Abstract

Optical properties of chiral nanostructured films made of Al1−xInxN using a new growth mechanism — curved-lattice epitaxial growth — are reported. Using this technique, chiral films with right-and left-handed nanospirals were produced. The chiral properties of the films, originating mainly from an internal anisotropy and to a lesser extent from the external helical shape of the nanospirals, give rise to selective reflection of circular polarization which makes them useful as narrow-band near-circular polarization reflectors. The chiral nanostructured films reflect light with high degree of circular polarization in the ultraviolet part of the spectrum with left- and right-handedness depending on the handedness of the nanostructures in the films.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves

Yongzhi Cheng, Haoran Chen, Jingcheng Zhao, Xuesong Mao, and Zhengze Cheng
Opt. Mater. Express 8(5) 1399-1409 (2018)

Qualitative correlation between structural chirality through the cuticle of Chrysina aurigans scarabs and left-handed circular polarization of the reflected light

M. Hernández-Jiménez, D. E. Azofeifa, E. Libby, C. Barboza-Aguilar, Á. Solís, L. Arce-Marenco, I. García-Aguilar, A. Hernández, and W. E. Vargas
Opt. Mater. Express 4(12) 2632-2645 (2014)

Wideband circular polarization reflector fabricated by glancing angle deposition

Yong Jun Park, K. M. A. Sobahan, and Chang Kwon Hwangbo
Opt. Express 16(8) 5186-5192 (2008)

References

  • View by:
  • |
  • |
  • |

  1. Q. Wu, A. Lakhtakia, and I.J. Hodgkinson, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39(7), 1863–1868 (2000).
    [Crossref]
  2. I.J. Hodgkinson, A. Lakhtakia, and Q. Hong Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39(10), 2831–2834 (2000).
    [Crossref]
  3. G.P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
    [Crossref]
  4. R.M.A. Azzam, “Chiral thin solid films: Method of deposition and applications,” Appl. Phys. Lett. 61(26), 3118–3120 (1992).
    [Crossref]
  5. K. Robbie, M.J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13(6), 2991–2993 (1995).
    [Crossref]
  6. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2004).
  7. M. Hawkeye and M.J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A. 25(5), 1317–1335 (2007).
    [Crossref]
  8. K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97(1), 013511 (2004).
    [Crossref]
  9. G.Z. Radnczi, T. Seppnen, B. Pcz, L. Hultman, and J. Birch, “Growth of highly curved Al1−xInxN nanocrystals,” Phys. Status Solidi A. 202(7), R76–R78 (2005).
    [Crossref]
  10. R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otano, and A. Lakhtakia, “Engineered sculptured nematic thin films, ” Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films,  15(4), 2148–2152, 1997.
    [Crossref]
  11. T. Seppnen, G.Z. Radnczi, S. Tungasmita, L. Hultman, and J. Birch, “Growth and characterization of epitaxial wurtzite Al1−xInxN thin films deposited by UHV reactive dual DC magnetron sputtering,” Mater. Sci. Forum,  433–436, 987–990 (2003).
    [Crossref]
  12. D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry determination of non-reciprocity in chiral silicon sculptured thin films,” Phys. Status Solidi A. 205(4), 748–751 (2008).
    [Crossref]
  13. H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
    [Crossref]
  14. R.A. Chipman, “Mueller Matrices,” in Handbook of Optics Bass, V.N. Mahajan, E.W. Van Stryland, G. Li, C.A. MacDonald, and C. DeCusatis, eds. (McGraw-Hill, New York2010).
  15. N.G. Parke, Matrix Optics (Massachusetts Institute of Technology, 1948).
  16. R. Magnusson, J. Birch, P. Sandstrm, C-L. Hsiao, H. Arwin, and K. Järrendahl, “Optical Mueller matrix modeling of chiral films of helicoidal AlxIn1−xN nanorods,” Available online, http://dx.doi.org/10.1016/j.tsf.2014.02.015
  17. F. Perrin, “Polarization of light scattered by isotropic opalescent media,” J. Chem. Phys. 10(7), 415–427 (1942).
    [Crossref]
  18. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).
  19. D. Schmidt, A.C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105(11), 113508 (2009).
    [Crossref]
  20. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94(1), 011914 (2009).
    [Crossref]
  21. I.S. Nerb, S.L. Roy, M. Foldyna, M. Kildemo, and E. Sndergrd, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108(1), 014307 (2010).
    [Crossref]
  22. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).
    [Crossref]
  23. M. Schubert and C.M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A. 188(4), 1563–1575 (2001).
    [Crossref]
  24. Y.J. Park, K.M.A. Sobahan, and C.K. Hwangbo, “Wideband circular polarization reflector fabricated by glancing angle deposition,” Opt. Express 16(8), 5186–5192 (2008).
    [Crossref] [PubMed]

2012 (1)

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

2010 (1)

I.S. Nerb, S.L. Roy, M. Foldyna, M. Kildemo, and E. Sndergrd, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108(1), 014307 (2010).
[Crossref]

2009 (2)

D. Schmidt, A.C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105(11), 113508 (2009).
[Crossref]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94(1), 011914 (2009).
[Crossref]

2008 (2)

D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry determination of non-reciprocity in chiral silicon sculptured thin films,” Phys. Status Solidi A. 205(4), 748–751 (2008).
[Crossref]

Y.J. Park, K.M.A. Sobahan, and C.K. Hwangbo, “Wideband circular polarization reflector fabricated by glancing angle deposition,” Opt. Express 16(8), 5186–5192 (2008).
[Crossref] [PubMed]

2007 (1)

M. Hawkeye and M.J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A. 25(5), 1317–1335 (2007).
[Crossref]

2005 (1)

G.Z. Radnczi, T. Seppnen, B. Pcz, L. Hultman, and J. Birch, “Growth of highly curved Al1−xInxN nanocrystals,” Phys. Status Solidi A. 202(7), R76–R78 (2005).
[Crossref]

2004 (1)

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97(1), 013511 (2004).
[Crossref]

2003 (1)

T. Seppnen, G.Z. Radnczi, S. Tungasmita, L. Hultman, and J. Birch, “Growth and characterization of epitaxial wurtzite Al1−xInxN thin films deposited by UHV reactive dual DC magnetron sputtering,” Mater. Sci. Forum,  433–436, 987–990 (2003).
[Crossref]

2001 (1)

M. Schubert and C.M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A. 188(4), 1563–1575 (2001).
[Crossref]

2000 (2)

Q. Wu, A. Lakhtakia, and I.J. Hodgkinson, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39(7), 1863–1868 (2000).
[Crossref]

I.J. Hodgkinson, A. Lakhtakia, and Q. Hong Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39(10), 2831–2834 (2000).
[Crossref]

1997 (1)

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otano, and A. Lakhtakia, “Engineered sculptured nematic thin films, ” Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films,  15(4), 2148–2152, 1997.
[Crossref]

1995 (1)

K. Robbie, M.J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13(6), 2991–2993 (1995).
[Crossref]

1994 (1)

G.P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

1992 (1)

R.M.A. Azzam, “Chiral thin solid films: Method of deposition and applications,” Appl. Phys. Lett. 61(26), 3118–3120 (1992).
[Crossref]

1942 (1)

F. Perrin, “Polarization of light scattered by isotropic opalescent media,” J. Chem. Phys. 10(7), 415–427 (1942).
[Crossref]

Agrawal, G.P.

G.P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

Amassian, A.

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97(1), 013511 (2004).
[Crossref]

Arwin, H.

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

R. Magnusson, J. Birch, P. Sandstrm, C-L. Hsiao, H. Arwin, and K. Järrendahl, “Optical Mueller matrix modeling of chiral films of helicoidal AlxIn1−xN nanorods,” Available online, http://dx.doi.org/10.1016/j.tsf.2014.02.015

Azzam, R.M.A.

R.M.A. Azzam, “Chiral thin solid films: Method of deposition and applications,” Appl. Phys. Lett. 61(26), 3118–3120 (1992).
[Crossref]

Birch, J.

G.Z. Radnczi, T. Seppnen, B. Pcz, L. Hultman, and J. Birch, “Growth of highly curved Al1−xInxN nanocrystals,” Phys. Status Solidi A. 202(7), R76–R78 (2005).
[Crossref]

T. Seppnen, G.Z. Radnczi, S. Tungasmita, L. Hultman, and J. Birch, “Growth and characterization of epitaxial wurtzite Al1−xInxN thin films deposited by UHV reactive dual DC magnetron sputtering,” Mater. Sci. Forum,  433–436, 987–990 (2003).
[Crossref]

R. Magnusson, J. Birch, P. Sandstrm, C-L. Hsiao, H. Arwin, and K. Järrendahl, “Optical Mueller matrix modeling of chiral films of helicoidal AlxIn1−xN nanorods,” Available online, http://dx.doi.org/10.1016/j.tsf.2014.02.015

Booso, B.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94(1), 011914 (2009).
[Crossref]

Brett, M.J.

M. Hawkeye and M.J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A. 25(5), 1317–1335 (2007).
[Crossref]

K. Robbie, M.J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13(6), 2991–2993 (1995).
[Crossref]

Chipman, R.A.

R.A. Chipman, “Mueller Matrices,” in Handbook of Optics Bass, V.N. Mahajan, E.W. Van Stryland, G. Li, C.A. MacDonald, and C. DeCusatis, eds. (McGraw-Hill, New York2010).

Collett, E.

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).

Foldyna, M.

I.S. Nerb, S.L. Roy, M. Foldyna, M. Kildemo, and E. Sndergrd, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108(1), 014307 (2010).
[Crossref]

Frankel, C.

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otano, and A. Lakhtakia, “Engineered sculptured nematic thin films, ” Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films,  15(4), 2148–2152, 1997.
[Crossref]

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).
[Crossref]

Gehrke, T.

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otano, and A. Lakhtakia, “Engineered sculptured nematic thin films, ” Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films,  15(4), 2148–2152, 1997.
[Crossref]

Hawkeye, M.

M. Hawkeye and M.J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A. 25(5), 1317–1335 (2007).
[Crossref]

Herzinger, C.M.

M. Schubert and C.M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A. 188(4), 1563–1575 (2001).
[Crossref]

Hodgkinson, I.J.

I.J. Hodgkinson, A. Lakhtakia, and Q. Hong Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39(10), 2831–2834 (2000).
[Crossref]

Q. Wu, A. Lakhtakia, and I.J. Hodgkinson, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39(7), 1863–1868 (2000).
[Crossref]

Hofmann, T.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94(1), 011914 (2009).
[Crossref]

D. Schmidt, A.C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105(11), 113508 (2009).
[Crossref]

Hong Wu, Q.

I.J. Hodgkinson, A. Lakhtakia, and Q. Hong Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39(10), 2831–2834 (2000).
[Crossref]

Hsiao, C-L.

R. Magnusson, J. Birch, P. Sandstrm, C-L. Hsiao, H. Arwin, and K. Järrendahl, “Optical Mueller matrix modeling of chiral films of helicoidal AlxIn1−xN nanorods,” Available online, http://dx.doi.org/10.1016/j.tsf.2014.02.015

Hultman, L.

G.Z. Radnczi, T. Seppnen, B. Pcz, L. Hultman, and J. Birch, “Growth of highly curved Al1−xInxN nanocrystals,” Phys. Status Solidi A. 202(7), R76–R78 (2005).
[Crossref]

T. Seppnen, G.Z. Radnczi, S. Tungasmita, L. Hultman, and J. Birch, “Growth and characterization of epitaxial wurtzite Al1−xInxN thin films deposited by UHV reactive dual DC magnetron sputtering,” Mater. Sci. Forum,  433–436, 987–990 (2003).
[Crossref]

Hwangbo, C.K.

Järrendahl, K.

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

R. Magnusson, J. Birch, P. Sandstrm, C-L. Hsiao, H. Arwin, and K. Järrendahl, “Optical Mueller matrix modeling of chiral films of helicoidal AlxIn1−xN nanorods,” Available online, http://dx.doi.org/10.1016/j.tsf.2014.02.015

Kaminska, K.

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97(1), 013511 (2004).
[Crossref]

Kildemo, M.

I.S. Nerb, S.L. Roy, M. Foldyna, M. Kildemo, and E. Sndergrd, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108(1), 014307 (2010).
[Crossref]

Kjerstad, A.C.

D. Schmidt, A.C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105(11), 113508 (2009).
[Crossref]

Lakhtakia, A.

Q. Wu, A. Lakhtakia, and I.J. Hodgkinson, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39(7), 1863–1868 (2000).
[Crossref]

I.J. Hodgkinson, A. Lakhtakia, and Q. Hong Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39(10), 2831–2834 (2000).
[Crossref]

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otano, and A. Lakhtakia, “Engineered sculptured nematic thin films, ” Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films,  15(4), 2148–2152, 1997.
[Crossref]

K. Robbie, M.J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13(6), 2991–2993 (1995).
[Crossref]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2004).

Landin, J.

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Magnusson, R.

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

R. Magnusson, J. Birch, P. Sandstrm, C-L. Hsiao, H. Arwin, and K. Järrendahl, “Optical Mueller matrix modeling of chiral films of helicoidal AlxIn1−xN nanorods,” Available online, http://dx.doi.org/10.1016/j.tsf.2014.02.015

Martinu, L.

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97(1), 013511 (2004).
[Crossref]

Messier, R.

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otano, and A. Lakhtakia, “Engineered sculptured nematic thin films, ” Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films,  15(4), 2148–2152, 1997.
[Crossref]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2004).

Nerb, I.S.

I.S. Nerb, S.L. Roy, M. Foldyna, M. Kildemo, and E. Sndergrd, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108(1), 014307 (2010).
[Crossref]

Otano, W.

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otano, and A. Lakhtakia, “Engineered sculptured nematic thin films, ” Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films,  15(4), 2148–2152, 1997.
[Crossref]

Park, Y.J.

Parke, N.G.

N.G. Parke, Matrix Optics (Massachusetts Institute of Technology, 1948).

Pcz, B.

G.Z. Radnczi, T. Seppnen, B. Pcz, L. Hultman, and J. Birch, “Growth of highly curved Al1−xInxN nanocrystals,” Phys. Status Solidi A. 202(7), R76–R78 (2005).
[Crossref]

Perrin, F.

F. Perrin, “Polarization of light scattered by isotropic opalescent media,” J. Chem. Phys. 10(7), 415–427 (1942).
[Crossref]

Radic, S.

G.P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

Radnczi, G.Z.

G.Z. Radnczi, T. Seppnen, B. Pcz, L. Hultman, and J. Birch, “Growth of highly curved Al1−xInxN nanocrystals,” Phys. Status Solidi A. 202(7), R76–R78 (2005).
[Crossref]

T. Seppnen, G.Z. Radnczi, S. Tungasmita, L. Hultman, and J. Birch, “Growth and characterization of epitaxial wurtzite Al1−xInxN thin films deposited by UHV reactive dual DC magnetron sputtering,” Mater. Sci. Forum,  433–436, 987–990 (2003).
[Crossref]

Robbie, K.

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97(1), 013511 (2004).
[Crossref]

K. Robbie, M.J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13(6), 2991–2993 (1995).
[Crossref]

Roy, S.L.

I.S. Nerb, S.L. Roy, M. Foldyna, M. Kildemo, and E. Sndergrd, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108(1), 014307 (2010).
[Crossref]

Sandstrm, P.

R. Magnusson, J. Birch, P. Sandstrm, C-L. Hsiao, H. Arwin, and K. Järrendahl, “Optical Mueller matrix modeling of chiral films of helicoidal AlxIn1−xN nanorods,” Available online, http://dx.doi.org/10.1016/j.tsf.2014.02.015

Sarangan, A.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94(1), 011914 (2009).
[Crossref]

Schmidt, D.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94(1), 011914 (2009).
[Crossref]

D. Schmidt, A.C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105(11), 113508 (2009).
[Crossref]

D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry determination of non-reciprocity in chiral silicon sculptured thin films,” Phys. Status Solidi A. 205(4), 748–751 (2008).
[Crossref]

Schubert, E.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94(1), 011914 (2009).
[Crossref]

D. Schmidt, A.C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105(11), 113508 (2009).
[Crossref]

D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry determination of non-reciprocity in chiral silicon sculptured thin films,” Phys. Status Solidi A. 205(4), 748–751 (2008).
[Crossref]

Schubert, M.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94(1), 011914 (2009).
[Crossref]

D. Schmidt, A.C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105(11), 113508 (2009).
[Crossref]

D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry determination of non-reciprocity in chiral silicon sculptured thin films,” Phys. Status Solidi A. 205(4), 748–751 (2008).
[Crossref]

M. Schubert and C.M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A. 188(4), 1563–1575 (2001).
[Crossref]

Seppnen, T.

G.Z. Radnczi, T. Seppnen, B. Pcz, L. Hultman, and J. Birch, “Growth of highly curved Al1−xInxN nanocrystals,” Phys. Status Solidi A. 202(7), R76–R78 (2005).
[Crossref]

T. Seppnen, G.Z. Radnczi, S. Tungasmita, L. Hultman, and J. Birch, “Growth and characterization of epitaxial wurtzite Al1−xInxN thin films deposited by UHV reactive dual DC magnetron sputtering,” Mater. Sci. Forum,  433–436, 987–990 (2003).
[Crossref]

Skomski, R.

D. Schmidt, A.C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105(11), 113508 (2009).
[Crossref]

Sndergrd, E.

I.S. Nerb, S.L. Roy, M. Foldyna, M. Kildemo, and E. Sndergrd, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108(1), 014307 (2010).
[Crossref]

Sobahan, K.M.A.

Tungasmita, S.

T. Seppnen, G.Z. Radnczi, S. Tungasmita, L. Hultman, and J. Birch, “Growth and characterization of epitaxial wurtzite Al1−xInxN thin films deposited by UHV reactive dual DC magnetron sputtering,” Mater. Sci. Forum,  433–436, 987–990 (2003).
[Crossref]

Venugopal, V. C.

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otano, and A. Lakhtakia, “Engineered sculptured nematic thin films, ” Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films,  15(4), 2148–2152, 1997.
[Crossref]

Wu, Q.

Q. Wu, A. Lakhtakia, and I.J. Hodgkinson, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39(7), 1863–1868 (2000).
[Crossref]

Appl. Phys. Lett. (2)

R.M.A. Azzam, “Chiral thin solid films: Method of deposition and applications,” Appl. Phys. Lett. 61(26), 3118–3120 (1992).
[Crossref]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Monoclinic optical constants, birefringence, and dichroism of slanted titanium nanocolumns determined by generalized ellipsometry,” Appl. Phys. Lett. 94(1), 011914 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G.P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

J. Appl. Phys. (3)

K. Kaminska, A. Amassian, L. Martinu, and K. Robbie, “Growth of vacuum evaporated ultraporous silicon studied with spectroscopic ellipsometry and scanning electron microscopy,” J. Appl. Phys. 97(1), 013511 (2004).
[Crossref]

I.S. Nerb, S.L. Roy, M. Foldyna, M. Kildemo, and E. Sndergrd, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108(1), 014307 (2010).
[Crossref]

D. Schmidt, A.C. Kjerstad, T. Hofmann, R. Skomski, E. Schubert, and M. Schubert, “Optical, structural, and magnetic properties of cobalt nanostructure thin films,” J. Appl. Phys. 105(11), 113508 (2009).
[Crossref]

J. Chem. Phys. (1)

F. Perrin, “Polarization of light scattered by isotropic opalescent media,” J. Chem. Phys. 10(7), 415–427 (1942).
[Crossref]

J. Vac. Sci. Technol. A (1)

K. Robbie, M.J. Brett, and A. Lakhtakia, “First thin film realization of a helicoidal bianisotropic medium,” J. Vac. Sci. Technol. A 13(6), 2991–2993 (1995).
[Crossref]

J. Vac. Sci. Technol. A. (1)

M. Hawkeye and M.J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A. 25(5), 1317–1335 (2007).
[Crossref]

Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films (1)

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otano, and A. Lakhtakia, “Engineered sculptured nematic thin films, ” Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films,  15(4), 2148–2152, 1997.
[Crossref]

Mater. Sci. Forum (1)

T. Seppnen, G.Z. Radnczi, S. Tungasmita, L. Hultman, and J. Birch, “Growth and characterization of epitaxial wurtzite Al1−xInxN thin films deposited by UHV reactive dual DC magnetron sputtering,” Mater. Sci. Forum,  433–436, 987–990 (2003).
[Crossref]

Opt. Eng. (2)

Q. Wu, A. Lakhtakia, and I.J. Hodgkinson, “Circular polarization filters made of chiral sculptured thin films: experimental and simulation results,” Opt. Eng. 39(7), 1863–1868 (2000).
[Crossref]

I.J. Hodgkinson, A. Lakhtakia, and Q. Hong Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39(10), 2831–2834 (2000).
[Crossref]

Opt. Express (1)

Philos. Mag. (1)

H. Arwin, R. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Phys. Status Solidi A. (3)

D. Schmidt, E. Schubert, and M. Schubert, “Generalized ellipsometry determination of non-reciprocity in chiral silicon sculptured thin films,” Phys. Status Solidi A. 205(4), 748–751 (2008).
[Crossref]

G.Z. Radnczi, T. Seppnen, B. Pcz, L. Hultman, and J. Birch, “Growth of highly curved Al1−xInxN nanocrystals,” Phys. Status Solidi A. 202(7), R76–R78 (2005).
[Crossref]

M. Schubert and C.M. Herzinger, “Ellipsometry on anisotropic materials: Bragg conditions and phonons in dielectric helical thin films,” Phys. Status Solidi A. 188(4), 1563–1575 (2001).
[Crossref]

Other (6)

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).
[Crossref]

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, 2004).

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).

R.A. Chipman, “Mueller Matrices,” in Handbook of Optics Bass, V.N. Mahajan, E.W. Van Stryland, G. Li, C.A. MacDonald, and C. DeCusatis, eds. (McGraw-Hill, New York2010).

N.G. Parke, Matrix Optics (Massachusetts Institute of Technology, 1948).

R. Magnusson, J. Birch, P. Sandstrm, C-L. Hsiao, H. Arwin, and K. Järrendahl, “Optical Mueller matrix modeling of chiral films of helicoidal AlxIn1−xN nanorods,” Available online, http://dx.doi.org/10.1016/j.tsf.2014.02.015

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1 Scanning electron microscopy images of a) right-handed nanospirals, b) straight nanorods and c) left-handed nanospirals. d) Top view of straight nanorods.
Fig. 2
Fig. 2 Schematic view of a nanorod, curved due to the difference in lattice constant between the Al-rich (green color) side and the In-rich side (red color). a) A side view of a nanorod as deposited without substrate rotation. The curvature is strongly exaggerated and in the real structure the angle α is approximately 1.8°. b) One period of a right-handed four-fold stepwise helical staircase nanospiral where the substrate has been rotated three times in 90° steps.
Fig. 3
Fig. 3 Degree of circular polarization, PC, at 25° incidence angle for a) a sample with a right-handed chiral film, b) a sample with a straight nanorod film and c) for a sample with a left-handed chiral film. The insets show the shape of the near-circular polarization state at their respective peak values (solid curves) inscribed in perfect circles (dashed curves).
Fig. 4
Fig. 4 Polarizance vectors, [m21, m31, m41] T , at a fixed θ (25°) of films with a) a left-handed chiral film, b) a straight nanorod film and c) a right-handed chiral film. Notice that the sharp borders between colored areas in the figure are due to the color scale used and that all transitions are gradual.
Fig. 5
Fig. 5 Polarizance vectors, [m21, m31, m41] T , at the same φ as in Fig. 3 of samples with a) a left-handed chiral film, b) a straight nanorod film and c) a right-handed chiral film.
Fig. 6
Fig. 6 Degree of circular polarization, Pc, at θ =25° of a sample with a right-handed chiral film, illuminated with linearly polarized light specified in the inset.
Fig. 7
Fig. 7 Degree of circular polarization, Pc, at θ =25° of a sample with a right-handed chiral film, illuminated with linearly polarized light specified in the inset.
Fig. 8
Fig. 8 Degree of circular polarization, Pc, at θ =25° of a sample with a right-handed chiral film, illuminated with circularly polarized light specified in the inset.
Fig. 9
Fig. 9 Degree of circular polarization, Pc, at θ =25° of a sample with a left-handed chiral film, illuminated with linearly polarized light specified in the inset.
Fig. 10
Fig. 10 Degree of circular polarization, Pc, at θ =25° of a sample with a left-handed chiral film, illuminated with linearly polarized light specified in the inset.
Fig. 11
Fig. 11 Degree of circular polarization, Pc, at θ =25° of a sample with a left-handed chiral film, illuminated with circularly polarized light specified in the inset.
Fig. 12
Fig. 12 Degree of circular polarization, Pc, at θ =25° of a sample with a straight nanorod film, illuminated with linearly polarized light specified in the inset.
Fig. 13
Fig. 13 Degree of circular polarization, Pc, at θ =25° of a sample with a straight nanorod film, illuminated with linearly polarized light specified in the inset.
Fig. 14
Fig. 14 Degree of circular polarization, Pc, at θ =25° of a sample with a straight nanorod film, illuminated with circularly polarized light specified in the inset.
Fig. 15
Fig. 15 Normalized Mueller matrix, at a fixed θ (25°) of a sample with a left-handed chiral film.
Fig. 16
Fig. 16 Normalized Mueller matrix, at a fixed θ (25°) of a sample with a right-handed chiral film.
Fig. 17
Fig. 17 Normalized Mueller matrix, at a fixed θ (25°) of a sample with a straight nanorod film.
Fig. 18
Fig. 18 Normalized Mueller matrix, at a fixed φ of a sample with a left-handed chiral film.
Fig. 19
Fig. 19 Normalized Mueller matrix, at a fixed φ of a sample with a right-handed chiral film.
Fig. 20
Fig. 20 Normalized Mueller matrix, at a fixed φ of a sample with a straight nanorod film.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

S = [ I Q U V ]
S o = M S i
[ I o Q o U o V o ] = [ 1 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 ] [ 1 Q i U i V i ]
P = Q 2 + U 2 + V 2
P L = Q 2 + U 2
P C = V
S = ( 1 P ) S u + P S p
Linear , horizontal = [ 1 1 0 0 ]
Linear , vertical = [ 1 1 0 0 ]
Linear , + 45 ° = [ 1 0 1 0 ]
Linear , 45 ° = [ 1 0 1 0 ]
Circular , right handed = [ 1 0 0 1 ]
Circular , left handed = [ 1 0 0 1 ]

Metrics