J. J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb/Ho codoped germanate glass,” J. Appl. Phys.108(4), 043522 (2010).
[CrossRef]

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys.113(17), 173507 (2013).
[CrossRef]

M. J. Weber, “Chromium—rare earth energy transfer in YAlO3,” J. Appl. Phys.44(9), 4058–4064 (1973).
[CrossRef]

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” J. Appl. Phys.77(6), 818 (2000).

J. Chem. Phys. (1)

L. J. Andrews, A. Lempicki, and B. C. McCollum, “Spectroscopy and photokinetics of chromium (III) in glass,” J. Chem. Phys.74(10), 5526–5538 (1981).
[CrossRef]

J. Non-Cryst. Solids (1)

H. Y. Fu, S. Cui, Q. Luo, X. S. Qiao, X. P. Fan, and X. H. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

J. Phys. Condens. Matter (1)

F. Rasheed, K. P. O’Donnell, B. Henderson, and D. B. Hollis, “Disorder and the optical spectroscopy of Cr3+-doped glasses: I. Silicate glasses,” J. Phys. Condens. Matter3(12), 1915–1930 (1991).
[CrossRef]

J. Phys. Condens. Matter (1)

F. Rasheed, K. P. O’Donnell, B. Henderson, and D. B. Hollis, “Disorder and the optical spectroscopy of Cr3+-doped glasses. II. Glasses with high and low ligand fields,” J. Phys. Condens. Matter3(21), 3825–3840 (1991).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (2)

D. L. Russell, K. Holliday, M. Grinberg, and D. Hollis, “Broadening of optical transitions in Cr3+-doped aluminosilicate glasses,” Phys. Rev. B59(21), 13712–13718 (1999).
[CrossRef]

W. M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, “Excited-state absorption in ruby, emerald, and MgO: Cr3+,” Phys. Rev. B11(1), 60–76 (1975).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

B. Henderson, M. Yamaga, Y. Gao, and K. P. O’Donnell, “Disorder and nonradiative decay of Cr3+-doped glasses,” Phys. Rev. B Condens. Matter46(2), 652–661 (1992).
[CrossRef] [PubMed]

Prog. Mater. Sci. (1)

Z. H. Jiang and Q. Y. Zhang, “The structure of glass: a phase equilibrium diagram approach,” Prog. Mater. Sci.61, 144–215 (2014).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Absorption spectra of Ho3+-doped, Cr3+-doped and Cr3+/Ho3+ co-doped fluorogermanate glasses. The inset shows the corresponding photographs of all samples.

Fig. 2
Fig. 2

(a) NIR emission spectra of all glass samples excited at 600 nm; (b) MIR emission spectra of all samples excited at 600 nm; (c) Excitation spectra of Ho3+-doped and Cr3+/Ho3+ co-doped samples monitored at 1200 nm; (d) Fluorescence decay curves of Cr3+: 4T24A2 at 850 nm in fluorogermanate glasses without/with Ho3+ dopant under pulsed light excitation of 600 nm.

Fig. 3
Fig. 3

(a) NIR emission spectra in 830-1450 nm and (b) MIR fluorescence spectra in 1800-2200 nm of Ho3+-doped, Cr3+-doped and Cr3+/Ho3+ co-doped glass samples pumped by an 808nm LD.

Fig. 4
Fig. 4

Simplified energy level schemes illustrating the possible ET mechanism of Cr3+ → Ho3+. The 2E energy level of Cr3+ is embedded into the 4T2 energy level.

Tables (1)

Tables Icon

Table 1 Spectroscopic parameters in various Cr3+-doped hosts

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η=1 τ CH τ C

Metrics