Abstract

We present fabrication and characterization of tungsten (W) heaters for thermo-optic tuning on silicon-on-insulator (SOI). The wafer-scale fabrication of these thermal tuners was done using standard complementary metal-oxide-semiconductor (CMOS) back-end fabrication materials and processes. Static and transient characterizations of heaters are presented.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett.101(4), 041905 (2012).
    [CrossRef]
  2. G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 mu m,” Electron. Lett.27(2), 118–120 (1991).
    [CrossRef]
  3. G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 mu m in silicon etalon,” Electron. Lett.28(1), 83–85 (1992).
    [CrossRef]
  4. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express18(3), 1879–1887 (2010).
    [CrossRef] [PubMed]
  5. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express17(17), 14627–14633 (2009).
    [CrossRef] [PubMed]
  6. H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, P. Absil, and J. Van Campenhout, “Compact Thermally Tunable Silicon Racetrack Modulators Based on an Asymmetric Waveguide,” IEEE Photonic. Tech. L.25(2), 159–162 (2013).
    [CrossRef]
  7. I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron.44(12-13), 589–604 (2012).
    [CrossRef]
  8. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett.38(5), 733–735 (2013).
    [CrossRef] [PubMed]
  9. L. Cao, A. A. Aboketaf, and S. F. Preble, “CMOS compatible micro-oven heater for efficient thermal control of silicon photonic devices,” Opt. Commun.305, 66–70 (2013).
    [CrossRef]
  10. T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE6872, 68720Z (2008).
    [CrossRef]
  11. J. Xia, J. Yu, Z. Wang, Z. Fan, and S. Chen, “Low power 2×2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching,” Opt. Commun.232(1-6), 223–228 (2004).
    [CrossRef]
  12. D. Dai, L. Yang, S. He, and S. Member, “Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires,” J. Lightwave Technol.26(6), 704–709 (2008).
    [CrossRef]
  13. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett.35(7), 1013–1015 (2010).
    [CrossRef] [PubMed]
  14. J. F. Song, Q. Fang, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “High Efficiency Optical Switches with Heater-on-Slab (HoS) Structures,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThM2.
    [CrossRef]
  15. A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible Tungsten Heaters for Silicon Photonic Waveguides,” in Group IV Photonics (GFP),2012IEEE 9th International Conference on, 2012, 234-236.
    [CrossRef]
  16. M. Quirk and J. Serda, “Metallization,” in Semiconductor Manufacturing Technology (Prentice Hall, 2001), pp. 293-333.
  17. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193nm Optical Lithography,” J. Lightwave Technol.27(18), 4076–4083 (2009).
    [CrossRef]
  18. H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express20(12), 12926–12938 (2012).
    [CrossRef] [PubMed]
  19. A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in Group IV Photonics (GFP),2013IEEE 10th International Conference on, 2013, 83-84.
    [CrossRef]

2013 (3)

L. Cao, A. A. Aboketaf, and S. F. Preble, “CMOS compatible micro-oven heater for efficient thermal control of silicon photonic devices,” Opt. Commun.305, 66–70 (2013).
[CrossRef]

H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, P. Absil, and J. Van Campenhout, “Compact Thermally Tunable Silicon Racetrack Modulators Based on an Asymmetric Waveguide,” IEEE Photonic. Tech. L.25(2), 159–162 (2013).
[CrossRef]

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett.38(5), 733–735 (2013).
[CrossRef] [PubMed]

2012 (3)

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express20(12), 12926–12938 (2012).
[CrossRef] [PubMed]

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron.44(12-13), 589–604 (2012).
[CrossRef]

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett.101(4), 041905 (2012).
[CrossRef]

2010 (2)

2009 (2)

2008 (2)

D. Dai, L. Yang, S. He, and S. Member, “Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires,” J. Lightwave Technol.26(6), 704–709 (2008).
[CrossRef]

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE6872, 68720Z (2008).
[CrossRef]

2004 (1)

J. Xia, J. Yu, Z. Wang, Z. Fan, and S. Chen, “Low power 2×2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching,” Opt. Commun.232(1-6), 223–228 (2004).
[CrossRef]

1992 (1)

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 mu m in silicon etalon,” Electron. Lett.28(1), 83–85 (1992).
[CrossRef]

1991 (1)

G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 mu m,” Electron. Lett.27(2), 118–120 (1991).
[CrossRef]

Aboketaf, A. A.

L. Cao, A. A. Aboketaf, and S. F. Preble, “CMOS compatible micro-oven heater for efficient thermal control of silicon photonic devices,” Opt. Commun.305, 66–70 (2013).
[CrossRef]

Absil, P.

H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, P. Absil, and J. Van Campenhout, “Compact Thermally Tunable Silicon Racetrack Modulators Based on an Asymmetric Waveguide,” IEEE Photonic. Tech. L.25(2), 159–162 (2013).
[CrossRef]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express20(12), 12926–12938 (2012).
[CrossRef] [PubMed]

Alloatti, L.

Assefa, S.

Baets, R.

Barwicz, T.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE6872, 68720Z (2008).
[CrossRef]

Bogaerts, W.

Cao, L.

L. Cao, A. A. Aboketaf, and S. F. Preble, “CMOS compatible micro-oven heater for efficient thermal control of silicon photonic devices,” Opt. Commun.305, 66–70 (2013).
[CrossRef]

Chen, S.

J. Xia, J. Yu, Z. Wang, Z. Fan, and S. Chen, “Low power 2×2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching,” Opt. Commun.232(1-6), 223–228 (2004).
[CrossRef]

Cocorullo, G.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 mu m in silicon etalon,” Electron. Lett.28(1), 83–85 (1992).
[CrossRef]

Cunningham, J. E.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron.44(12-13), 589–604 (2012).
[CrossRef]

Dahlem, M. S.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE6872, 68720Z (2008).
[CrossRef]

Dai, D.

DeRose, C.

Dumon, P.

Dwivedi, S.

H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, P. Absil, and J. Van Campenhout, “Compact Thermally Tunable Silicon Racetrack Modulators Based on an Asymmetric Waveguide,” IEEE Photonic. Tech. L.25(2), 159–162 (2013).
[CrossRef]

Fan, Z.

J. Xia, J. Yu, Z. Wang, Z. Fan, and S. Chen, “Low power 2×2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching,” Opt. Commun.232(1-6), 223–228 (2004).
[CrossRef]

Gan, F.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE6872, 68720Z (2008).
[CrossRef]

Gondarenko, A.

Green, W. M. J.

Guha, B.

Han, X.

He, S.

Heinert, D.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett.101(4), 041905 (2012).
[CrossRef]

Hillerkuss, D.

Hofmann, G.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett.101(4), 041905 (2012).
[CrossRef]

Holzwarth, C. W.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE6872, 68720Z (2008).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE6872, 68720Z (2008).
[CrossRef]

Jaenen, P.

Jian, X.

Kärtner, F. X.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE6872, 68720Z (2008).
[CrossRef]

Komma, J.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett.101(4), 041905 (2012).
[CrossRef]

Komorowska, K.

Korn, D.

Krishnamoorthy, A. V.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron.44(12-13), 589–604 (2012).
[CrossRef]

Lepage, G.

H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, P. Absil, and J. Van Campenhout, “Compact Thermally Tunable Silicon Racetrack Modulators Based on an Asymmetric Waveguide,” IEEE Photonic. Tech. L.25(2), 159–162 (2013).
[CrossRef]

Leuthold, J.

Li, G.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron.44(12-13), 589–604 (2012).
[CrossRef]

Li, Y.

Lipson, M.

Luo, Y.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron.44(12-13), 589–604 (2012).
[CrossRef]

Member, S.

Morthier, G.

Nawrodt, R.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett.101(4), 041905 (2012).
[CrossRef]

Nielson, G. N.

Pantouvaki, M.

H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, P. Absil, and J. Van Campenhout, “Compact Thermally Tunable Silicon Racetrack Modulators Based on an Asymmetric Waveguide,” IEEE Photonic. Tech. L.25(2), 159–162 (2013).
[CrossRef]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express20(12), 12926–12938 (2012).
[CrossRef] [PubMed]

Park, N.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron.44(12-13), 589–604 (2012).
[CrossRef]

Popovic, M. A.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE6872, 68720Z (2008).
[CrossRef]

Preble, S. F.

L. Cao, A. A. Aboketaf, and S. F. Preble, “CMOS compatible micro-oven heater for efficient thermal control of silicon photonic devices,” Opt. Commun.305, 66–70 (2013).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE6872, 68720Z (2008).
[CrossRef]

Rendina, I.

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 mu m in silicon etalon,” Electron. Lett.28(1), 83–85 (1992).
[CrossRef]

Schwarz, C.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett.101(4), 041905 (2012).
[CrossRef]

Selvaraja, S. K.

Shubin, I.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron.44(12-13), 589–604 (2012).
[CrossRef]

Smith, H. I.

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE6872, 68720Z (2008).
[CrossRef]

Sun, J.

Teng, J.

Thacker, H.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron.44(12-13), 589–604 (2012).
[CrossRef]

Treyz, G. V.

G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 mu m,” Electron. Lett.27(2), 118–120 (1991).
[CrossRef]

Trotter, D. C.

Van Campenhout, J.

Van Thourhout, D.

Verheyen, P.

H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, P. Absil, and J. Van Campenhout, “Compact Thermally Tunable Silicon Racetrack Modulators Based on an Asymmetric Waveguide,” IEEE Photonic. Tech. L.25(2), 159–162 (2013).
[CrossRef]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express20(12), 12926–12938 (2012).
[CrossRef] [PubMed]

Vlasov, Y. A.

Wang, Z.

J. Xia, J. Yu, Z. Wang, Z. Fan, and S. Chen, “Low power 2×2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching,” Opt. Commun.232(1-6), 223–228 (2004).
[CrossRef]

Watts, M. R.

Xia, J.

J. Xia, J. Yu, Z. Wang, Z. Fan, and S. Chen, “Low power 2×2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching,” Opt. Commun.232(1-6), 223–228 (2004).
[CrossRef]

Yang, L.

Yao, J.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron.44(12-13), 589–604 (2012).
[CrossRef]

Young, R. W.

Yu, H.

H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, P. Absil, and J. Van Campenhout, “Compact Thermally Tunable Silicon Racetrack Modulators Based on an Asymmetric Waveguide,” IEEE Photonic. Tech. L.25(2), 159–162 (2013).
[CrossRef]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express20(12), 12926–12938 (2012).
[CrossRef] [PubMed]

Yu, J.

J. Xia, J. Yu, Z. Wang, Z. Fan, and S. Chen, “Low power 2×2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching,” Opt. Commun.232(1-6), 223–228 (2004).
[CrossRef]

Zhang, H.

Zhao, M.

Zheng, X.

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron.44(12-13), 589–604 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett.101(4), 041905 (2012).
[CrossRef]

Electron. Lett. (2)

G. V. Treyz, “Silicon Mach-Zehnder waveguide interferometers operating at 1.3 mu m,” Electron. Lett.27(2), 118–120 (1991).
[CrossRef]

G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 mu m in silicon etalon,” Electron. Lett.28(1), 83–85 (1992).
[CrossRef]

IEEE Photonic. Tech. L. (1)

H. Yu, M. Pantouvaki, S. Dwivedi, P. Verheyen, G. Lepage, R. Baets, W. Bogaerts, P. Absil, and J. Van Campenhout, “Compact Thermally Tunable Silicon Racetrack Modulators Based on an Asymmetric Waveguide,” IEEE Photonic. Tech. L.25(2), 159–162 (2013).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (2)

L. Cao, A. A. Aboketaf, and S. F. Preble, “CMOS compatible micro-oven heater for efficient thermal control of silicon photonic devices,” Opt. Commun.305, 66–70 (2013).
[CrossRef]

J. Xia, J. Yu, Z. Wang, Z. Fan, and S. Chen, “Low power 2×2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching,” Opt. Commun.232(1-6), 223–228 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

I. Shubin, G. Li, X. Zheng, Y. Luo, H. Thacker, J. Yao, N. Park, A. V. Krishnamoorthy, and J. E. Cunningham, “Integration, processing and performance of low power thermally tunable CMOS-SOI WDM resonators,” Opt. Quantum Electron.44(12-13), 589–604 (2012).
[CrossRef]

Proc. SPIE (1)

T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE6872, 68720Z (2008).
[CrossRef]

Other (4)

J. F. Song, Q. Fang, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “High Efficiency Optical Switches with Heater-on-Slab (HoS) Structures,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OThM2.
[CrossRef]

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, D. Van Thourhout, P. Absil, and W. Bogaerts, “CMOS-compatible Tungsten Heaters for Silicon Photonic Waveguides,” in Group IV Photonics (GFP),2012IEEE 9th International Conference on, 2012, 234-236.
[CrossRef]

M. Quirk and J. Serda, “Metallization,” in Semiconductor Manufacturing Technology (Prentice Hall, 2001), pp. 293-333.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in Group IV Photonics (GFP),2013IEEE 10th International Conference on, 2013, 83-84.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Cross sections of (a) Typical CMOS stack with front-end and back-end. (b) SOI-photonics stack with modulator and W heater. (c) SEM image of SOI-photonics device cross section. (d) W heaters and waveguide.

Fig. 2
Fig. 2

(a) Simulated temperature profile of device cross section model. (b) Simulated phase shift versus applied electrical power for different heater offsets ‘w’, defined as the horizontal distance between inward edges of heater line and the waveguide.

Fig. 3
Fig. 3

(a) Length versus resistance plot for 0.6µm wide heater wire. (b) IV characteristics of a heater during operation. (c) Output optical power of MZI versus applied electrical power. (d) Variation of power efficiency over multiple cycles.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δφ= 2πLΔ n eff λ
n= n 0 +α(T T 0 )

Metrics