Abstract

GaN nanowires with periodic serrated morphology have been synthesized on Si substrate by Au-catalyzed vapor-liquid-solid growth mode. The presence of Mn vapor during growth process has been found to enhance the production and quality of serrated GaN nanowires, without introducing dopants. We have performed photoluminescence and Raman spectral measurements on nanowires with different levels of serration. Temperature dependent photoluminescence revealed a broad yellow-green and red luminescence in the samples. Room temperature Raman spectra exhibits disorder-activated phonon mode at ~670 cm−1, in addition to E2(high) and A1(LO) modes of GaN. Further investigation of Raman spectra revealed the presence of tensile stress in the GaN nanowires when Mn vapor is present during the growth process. The dependence of the optical properties on the morphology of GaN nanowires shows that they can be tuned by initial synthesis conditions.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Fasol, “Room-Temperature blue gallium nitride laser diode,” Science272(5269), 1751–1752 (1996).
    [CrossRef]
  2. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science281(5379), 956–961 (1998).
    [CrossRef] [PubMed]
  3. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature406(6798), 865–868 (2000).
    [CrossRef] [PubMed]
  4. M. Zhang and J. J. Shi, “Exciton states and optical transitions in InGaN/GaN quantum dot nanowire heterostructures: strong built-in electric field and dielectric mismatch effects,” J. Lumin.131(9), 1908–1912 (2011).
    [CrossRef]
  5. H. Morkoc, Nitride Semiconductors and Devices (Springer, 1999).
  6. B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B10(2), 676–681 (1974).
    [CrossRef]
  7. H. Ohno, H. Munekata, T. Penney, L. L. Chang, and L. L. Chang,“Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors,” Phys. Rev. Lett.68(17), 2664–2667 (1992).
    [CrossRef] [PubMed]
  8. H. Ohno, A. Shen, F. Matsukara, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs,” Appl. Phys. Lett.69(3), 363–365 (1996).
    [CrossRef]
  9. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science287(5455), 1019–1022 (2000).
    [CrossRef] [PubMed]
  10. M. L. Reed, M. K. Ritums, H. H. Stadelmaier, M. J. Reed, C. A. Parker, S. M. Bedair, and N. A. El-Marsy, “Room temperature magnetic (Ga,Mn)N: a new material for spin electronic devices,” Mater. Lett.51(6), 500–503 (2001).
    [CrossRef]
  11. S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004).
    [CrossRef]
  12. M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulon, K. T. McCarthy, and A. F. Hebard, “Indication of ferromagnetism in molecular-beam-epitaxy-derived n-type GaMnN,” Appl. Phys. Lett.79(9), 1312–1314 (2001).
    [CrossRef]
  13. G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
    [CrossRef]
  14. Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett.6(7), 1468–1473 (2006).
    [CrossRef] [PubMed]
  15. Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett.9(5), 2183–2187 (2009).
    [CrossRef] [PubMed]
  16. Y. Huang, D. Xiangfeng, C. Yi, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett.2(2), 101–104 (2002).
    [CrossRef]
  17. Z. Ma, D. McDowell, E. Panaitescu, A. V. Davydov, M. Upmanya, and L. Menon, “Vapor-liquid-solid growth of serrated GaN nanowires: shape selection driven by kinetic frustration,” J. Mater. Chem. C1(44), 7294–7302 (2013).
    [CrossRef]
  18. Z. Ma, (2013) Synthesis, properties and applications of GaN nanowires (Doctoral Dissertation).
  19. M. A. Reshchikov and H. Morkoc, “Luminescence properties of defects in GaN,” J. Appl. Phys.97(6), 061301 (2005).
    [CrossRef]
  20. M. A. Reshchikov and R. Y. Korotkov, “Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films,” Phys. Rev. B64(11), 115205 (2001).
    [CrossRef]
  21. T. Ogino and M. Aoki, “Mechanism of yellow luminescence in GaN,” Jpn. J. Appl. Phys.19(12), 2395–2405 (1980).
    [CrossRef]
  22. T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN,” Phys. Rev. B55(15), 9571–9576 (1997).
    [CrossRef]
  23. M. A. Reshchikov, H. Morkoc, S. S. Park, and K. Y. Lee, “Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study,” Appl. Phys. Lett.81(26), 4970–4972 (2002).
    [CrossRef]
  24. C. Díaz-Guerra, J. Piqueras, and A. Cavallini, “Time-resolved cathodoluminescence assessment of deep-level transitions in hydride-vapor-phase-epitaxy GaN,” Appl. Phys. Lett.82(13), 2050–2052 (2003).
    [CrossRef]
  25. M. Cardona and G. Guntherodt, Light Scattering in Solids II (Springer Verlag Berlin, 1982).
  26. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc.123(12), 2791–2798 (2001).
    [CrossRef] [PubMed]
  27. W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko, and S. Podsiado, “Raman scattering study of Ga1-x MnxN crystals,” Appl. Phys. Lett.76(26), 3870–3872 (2000).
    [CrossRef]
  28. H. Harima, “Raman studies on spintronics materials based on wide bandgap semiconductors,” J. Phys. Condens. Matter16(48), S5653–S5660 (2004).
    [CrossRef]
  29. N. Hasuike, H. Fakamura, H. Harima, K. Kisoda, M. Hashimoto, Y. K. Zhou, and H. Asahi, “Optical studies on GaN-based spintronics materials,” J. Phys. Condens. Matter16(48), S5811–S5814 (2004).
    [CrossRef]
  30. X. Yang, J. Wu, Z. Chen, Y. Pan, Y. Zhang, Z. Yang, T. Yu, and G. Zhang, “Raman scattering and ferromagnetism of (Ga,Mn)N films grown by MOCVD,” Solid State Commun.143(4-5), 236–239 (2007).
    [CrossRef]
  31. P. Perlin, C. Jauberthie-Carillon, J. P. Itie, I. Grzegory, A. Polian, and A. Polian, “Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure,” Phys. Rev. B Condens. Matter45(1), 83–89 (1992).
    [CrossRef] [PubMed]
  32. Book of ASM Handbook, Volume 3, Alloy Phase Diagrams, 1992.

2013

Z. Ma, D. McDowell, E. Panaitescu, A. V. Davydov, M. Upmanya, and L. Menon, “Vapor-liquid-solid growth of serrated GaN nanowires: shape selection driven by kinetic frustration,” J. Mater. Chem. C1(44), 7294–7302 (2013).
[CrossRef]

2011

M. Zhang and J. J. Shi, “Exciton states and optical transitions in InGaN/GaN quantum dot nanowire heterostructures: strong built-in electric field and dielectric mismatch effects,” J. Lumin.131(9), 1908–1912 (2011).
[CrossRef]

2009

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett.9(5), 2183–2187 (2009).
[CrossRef] [PubMed]

2007

X. Yang, J. Wu, Z. Chen, Y. Pan, Y. Zhang, Z. Yang, T. Yu, and G. Zhang, “Raman scattering and ferromagnetism of (Ga,Mn)N films grown by MOCVD,” Solid State Commun.143(4-5), 236–239 (2007).
[CrossRef]

2006

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett.6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

2005

M. A. Reshchikov and H. Morkoc, “Luminescence properties of defects in GaN,” J. Appl. Phys.97(6), 061301 (2005).
[CrossRef]

2004

S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004).
[CrossRef]

H. Harima, “Raman studies on spintronics materials based on wide bandgap semiconductors,” J. Phys. Condens. Matter16(48), S5653–S5660 (2004).
[CrossRef]

N. Hasuike, H. Fakamura, H. Harima, K. Kisoda, M. Hashimoto, Y. K. Zhou, and H. Asahi, “Optical studies on GaN-based spintronics materials,” J. Phys. Condens. Matter16(48), S5811–S5814 (2004).
[CrossRef]

2003

C. Díaz-Guerra, J. Piqueras, and A. Cavallini, “Time-resolved cathodoluminescence assessment of deep-level transitions in hydride-vapor-phase-epitaxy GaN,” Appl. Phys. Lett.82(13), 2050–2052 (2003).
[CrossRef]

2002

Y. Huang, D. Xiangfeng, C. Yi, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett.2(2), 101–104 (2002).
[CrossRef]

M. A. Reshchikov, H. Morkoc, S. S. Park, and K. Y. Lee, “Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study,” Appl. Phys. Lett.81(26), 4970–4972 (2002).
[CrossRef]

G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
[CrossRef]

2001

M. L. Reed, M. K. Ritums, H. H. Stadelmaier, M. J. Reed, C. A. Parker, S. M. Bedair, and N. A. El-Marsy, “Room temperature magnetic (Ga,Mn)N: a new material for spin electronic devices,” Mater. Lett.51(6), 500–503 (2001).
[CrossRef]

M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulon, K. T. McCarthy, and A. F. Hebard, “Indication of ferromagnetism in molecular-beam-epitaxy-derived n-type GaMnN,” Appl. Phys. Lett.79(9), 1312–1314 (2001).
[CrossRef]

M. A. Reshchikov and R. Y. Korotkov, “Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films,” Phys. Rev. B64(11), 115205 (2001).
[CrossRef]

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc.123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

2000

W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko, and S. Podsiado, “Raman scattering study of Ga1-x MnxN crystals,” Appl. Phys. Lett.76(26), 3870–3872 (2000).
[CrossRef]

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature406(6798), 865–868 (2000).
[CrossRef] [PubMed]

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science287(5455), 1019–1022 (2000).
[CrossRef] [PubMed]

1998

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science281(5379), 956–961 (1998).
[CrossRef] [PubMed]

1997

T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN,” Phys. Rev. B55(15), 9571–9576 (1997).
[CrossRef]

1996

G. Fasol, “Room-Temperature blue gallium nitride laser diode,” Science272(5269), 1751–1752 (1996).
[CrossRef]

H. Ohno, A. Shen, F. Matsukara, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs,” Appl. Phys. Lett.69(3), 363–365 (1996).
[CrossRef]

1992

H. Ohno, H. Munekata, T. Penney, L. L. Chang, and L. L. Chang,“Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors,” Phys. Rev. Lett.68(17), 2664–2667 (1992).
[CrossRef] [PubMed]

P. Perlin, C. Jauberthie-Carillon, J. P. Itie, I. Grzegory, A. Polian, and A. Polian, “Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure,” Phys. Rev. B Condens. Matter45(1), 83–89 (1992).
[CrossRef] [PubMed]

1980

T. Ogino and M. Aoki, “Mechanism of yellow luminescence in GaN,” Jpn. J. Appl. Phys.19(12), 2395–2405 (1980).
[CrossRef]

1974

B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B10(2), 676–681 (1974).
[CrossRef]

Abernathy, C. R.

S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004).
[CrossRef]

G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
[CrossRef]

M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulon, K. T. McCarthy, and A. F. Hebard, “Indication of ferromagnetism in molecular-beam-epitaxy-derived n-type GaMnN,” Appl. Phys. Lett.79(9), 1312–1314 (2001).
[CrossRef]

Aoki, M.

T. Ogino and M. Aoki, “Mechanism of yellow luminescence in GaN,” Jpn. J. Appl. Phys.19(12), 2395–2405 (1980).
[CrossRef]

Asahi, H.

N. Hasuike, H. Fakamura, H. Harima, K. Kisoda, M. Hashimoto, Y. K. Zhou, and H. Asahi, “Optical studies on GaN-based spintronics materials,” J. Phys. Condens. Matter16(48), S5811–S5814 (2004).
[CrossRef]

Bedair, S. M.

M. L. Reed, M. K. Ritums, H. H. Stadelmaier, M. J. Reed, C. A. Parker, S. M. Bedair, and N. A. El-Marsy, “Room temperature magnetic (Ga,Mn)N: a new material for spin electronic devices,” Mater. Lett.51(6), 500–503 (2001).
[CrossRef]

Blom, D. A.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett.6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Brandt, O.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature406(6798), 865–868 (2000).
[CrossRef] [PubMed]

Buyanova, I. A.

S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004).
[CrossRef]

Cavallini, A.

C. Díaz-Guerra, J. Piqueras, and A. Cavallini, “Time-resolved cathodoluminescence assessment of deep-level transitions in hydride-vapor-phase-epitaxy GaN,” Appl. Phys. Lett.82(13), 2050–2052 (2003).
[CrossRef]

Chang, L. L.

H. Ohno, H. Munekata, T. Penney, L. L. Chang, and L. L. Chang,“Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors,” Phys. Rev. Lett.68(17), 2664–2667 (1992).
[CrossRef] [PubMed]

H. Ohno, H. Munekata, T. Penney, L. L. Chang, and L. L. Chang,“Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors,” Phys. Rev. Lett.68(17), 2664–2667 (1992).
[CrossRef] [PubMed]

Chen, C. C.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc.123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Chen, C. H.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc.123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Chen, K. H.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc.123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Chen, L. C.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc.123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Chen, W. M.

S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004).
[CrossRef]

Chen, Y. F.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc.123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Chen, Z.

X. Yang, J. Wu, Z. Chen, Y. Pan, Y. Zhang, Z. Yang, T. Yu, and G. Zhang, “Raman scattering and ferromagnetism of (Ga,Mn)N films grown by MOCVD,” Solid State Commun.143(4-5), 236–239 (2007).
[CrossRef]

Cibert, J.

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science287(5455), 1019–1022 (2000).
[CrossRef] [PubMed]

Davydov, A. V.

Z. Ma, D. McDowell, E. Panaitescu, A. V. Davydov, M. Upmanya, and L. Menon, “Vapor-liquid-solid growth of serrated GaN nanowires: shape selection driven by kinetic frustration,” J. Mater. Chem. C1(44), 7294–7302 (2013).
[CrossRef]

Díaz-Guerra, C.

C. Díaz-Guerra, J. Piqueras, and A. Cavallini, “Time-resolved cathodoluminescence assessment of deep-level transitions in hydride-vapor-phase-epitaxy GaN,” Appl. Phys. Lett.82(13), 2050–2052 (2003).
[CrossRef]

Dietl, T.

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science287(5455), 1019–1022 (2000).
[CrossRef] [PubMed]

Dong, Y.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett.9(5), 2183–2187 (2009).
[CrossRef] [PubMed]

El-Marsy, N. A.

M. L. Reed, M. K. Ritums, H. H. Stadelmaier, M. J. Reed, C. A. Parker, S. M. Bedair, and N. A. El-Marsy, “Room temperature magnetic (Ga,Mn)N: a new material for spin electronic devices,” Mater. Lett.51(6), 500–503 (2001).
[CrossRef]

Endo, A.

H. Ohno, A. Shen, F. Matsukara, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs,” Appl. Phys. Lett.69(3), 363–365 (1996).
[CrossRef]

Fakamura, H.

N. Hasuike, H. Fakamura, H. Harima, K. Kisoda, M. Hashimoto, Y. K. Zhou, and H. Asahi, “Optical studies on GaN-based spintronics materials,” J. Phys. Condens. Matter16(48), S5811–S5814 (2004).
[CrossRef]

Fasol, G.

G. Fasol, “Room-Temperature blue gallium nitride laser diode,” Science272(5269), 1751–1752 (1996).
[CrossRef]

Ferrand, D.

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science287(5455), 1019–1022 (2000).
[CrossRef] [PubMed]

Frazier, R.

G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
[CrossRef]

Frazier, R. M.

S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004).
[CrossRef]

Gebicki, W.

W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko, and S. Podsiado, “Raman scattering study of Ga1-x MnxN crystals,” Appl. Phys. Lett.76(26), 3870–3872 (2000).
[CrossRef]

Gila, B.

G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
[CrossRef]

Gradecak, S.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett.6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Grahn, H. T.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature406(6798), 865–868 (2000).
[CrossRef] [PubMed]

Grzegory, I.

P. Perlin, C. Jauberthie-Carillon, J. P. Itie, I. Grzegory, A. Polian, and A. Polian, “Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure,” Phys. Rev. B Condens. Matter45(1), 83–89 (1992).
[CrossRef] [PubMed]

Harima, H.

N. Hasuike, H. Fakamura, H. Harima, K. Kisoda, M. Hashimoto, Y. K. Zhou, and H. Asahi, “Optical studies on GaN-based spintronics materials,” J. Phys. Condens. Matter16(48), S5811–S5814 (2004).
[CrossRef]

H. Harima, “Raman studies on spintronics materials based on wide bandgap semiconductors,” J. Phys. Condens. Matter16(48), S5653–S5660 (2004).
[CrossRef]

Hashimoto, M.

N. Hasuike, H. Fakamura, H. Harima, K. Kisoda, M. Hashimoto, Y. K. Zhou, and H. Asahi, “Optical studies on GaN-based spintronics materials,” J. Phys. Condens. Matter16(48), S5811–S5814 (2004).
[CrossRef]

Hasuike, N.

N. Hasuike, H. Fakamura, H. Harima, K. Kisoda, M. Hashimoto, Y. K. Zhou, and H. Asahi, “Optical studies on GaN-based spintronics materials,” J. Phys. Condens. Matter16(48), S5811–S5814 (2004).
[CrossRef]

Hebard, A. F.

S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004).
[CrossRef]

M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulon, K. T. McCarthy, and A. F. Hebard, “Indication of ferromagnetism in molecular-beam-epitaxy-derived n-type GaMnN,” Appl. Phys. Lett.79(9), 1312–1314 (2001).
[CrossRef]

Huang, Y.

Y. Huang, D. Xiangfeng, C. Yi, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett.2(2), 101–104 (2002).
[CrossRef]

Itie, J. P.

P. Perlin, C. Jauberthie-Carillon, J. P. Itie, I. Grzegory, A. Polian, and A. Polian, “Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure,” Phys. Rev. B Condens. Matter45(1), 83–89 (1992).
[CrossRef] [PubMed]

Iye, Y.

H. Ohno, A. Shen, F. Matsukara, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs,” Appl. Phys. Lett.69(3), 363–365 (1996).
[CrossRef]

Jauberthie-Carillon, C.

P. Perlin, C. Jauberthie-Carillon, J. P. Itie, I. Grzegory, A. Polian, and A. Polian, “Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure,” Phys. Rev. B Condens. Matter45(1), 83–89 (1992).
[CrossRef] [PubMed]

Kamler, G.

W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko, and S. Podsiado, “Raman scattering study of Ga1-x MnxN crystals,” Appl. Phys. Lett.76(26), 3870–3872 (2000).
[CrossRef]

Katsumoto, S.

H. Ohno, A. Shen, F. Matsukara, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs,” Appl. Phys. Lett.69(3), 363–365 (1996).
[CrossRef]

Kempa, T. J.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett.9(5), 2183–2187 (2009).
[CrossRef] [PubMed]

Khim, J.

G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
[CrossRef]

Khim, Z. G.

G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
[CrossRef]

Kisoda, K.

N. Hasuike, H. Fakamura, H. Harima, K. Kisoda, M. Hashimoto, Y. K. Zhou, and H. Asahi, “Optical studies on GaN-based spintronics materials,” J. Phys. Condens. Matter16(48), S5811–S5814 (2004).
[CrossRef]

Korotkov, R. Y.

M. A. Reshchikov and R. Y. Korotkov, “Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films,” Phys. Rev. B64(11), 115205 (2001).
[CrossRef]

Lee, J. S.

G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
[CrossRef]

Lee, K. Y.

M. A. Reshchikov, H. Morkoc, S. S. Park, and K. Y. Lee, “Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study,” Appl. Phys. Lett.81(26), 4970–4972 (2002).
[CrossRef]

Lee, S. Y.

G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
[CrossRef]

Li, Y.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett.6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Lieber, C. M.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett.9(5), 2183–2187 (2009).
[CrossRef] [PubMed]

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett.6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Y. Huang, D. Xiangfeng, C. Yi, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett.2(2), 101–104 (2002).
[CrossRef]

Liu, H. L.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc.123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Ma, Z.

Z. Ma, D. McDowell, E. Panaitescu, A. V. Davydov, M. Upmanya, and L. Menon, “Vapor-liquid-solid growth of serrated GaN nanowires: shape selection driven by kinetic frustration,” J. Mater. Chem. C1(44), 7294–7302 (2013).
[CrossRef]

Matsukara, F.

H. Ohno, A. Shen, F. Matsukara, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs,” Appl. Phys. Lett.69(3), 363–365 (1996).
[CrossRef]

Matsukura, F.

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science287(5455), 1019–1022 (2000).
[CrossRef] [PubMed]

Mattila, T.

T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN,” Phys. Rev. B55(15), 9571–9576 (1997).
[CrossRef]

McCarthy, K. T.

M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulon, K. T. McCarthy, and A. F. Hebard, “Indication of ferromagnetism in molecular-beam-epitaxy-derived n-type GaMnN,” Appl. Phys. Lett.79(9), 1312–1314 (2001).
[CrossRef]

McDowell, D.

Z. Ma, D. McDowell, E. Panaitescu, A. V. Davydov, M. Upmanya, and L. Menon, “Vapor-liquid-solid growth of serrated GaN nanowires: shape selection driven by kinetic frustration,” J. Mater. Chem. C1(44), 7294–7302 (2013).
[CrossRef]

Menniger, J.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature406(6798), 865–868 (2000).
[CrossRef] [PubMed]

Menon, L.

Z. Ma, D. McDowell, E. Panaitescu, A. V. Davydov, M. Upmanya, and L. Menon, “Vapor-liquid-solid growth of serrated GaN nanowires: shape selection driven by kinetic frustration,” J. Mater. Chem. C1(44), 7294–7302 (2013).
[CrossRef]

Monemar, B.

B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B10(2), 676–681 (1974).
[CrossRef]

Morkoc, H.

M. A. Reshchikov and H. Morkoc, “Luminescence properties of defects in GaN,” J. Appl. Phys.97(6), 061301 (2005).
[CrossRef]

M. A. Reshchikov, H. Morkoc, S. S. Park, and K. Y. Lee, “Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study,” Appl. Phys. Lett.81(26), 4970–4972 (2002).
[CrossRef]

Munekata, H.

H. Ohno, H. Munekata, T. Penney, L. L. Chang, and L. L. Chang,“Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors,” Phys. Rev. Lett.68(17), 2664–2667 (1992).
[CrossRef] [PubMed]

Nakamura, S.

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science281(5379), 956–961 (1998).
[CrossRef] [PubMed]

Nieminen, R. M.

T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN,” Phys. Rev. B55(15), 9571–9576 (1997).
[CrossRef]

Norton, D. P.

S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004).
[CrossRef]

Ogino, T.

T. Ogino and M. Aoki, “Mechanism of yellow luminescence in GaN,” Jpn. J. Appl. Phys.19(12), 2395–2405 (1980).
[CrossRef]

Ohno, H.

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science287(5455), 1019–1022 (2000).
[CrossRef] [PubMed]

H. Ohno, A. Shen, F. Matsukara, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs,” Appl. Phys. Lett.69(3), 363–365 (1996).
[CrossRef]

H. Ohno, H. Munekata, T. Penney, L. L. Chang, and L. L. Chang,“Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors,” Phys. Rev. Lett.68(17), 2664–2667 (1992).
[CrossRef] [PubMed]

Oiwa, A.

H. Ohno, A. Shen, F. Matsukara, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs,” Appl. Phys. Lett.69(3), 363–365 (1996).
[CrossRef]

Overberg, M. E.

G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
[CrossRef]

M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulon, K. T. McCarthy, and A. F. Hebard, “Indication of ferromagnetism in molecular-beam-epitaxy-derived n-type GaMnN,” Appl. Phys. Lett.79(9), 1312–1314 (2001).
[CrossRef]

Pan, Y.

X. Yang, J. Wu, Z. Chen, Y. Pan, Y. Zhang, Z. Yang, T. Yu, and G. Zhang, “Raman scattering and ferromagnetism of (Ga,Mn)N films grown by MOCVD,” Solid State Commun.143(4-5), 236–239 (2007).
[CrossRef]

Panaitescu, E.

Z. Ma, D. McDowell, E. Panaitescu, A. V. Davydov, M. Upmanya, and L. Menon, “Vapor-liquid-solid growth of serrated GaN nanowires: shape selection driven by kinetic frustration,” J. Mater. Chem. C1(44), 7294–7302 (2013).
[CrossRef]

Park, S. S.

M. A. Reshchikov, H. Morkoc, S. S. Park, and K. Y. Lee, “Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study,” Appl. Phys. Lett.81(26), 4970–4972 (2002).
[CrossRef]

Park, Y. D.

S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004).
[CrossRef]

G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
[CrossRef]

Parker, C. A.

M. L. Reed, M. K. Ritums, H. H. Stadelmaier, M. J. Reed, C. A. Parker, S. M. Bedair, and N. A. El-Marsy, “Room temperature magnetic (Ga,Mn)N: a new material for spin electronic devices,” Mater. Lett.51(6), 500–503 (2001).
[CrossRef]

Pearton, S. J.

S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004).
[CrossRef]

G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
[CrossRef]

M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulon, K. T. McCarthy, and A. F. Hebard, “Indication of ferromagnetism in molecular-beam-epitaxy-derived n-type GaMnN,” Appl. Phys. Lett.79(9), 1312–1314 (2001).
[CrossRef]

Peng, J. Y.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc.123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Penney, T.

H. Ohno, H. Munekata, T. Penney, L. L. Chang, and L. L. Chang,“Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors,” Phys. Rev. Lett.68(17), 2664–2667 (1992).
[CrossRef] [PubMed]

Perlin, P.

P. Perlin, C. Jauberthie-Carillon, J. P. Itie, I. Grzegory, A. Polian, and A. Polian, “Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure,” Phys. Rev. B Condens. Matter45(1), 83–89 (1992).
[CrossRef] [PubMed]

Piqueras, J.

C. Díaz-Guerra, J. Piqueras, and A. Cavallini, “Time-resolved cathodoluminescence assessment of deep-level transitions in hydride-vapor-phase-epitaxy GaN,” Appl. Phys. Lett.82(13), 2050–2052 (2003).
[CrossRef]

Ploog, K. H.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature406(6798), 865–868 (2000).
[CrossRef] [PubMed]

Podsiado, S.

W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko, and S. Podsiado, “Raman scattering study of Ga1-x MnxN crystals,” Appl. Phys. Lett.76(26), 3870–3872 (2000).
[CrossRef]

Polian, A.

P. Perlin, C. Jauberthie-Carillon, J. P. Itie, I. Grzegory, A. Polian, and A. Polian, “Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure,” Phys. Rev. B Condens. Matter45(1), 83–89 (1992).
[CrossRef] [PubMed]

P. Perlin, C. Jauberthie-Carillon, J. P. Itie, I. Grzegory, A. Polian, and A. Polian, “Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure,” Phys. Rev. B Condens. Matter45(1), 83–89 (1992).
[CrossRef] [PubMed]

Qian, F.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett.6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Ramsteiner, M.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature406(6798), 865–868 (2000).
[CrossRef] [PubMed]

Reed, M. J.

M. L. Reed, M. K. Ritums, H. H. Stadelmaier, M. J. Reed, C. A. Parker, S. M. Bedair, and N. A. El-Marsy, “Room temperature magnetic (Ga,Mn)N: a new material for spin electronic devices,” Mater. Lett.51(6), 500–503 (2001).
[CrossRef]

Reed, M. L.

M. L. Reed, M. K. Ritums, H. H. Stadelmaier, M. J. Reed, C. A. Parker, S. M. Bedair, and N. A. El-Marsy, “Room temperature magnetic (Ga,Mn)N: a new material for spin electronic devices,” Mater. Lett.51(6), 500–503 (2001).
[CrossRef]

Reiche, M.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature406(6798), 865–868 (2000).
[CrossRef] [PubMed]

Ren, F.

S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004).
[CrossRef]

G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
[CrossRef]

Reshchikov, M. A.

M. A. Reshchikov and H. Morkoc, “Luminescence properties of defects in GaN,” J. Appl. Phys.97(6), 061301 (2005).
[CrossRef]

M. A. Reshchikov, H. Morkoc, S. S. Park, and K. Y. Lee, “Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study,” Appl. Phys. Lett.81(26), 4970–4972 (2002).
[CrossRef]

M. A. Reshchikov and R. Y. Korotkov, “Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films,” Phys. Rev. B64(11), 115205 (2001).
[CrossRef]

Ritums, M. K.

M. L. Reed, M. K. Ritums, H. H. Stadelmaier, M. J. Reed, C. A. Parker, S. M. Bedair, and N. A. El-Marsy, “Room temperature magnetic (Ga,Mn)N: a new material for spin electronic devices,” Mater. Lett.51(6), 500–503 (2001).
[CrossRef]

Shen, A.

H. Ohno, A. Shen, F. Matsukara, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs,” Appl. Phys. Lett.69(3), 363–365 (1996).
[CrossRef]

Shi, J. J.

M. Zhang and J. J. Shi, “Exciton states and optical transitions in InGaN/GaN quantum dot nanowire heterostructures: strong built-in electric field and dielectric mismatch effects,” J. Lumin.131(9), 1908–1912 (2011).
[CrossRef]

Stadelmaier, H. H.

M. L. Reed, M. K. Ritums, H. H. Stadelmaier, M. J. Reed, C. A. Parker, S. M. Bedair, and N. A. El-Marsy, “Room temperature magnetic (Ga,Mn)N: a new material for spin electronic devices,” Mater. Lett.51(6), 500–503 (2001).
[CrossRef]

Strzeszewski, J.

W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko, and S. Podsiado, “Raman scattering study of Ga1-x MnxN crystals,” Appl. Phys. Lett.76(26), 3870–3872 (2000).
[CrossRef]

Szyszko, T.

W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko, and S. Podsiado, “Raman scattering study of Ga1-x MnxN crystals,” Appl. Phys. Lett.76(26), 3870–3872 (2000).
[CrossRef]

Thaler, G. T.

S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004).
[CrossRef]

G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
[CrossRef]

Theodoropoulon, N. A.

M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulon, K. T. McCarthy, and A. F. Hebard, “Indication of ferromagnetism in molecular-beam-epitaxy-derived n-type GaMnN,” Appl. Phys. Lett.79(9), 1312–1314 (2001).
[CrossRef]

Tian, B.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett.9(5), 2183–2187 (2009).
[CrossRef] [PubMed]

Trampert, A.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature406(6798), 865–868 (2000).
[CrossRef] [PubMed]

Upmanya, M.

Z. Ma, D. McDowell, E. Panaitescu, A. V. Davydov, M. Upmanya, and L. Menon, “Vapor-liquid-solid growth of serrated GaN nanowires: shape selection driven by kinetic frustration,” J. Mater. Chem. C1(44), 7294–7302 (2013).
[CrossRef]

Waltereit, P.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature406(6798), 865–868 (2000).
[CrossRef] [PubMed]

Wu, J.

X. Yang, J. Wu, Z. Chen, Y. Pan, Y. Zhang, Z. Yang, T. Yu, and G. Zhang, “Raman scattering and ferromagnetism of (Ga,Mn)N films grown by MOCVD,” Solid State Commun.143(4-5), 236–239 (2007).
[CrossRef]

Wu, J. J.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc.123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Wu, Y.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett.6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Xiang, J.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett.6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Xiangfeng, D.

Y. Huang, D. Xiangfeng, C. Yi, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett.2(2), 101–104 (2002).
[CrossRef]

Yan, H.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett.6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Yang, X.

X. Yang, J. Wu, Z. Chen, Y. Pan, Y. Zhang, Z. Yang, T. Yu, and G. Zhang, “Raman scattering and ferromagnetism of (Ga,Mn)N films grown by MOCVD,” Solid State Commun.143(4-5), 236–239 (2007).
[CrossRef]

Yang, Z.

X. Yang, J. Wu, Z. Chen, Y. Pan, Y. Zhang, Z. Yang, T. Yu, and G. Zhang, “Raman scattering and ferromagnetism of (Ga,Mn)N films grown by MOCVD,” Solid State Commun.143(4-5), 236–239 (2007).
[CrossRef]

Yeh, C. C.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc.123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Yi, C.

Y. Huang, D. Xiangfeng, C. Yi, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett.2(2), 101–104 (2002).
[CrossRef]

Yu, M. Y.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc.123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

Yu, T.

X. Yang, J. Wu, Z. Chen, Y. Pan, Y. Zhang, Z. Yang, T. Yu, and G. Zhang, “Raman scattering and ferromagnetism of (Ga,Mn)N films grown by MOCVD,” Solid State Commun.143(4-5), 236–239 (2007).
[CrossRef]

Zavada, J. M.

S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004).
[CrossRef]

Zhang, G.

X. Yang, J. Wu, Z. Chen, Y. Pan, Y. Zhang, Z. Yang, T. Yu, and G. Zhang, “Raman scattering and ferromagnetism of (Ga,Mn)N films grown by MOCVD,” Solid State Commun.143(4-5), 236–239 (2007).
[CrossRef]

Zhang, M.

M. Zhang and J. J. Shi, “Exciton states and optical transitions in InGaN/GaN quantum dot nanowire heterostructures: strong built-in electric field and dielectric mismatch effects,” J. Lumin.131(9), 1908–1912 (2011).
[CrossRef]

Zhang, Y.

X. Yang, J. Wu, Z. Chen, Y. Pan, Y. Zhang, Z. Yang, T. Yu, and G. Zhang, “Raman scattering and ferromagnetism of (Ga,Mn)N films grown by MOCVD,” Solid State Commun.143(4-5), 236–239 (2007).
[CrossRef]

Zhou, Y. K.

N. Hasuike, H. Fakamura, H. Harima, K. Kisoda, M. Hashimoto, Y. K. Zhou, and H. Asahi, “Optical studies on GaN-based spintronics materials,” J. Phys. Condens. Matter16(48), S5811–S5814 (2004).
[CrossRef]

Appl. Phys. Lett.

H. Ohno, A. Shen, F. Matsukara, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs,” Appl. Phys. Lett.69(3), 363–365 (1996).
[CrossRef]

M. E. Overberg, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulon, K. T. McCarthy, and A. F. Hebard, “Indication of ferromagnetism in molecular-beam-epitaxy-derived n-type GaMnN,” Appl. Phys. Lett.79(9), 1312–1314 (2001).
[CrossRef]

G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J. Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Khim, and F. Ren, “Magnetic properties of n-GaMnN thin films,” Appl. Phys. Lett.80(21), 3964–3966 (2002).
[CrossRef]

M. A. Reshchikov, H. Morkoc, S. S. Park, and K. Y. Lee, “Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study,” Appl. Phys. Lett.81(26), 4970–4972 (2002).
[CrossRef]

C. Díaz-Guerra, J. Piqueras, and A. Cavallini, “Time-resolved cathodoluminescence assessment of deep-level transitions in hydride-vapor-phase-epitaxy GaN,” Appl. Phys. Lett.82(13), 2050–2052 (2003).
[CrossRef]

W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko, and S. Podsiado, “Raman scattering study of Ga1-x MnxN crystals,” Appl. Phys. Lett.76(26), 3870–3872 (2000).
[CrossRef]

J. Am. Chem. Soc.

C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc.123(12), 2791–2798 (2001).
[CrossRef] [PubMed]

J. Appl. Phys.

M. A. Reshchikov and H. Morkoc, “Luminescence properties of defects in GaN,” J. Appl. Phys.97(6), 061301 (2005).
[CrossRef]

J. Lumin.

M. Zhang and J. J. Shi, “Exciton states and optical transitions in InGaN/GaN quantum dot nanowire heterostructures: strong built-in electric field and dielectric mismatch effects,” J. Lumin.131(9), 1908–1912 (2011).
[CrossRef]

J. Mater. Chem. C

Z. Ma, D. McDowell, E. Panaitescu, A. V. Davydov, M. Upmanya, and L. Menon, “Vapor-liquid-solid growth of serrated GaN nanowires: shape selection driven by kinetic frustration,” J. Mater. Chem. C1(44), 7294–7302 (2013).
[CrossRef]

J. Phys. Condens. Matter

S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton, F. Ren, Y. D. Park, J. M. Zavada, I. A. Buyanova, W. M. Chen, and A. F. Hebard, “Wide bandgap GaN -based semiconductors for spintronics,” J. Phys. Condens. Matter16(7), R209–R245 (2004).
[CrossRef]

H. Harima, “Raman studies on spintronics materials based on wide bandgap semiconductors,” J. Phys. Condens. Matter16(48), S5653–S5660 (2004).
[CrossRef]

N. Hasuike, H. Fakamura, H. Harima, K. Kisoda, M. Hashimoto, Y. K. Zhou, and H. Asahi, “Optical studies on GaN-based spintronics materials,” J. Phys. Condens. Matter16(48), S5811–S5814 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

T. Ogino and M. Aoki, “Mechanism of yellow luminescence in GaN,” Jpn. J. Appl. Phys.19(12), 2395–2405 (1980).
[CrossRef]

Mater. Lett.

M. L. Reed, M. K. Ritums, H. H. Stadelmaier, M. J. Reed, C. A. Parker, S. M. Bedair, and N. A. El-Marsy, “Room temperature magnetic (Ga,Mn)N: a new material for spin electronic devices,” Mater. Lett.51(6), 500–503 (2001).
[CrossRef]

Nano Lett.

Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom, and C. M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett.6(7), 1468–1473 (2006).
[CrossRef] [PubMed]

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett.9(5), 2183–2187 (2009).
[CrossRef] [PubMed]

Y. Huang, D. Xiangfeng, C. Yi, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett.2(2), 101–104 (2002).
[CrossRef]

Nature

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature406(6798), 865–868 (2000).
[CrossRef] [PubMed]

Phys. Rev. B

B. Monemar, “Fundamental energy gap of GaN from photoluminescence excitation spectra,” Phys. Rev. B10(2), 676–681 (1974).
[CrossRef]

T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN,” Phys. Rev. B55(15), 9571–9576 (1997).
[CrossRef]

M. A. Reshchikov and R. Y. Korotkov, “Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films,” Phys. Rev. B64(11), 115205 (2001).
[CrossRef]

Phys. Rev. B Condens. Matter

P. Perlin, C. Jauberthie-Carillon, J. P. Itie, I. Grzegory, A. Polian, and A. Polian, “Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure,” Phys. Rev. B Condens. Matter45(1), 83–89 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

H. Ohno, H. Munekata, T. Penney, L. L. Chang, and L. L. Chang,“Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors,” Phys. Rev. Lett.68(17), 2664–2667 (1992).
[CrossRef] [PubMed]

Science

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science287(5455), 1019–1022 (2000).
[CrossRef] [PubMed]

G. Fasol, “Room-Temperature blue gallium nitride laser diode,” Science272(5269), 1751–1752 (1996).
[CrossRef]

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science281(5379), 956–961 (1998).
[CrossRef] [PubMed]

Solid State Commun.

X. Yang, J. Wu, Z. Chen, Y. Pan, Y. Zhang, Z. Yang, T. Yu, and G. Zhang, “Raman scattering and ferromagnetism of (Ga,Mn)N films grown by MOCVD,” Solid State Commun.143(4-5), 236–239 (2007).
[CrossRef]

Other

Book of ASM Handbook, Volume 3, Alloy Phase Diagrams, 1992.

M. Cardona and G. Guntherodt, Light Scattering in Solids II (Springer Verlag Berlin, 1982).

H. Morkoc, Nitride Semiconductors and Devices (Springer, 1999).

Z. Ma, (2013) Synthesis, properties and applications of GaN nanowires (Doctoral Dissertation).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SEM images of (a) Sample-1 (b) Sample-1 showing straight as well as serrated morphology (c) Sample-2 and (d) Sample-3.

Fig. 2
Fig. 2

X-ray diffraction pattern of (a) Sample-1 (b) Sample-2 and (c) Sample-3. GaN samples with MnO2 content show better signal to noise ratio.

Fig. 3
Fig. 3

Temperature dependence photoluminescence measurements on (a) Sample-1 (b) Sample-2 (c) Sample-3 (d) 4 K spectra and (e) Room temperature spectra.

Fig. 4
Fig. 4

Room temperature Raman spectra of (a) Sample-1 (b) Sample-2 and (c) Sample-3. The disorder-induced phonon mode is observed in Sample-2 and Sample-3 at ~670 cm−1 and is marked by an arrow. Inset shows the 670 cm−1 signal along with A1(LO) peak of sample-2 and sample-3 in an expanded scale.

Fig. 5
Fig. 5

Two probe current versus voltage measurements for straight versus serrated wires. The signal for the serrated wires has been multiplied by a factor of 50 for better visibility.

Fig. 6
Fig. 6

An over simplified schematic of (a) A semi-continuous Au film showing featureless texture. A representative SEM is also shown (b) On heat treatment, the semi-continuous film dewets and agglomerates and form nanoparticle of various sizes and shapes. Below is the SEM of Au film after heat treatment. The scale bar represents 1 µm. Both (a) and (b) are the top view. (c) Representative three shapes of catalyst Au nanoparticle, showing interface contact angle to be right angle, acute angle and obtuse angle (side view). The right angle contact angle initiate regular smooth side wall nanowire growth, as shown in left schematic of (d) and the other two interfacial angles promotes serrated morphology, as depicted in the right cartoon of (d). With the nanowire growth, the droplet is stretched and compressed periodically giving serration. See text for details. (e) The morphological change in small Au droplet size induced by Mn vapor pressure.

Metrics