Abstract

We present the fabrication of silicon dioxide (SiO2) coated silicon nanopillar array structures and demonstrate their application as sensitive optical biosensors. Colloidal lithography, plasma dry etching and deposition processes are used to fabricate SiO2 coated Si nanopillar arrays with two different diameters and periods. Proof of concept bio recognition experiments are carried out with the bovine serum albumin (BSA)/antiBSA model system using Fourier transform visible and IR spectrometry (FT-VIS-IR) in reflection mode. A limit of detection (LoD) value of 5.2 ng/ml is estimated taking in to account the wavenumber uncertainty in the measurements.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, “Breaking the concentration limit of optical single-molecule detection,” Chem. Soc. Rev.43(4), 1014–1028 (2014).
    [CrossRef] [PubMed]
  2. H. Wang, X. Han, X. Ou, C. S. Lee, X. Zhang, and S. T. Lee, “Silicon nanowire based single-molecule SERS sensor,” Nanoscale5(17), 8172–8176 (2013).
    [CrossRef] [PubMed]
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  4. H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem.189, 146–156 (2013).
    [CrossRef]
  5. A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci.256(3), S12–S17 (2009).
    [CrossRef]
  6. B. R. Murthy, J. K. K. Ng, E. S. Selamat, N. Balasubramanian, and W. T. Liu, “Silicon nanopillar substrates for enhancing signal intensity in DNA microarrays,” Biosens. Bioelectron.24(4), 723–728 (2008).
    [CrossRef] [PubMed]
  7. J. K. Chen, G.-Y. Zhou, C. F. Huang, and F. H. Ko, “Using nanopillars of silicon oxide as a versatile platform for visualizing a selective immunosorbent,” Appl. Phys. Lett.102(25), 251903 (2013).
    [CrossRef]
  8. Y. Nazirizadeh, F. Oertzen, K. Plewa, N. Barié, P. Jakobs, M. Guttmann, H. Leiste, and M. Gerken, “Sensitivity optimization of injection-molded photonic crystal slabs for biosensing applications,” Opt. Mater. Express3(5), 556–565 (2013).
    [CrossRef]
  9. E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed, and T. M. Fahmy, “Label-free biomarker detection from whole blood,” Nat. Nanotechnol.5(2), 138–142 (2010).
    [CrossRef] [PubMed]
  10. S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
    [CrossRef] [PubMed]
  11. R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel)9(7), 5149–5172 (2009).
    [CrossRef] [PubMed]
  12. C. Xie, L. Hanson, Y. Cui, and B. Cui, “Vertical nanopillars for highly localized fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.108(10), 3894–3899 (2011).
    [CrossRef] [PubMed]
  13. M. Kandziolka, J. J. Charlton, I. I. Kravchenko, J. A. Bradshaw, I. A. Merkulov, M. J. Sepaniak, and N. V. Lavrik, “Silicon nanopillars as a platform for enhanced fluorescence analysis,” Anal. Chem.85(19), 9031–9038 (2013).
    [CrossRef] [PubMed]
  14. V. Krivitsky, L. C. Hsiung, A. Lichtenstein, B. Brudnik, R. Kantaev, R. Elnathan, A. Pevzner, A. Khatchtourints, and F. Patolsky, “Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all,” Nano Lett.12(9), 4748–4756 (2012).
    [CrossRef] [PubMed]
  15. K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater.23(2), 198–215 (2011).
    [CrossRef] [PubMed]
  16. M. Altissimo, “E-beam lithography for micro-nanofabrication,” Biomicrofluidics4(2), 026503 (2010).
    [CrossRef] [PubMed]
  17. C. M. Bruinink, M. Burresi, M. J. de Boer, F. B. Segerink, H. V. Jansen, E. Berenschot, D. N. Reinhoudt, J. Huskens, and L. Kuipers, “Nanoimprint lithography for nanophotonics in silicon,” Nano Lett.8(9), 2872–2877 (2008).
    [CrossRef] [PubMed]
  18. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
    [CrossRef] [PubMed]
  19. M. A. Wood, “Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications,” J. R. Soc. Interface4(12), 1–17 (2007).
    [CrossRef] [PubMed]
  20. X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
    [CrossRef]
  21. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
    [CrossRef] [PubMed]
  22. B. Dev Choudhury, A. Abedin, A. Dev, R. Sanatinia, and S. Anand, “Silicon micro-structure and ZnO nanowire hierarchical assortments for light management,” Opt. Mater. Express3(8), 1039–1048 (2013).
    [CrossRef]
  23. H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
    [CrossRef]
  24. M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron.25(12), 2553–2558 (2010).
    [CrossRef] [PubMed]
  25. F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-photonic sensing cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron.26(12), 4842–4847 (2011).
    [CrossRef] [PubMed]
  26. F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors2(4), 291–304 (2012).
    [CrossRef]
  27. M. K. Parka, J. S. Keea, J. Y. Quaha, V. Nettob, J. Songa, Q. Fanga, E. M. Fosseb, and G. Loa, “Label-free aptamer sensor based on silicon microring resonators,” Sensors and Actuators B: Chem.176, 552–559 (2013).
  28. R. D. Peterson, B. T. Cunningham, and J. E. Andrade, “A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles,” Biosens. Bioelectron.56, 320–327 (2014).
    [CrossRef] [PubMed]

2014

P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, “Breaking the concentration limit of optical single-molecule detection,” Chem. Soc. Rev.43(4), 1014–1028 (2014).
[CrossRef] [PubMed]

R. D. Peterson, B. T. Cunningham, and J. E. Andrade, “A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles,” Biosens. Bioelectron.56, 320–327 (2014).
[CrossRef] [PubMed]

2013

Y. Nazirizadeh, F. Oertzen, K. Plewa, N. Barié, P. Jakobs, M. Guttmann, H. Leiste, and M. Gerken, “Sensitivity optimization of injection-molded photonic crystal slabs for biosensing applications,” Opt. Mater. Express3(5), 556–565 (2013).
[CrossRef]

B. Dev Choudhury, A. Abedin, A. Dev, R. Sanatinia, and S. Anand, “Silicon micro-structure and ZnO nanowire hierarchical assortments for light management,” Opt. Mater. Express3(8), 1039–1048 (2013).
[CrossRef]

M. K. Parka, J. S. Keea, J. Y. Quaha, V. Nettob, J. Songa, Q. Fanga, E. M. Fosseb, and G. Loa, “Label-free aptamer sensor based on silicon microring resonators,” Sensors and Actuators B: Chem.176, 552–559 (2013).

H. Wang, X. Han, X. Ou, C. S. Lee, X. Zhang, and S. T. Lee, “Silicon nanowire based single-molecule SERS sensor,” Nanoscale5(17), 8172–8176 (2013).
[CrossRef] [PubMed]

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem.189, 146–156 (2013).
[CrossRef]

J. K. Chen, G.-Y. Zhou, C. F. Huang, and F. H. Ko, “Using nanopillars of silicon oxide as a versatile platform for visualizing a selective immunosorbent,” Appl. Phys. Lett.102(25), 251903 (2013).
[CrossRef]

M. Kandziolka, J. J. Charlton, I. I. Kravchenko, J. A. Bradshaw, I. A. Merkulov, M. J. Sepaniak, and N. V. Lavrik, “Silicon nanopillars as a platform for enhanced fluorescence analysis,” Anal. Chem.85(19), 9031–9038 (2013).
[CrossRef] [PubMed]

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

2012

V. Krivitsky, L. C. Hsiung, A. Lichtenstein, B. Brudnik, R. Kantaev, R. Elnathan, A. Pevzner, A. Khatchtourints, and F. Patolsky, “Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all,” Nano Lett.12(9), 4748–4756 (2012).
[CrossRef] [PubMed]

S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
[CrossRef] [PubMed]

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors2(4), 291–304 (2012).
[CrossRef]

2011

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-photonic sensing cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron.26(12), 4842–4847 (2011).
[CrossRef] [PubMed]

K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater.23(2), 198–215 (2011).
[CrossRef] [PubMed]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

C. Xie, L. Hanson, Y. Cui, and B. Cui, “Vertical nanopillars for highly localized fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.108(10), 3894–3899 (2011).
[CrossRef] [PubMed]

2010

M. Altissimo, “E-beam lithography for micro-nanofabrication,” Biomicrofluidics4(2), 026503 (2010).
[CrossRef] [PubMed]

E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed, and T. M. Fahmy, “Label-free biomarker detection from whole blood,” Nat. Nanotechnol.5(2), 138–142 (2010).
[CrossRef] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron.25(12), 2553–2558 (2010).
[CrossRef] [PubMed]

2009

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel)9(7), 5149–5172 (2009).
[CrossRef] [PubMed]

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci.256(3), S12–S17 (2009).
[CrossRef]

H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
[CrossRef]

2008

C. M. Bruinink, M. Burresi, M. J. de Boer, F. B. Segerink, H. V. Jansen, E. Berenschot, D. N. Reinhoudt, J. Huskens, and L. Kuipers, “Nanoimprint lithography for nanophotonics in silicon,” Nano Lett.8(9), 2872–2877 (2008).
[CrossRef] [PubMed]

B. R. Murthy, J. K. K. Ng, E. S. Selamat, N. Balasubramanian, and W. T. Liu, “Silicon nanopillar substrates for enhancing signal intensity in DNA microarrays,” Biosens. Bioelectron.24(4), 723–728 (2008).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

2007

M. A. Wood, “Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications,” J. R. Soc. Interface4(12), 1–17 (2007).
[CrossRef] [PubMed]

2000

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Abedin, A.

Acuna, G. P.

P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, “Breaking the concentration limit of optical single-molecule detection,” Chem. Soc. Rev.43(4), 1014–1028 (2014).
[CrossRef] [PubMed]

Altissimo, M.

M. Altissimo, “E-beam lithography for micro-nanofabrication,” Biomicrofluidics4(2), 026503 (2010).
[CrossRef] [PubMed]

Anand, S.

Andrade, J. E.

R. D. Peterson, B. T. Cunningham, and J. E. Andrade, “A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles,” Biosens. Bioelectron.56, 320–327 (2014).
[CrossRef] [PubMed]

Balasubramanian, N.

B. R. Murthy, J. K. K. Ng, E. S. Selamat, N. Balasubramanian, and W. T. Liu, “Silicon nanopillar substrates for enhancing signal intensity in DNA microarrays,” Biosens. Bioelectron.24(4), 723–728 (2008).
[CrossRef] [PubMed]

Bañuls, M. J.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors2(4), 291–304 (2012).
[CrossRef]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-photonic sensing cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron.26(12), 4842–4847 (2011).
[CrossRef] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron.25(12), 2553–2558 (2010).
[CrossRef] [PubMed]

Barié, N.

Barrios, C. A.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors2(4), 291–304 (2012).
[CrossRef]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-photonic sensing cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron.26(12), 4842–4847 (2011).
[CrossRef] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron.25(12), 2553–2558 (2010).
[CrossRef] [PubMed]

Berenschot, E.

C. M. Bruinink, M. Burresi, M. J. de Boer, F. B. Segerink, H. V. Jansen, E. Berenschot, D. N. Reinhoudt, J. Huskens, and L. Kuipers, “Nanoimprint lithography for nanophotonics in silicon,” Nano Lett.8(9), 2872–2877 (2008).
[CrossRef] [PubMed]

Bradshaw, J. A.

M. Kandziolka, J. J. Charlton, I. I. Kravchenko, J. A. Bradshaw, I. A. Merkulov, M. J. Sepaniak, and N. V. Lavrik, “Silicon nanopillars as a platform for enhanced fluorescence analysis,” Anal. Chem.85(19), 9031–9038 (2013).
[CrossRef] [PubMed]

Brudnik, B.

V. Krivitsky, L. C. Hsiung, A. Lichtenstein, B. Brudnik, R. Kantaev, R. Elnathan, A. Pevzner, A. Khatchtourints, and F. Patolsky, “Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all,” Nano Lett.12(9), 4748–4756 (2012).
[CrossRef] [PubMed]

Bruinink, C. M.

C. M. Bruinink, M. Burresi, M. J. de Boer, F. B. Segerink, H. V. Jansen, E. Berenschot, D. N. Reinhoudt, J. Huskens, and L. Kuipers, “Nanoimprint lithography for nanophotonics in silicon,” Nano Lett.8(9), 2872–2877 (2008).
[CrossRef] [PubMed]

Burresi, M.

C. M. Bruinink, M. Burresi, M. J. de Boer, F. B. Segerink, H. V. Jansen, E. Berenschot, D. N. Reinhoudt, J. Huskens, and L. Kuipers, “Nanoimprint lithography for nanophotonics in silicon,” Nano Lett.8(9), 2872–2877 (2008).
[CrossRef] [PubMed]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Casquel, R.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors2(4), 291–304 (2012).
[CrossRef]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-photonic sensing cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron.26(12), 4842–4847 (2011).
[CrossRef] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron.25(12), 2553–2558 (2010).
[CrossRef] [PubMed]

Charlton, J. J.

M. Kandziolka, J. J. Charlton, I. I. Kravchenko, J. A. Bradshaw, I. A. Merkulov, M. J. Sepaniak, and N. V. Lavrik, “Silicon nanopillars as a platform for enhanced fluorescence analysis,” Anal. Chem.85(19), 9031–9038 (2013).
[CrossRef] [PubMed]

Chen, J. K.

J. K. Chen, G.-Y. Zhou, C. F. Huang, and F. H. Ko, “Using nanopillars of silicon oxide as a versatile platform for visualizing a selective immunosorbent,” Appl. Phys. Lett.102(25), 251903 (2013).
[CrossRef]

Criscione, J. M.

E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed, and T. M. Fahmy, “Label-free biomarker detection from whole blood,” Nat. Nanotechnol.5(2), 138–142 (2010).
[CrossRef] [PubMed]

Cui, B.

C. Xie, L. Hanson, Y. Cui, and B. Cui, “Vertical nanopillars for highly localized fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.108(10), 3894–3899 (2011).
[CrossRef] [PubMed]

Cui, Y.

C. Xie, L. Hanson, Y. Cui, and B. Cui, “Vertical nanopillars for highly localized fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.108(10), 3894–3899 (2011).
[CrossRef] [PubMed]

Cunningham, B. T.

R. D. Peterson, B. T. Cunningham, and J. E. Andrade, “A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles,” Biosens. Bioelectron.56, 320–327 (2014).
[CrossRef] [PubMed]

de Boer, M. J.

H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
[CrossRef]

C. M. Bruinink, M. Burresi, M. J. de Boer, F. B. Segerink, H. V. Jansen, E. Berenschot, D. N. Reinhoudt, J. Huskens, and L. Kuipers, “Nanoimprint lithography for nanophotonics in silicon,” Nano Lett.8(9), 2872–2877 (2008).
[CrossRef] [PubMed]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Dev, A.

Dev Choudhury, B.

Ee, Y. K.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

Elnathan, R.

V. Krivitsky, L. C. Hsiung, A. Lichtenstein, B. Brudnik, R. Kantaev, R. Elnathan, A. Pevzner, A. Khatchtourints, and F. Patolsky, “Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all,” Nano Lett.12(9), 4748–4756 (2012).
[CrossRef] [PubMed]

Elwenspoek, M. C.

H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
[CrossRef]

Fahmy, T. M.

E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed, and T. M. Fahmy, “Label-free biomarker detection from whole blood,” Nat. Nanotechnol.5(2), 138–142 (2010).
[CrossRef] [PubMed]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Fanga, Q.

M. K. Parka, J. S. Keea, J. Y. Quaha, V. Nettob, J. Songa, Q. Fanga, E. M. Fosseb, and G. Loa, “Label-free aptamer sensor based on silicon microring resonators,” Sensors and Actuators B: Chem.176, 552–559 (2013).

Fosseb, E. M.

M. K. Parka, J. S. Keea, J. Y. Quaha, V. Nettob, J. Songa, Q. Fanga, E. M. Fosseb, and G. Loa, “Label-free aptamer sensor based on silicon microring resonators,” Sensors and Actuators B: Chem.176, 552–559 (2013).

Gerken, M.

Gilchrist, J. F.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

Grohmann, D.

P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, “Breaking the concentration limit of optical single-molecule detection,” Chem. Soc. Rev.43(4), 1014–1028 (2014).
[CrossRef] [PubMed]

Guttmann, M.

Han, X.

H. Wang, X. Han, X. Ou, C. S. Lee, X. Zhang, and S. T. Lee, “Silicon nanowire based single-molecule SERS sensor,” Nanoscale5(17), 8172–8176 (2013).
[CrossRef] [PubMed]

Hanson, L.

C. Xie, L. Hanson, Y. Cui, and B. Cui, “Vertical nanopillars for highly localized fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.108(10), 3894–3899 (2011).
[CrossRef] [PubMed]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Heinzelmann, H.

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci.256(3), S12–S17 (2009).
[CrossRef]

Holgado, M.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors2(4), 291–304 (2012).
[CrossRef]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-photonic sensing cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron.26(12), 4842–4847 (2011).
[CrossRef] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron.25(12), 2553–2558 (2010).
[CrossRef] [PubMed]

Holzmeister, P.

P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, “Breaking the concentration limit of optical single-molecule detection,” Chem. Soc. Rev.43(4), 1014–1028 (2014).
[CrossRef] [PubMed]

Hsiung, L. C.

V. Krivitsky, L. C. Hsiung, A. Lichtenstein, B. Brudnik, R. Kantaev, R. Elnathan, A. Pevzner, A. Khatchtourints, and F. Patolsky, “Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all,” Nano Lett.12(9), 4748–4756 (2012).
[CrossRef] [PubMed]

Huang, C. F.

J. K. Chen, G.-Y. Zhou, C. F. Huang, and F. H. Ko, “Using nanopillars of silicon oxide as a versatile platform for visualizing a selective immunosorbent,” Appl. Phys. Lett.102(25), 251903 (2013).
[CrossRef]

Huskens, J.

C. M. Bruinink, M. Burresi, M. J. de Boer, F. B. Segerink, H. V. Jansen, E. Berenschot, D. N. Reinhoudt, J. Huskens, and L. Kuipers, “Nanoimprint lithography for nanophotonics in silicon,” Nano Lett.8(9), 2872–2877 (2008).
[CrossRef] [PubMed]

Ilic, B. R.

E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed, and T. M. Fahmy, “Label-free biomarker detection from whole blood,” Nat. Nanotechnol.5(2), 138–142 (2010).
[CrossRef] [PubMed]

Jakobs, P.

Jansen, H. V.

H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
[CrossRef]

C. M. Bruinink, M. Burresi, M. J. de Boer, F. B. Segerink, H. V. Jansen, E. Berenschot, D. N. Reinhoudt, J. Huskens, and L. Kuipers, “Nanoimprint lithography for nanophotonics in silicon,” Nano Lett.8(9), 2872–2877 (2008).
[CrossRef] [PubMed]

Kandziolka, M.

M. Kandziolka, J. J. Charlton, I. I. Kravchenko, J. A. Bradshaw, I. A. Merkulov, M. J. Sepaniak, and N. V. Lavrik, “Silicon nanopillars as a platform for enhanced fluorescence analysis,” Anal. Chem.85(19), 9031–9038 (2013).
[CrossRef] [PubMed]

Kantaev, R.

V. Krivitsky, L. C. Hsiung, A. Lichtenstein, B. Brudnik, R. Kantaev, R. Elnathan, A. Pevzner, A. Khatchtourints, and F. Patolsky, “Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all,” Nano Lett.12(9), 4748–4756 (2012).
[CrossRef] [PubMed]

Keea, J. S.

M. K. Parka, J. S. Keea, J. Y. Quaha, V. Nettob, J. Songa, Q. Fanga, E. M. Fosseb, and G. Loa, “Label-free aptamer sensor based on silicon microring resonators,” Sensors and Actuators B: Chem.176, 552–559 (2013).

Khatchtourints, A.

V. Krivitsky, L. C. Hsiung, A. Lichtenstein, B. Brudnik, R. Kantaev, R. Elnathan, A. Pevzner, A. Khatchtourints, and F. Patolsky, “Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all,” Nano Lett.12(9), 4748–4756 (2012).
[CrossRef] [PubMed]

Ko, F. H.

J. K. Chen, G.-Y. Zhou, C. F. Huang, and F. H. Ko, “Using nanopillars of silicon oxide as a versatile platform for visualizing a selective immunosorbent,” Appl. Phys. Lett.102(25), 251903 (2013).
[CrossRef]

Kravchenko, I. I.

M. Kandziolka, J. J. Charlton, I. I. Kravchenko, J. A. Bradshaw, I. A. Merkulov, M. J. Sepaniak, and N. V. Lavrik, “Silicon nanopillars as a platform for enhanced fluorescence analysis,” Anal. Chem.85(19), 9031–9038 (2013).
[CrossRef] [PubMed]

S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
[CrossRef] [PubMed]

Krivitsky, V.

V. Krivitsky, L. C. Hsiung, A. Lichtenstein, B. Brudnik, R. Kantaev, R. Elnathan, A. Pevzner, A. Khatchtourints, and F. Patolsky, “Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all,” Nano Lett.12(9), 4748–4756 (2012).
[CrossRef] [PubMed]

Kuipers, L.

C. M. Bruinink, M. Burresi, M. J. de Boer, F. B. Segerink, H. V. Jansen, E. Berenschot, D. N. Reinhoudt, J. Huskens, and L. Kuipers, “Nanoimprint lithography for nanophotonics in silicon,” Nano Lett.8(9), 2872–2877 (2008).
[CrossRef] [PubMed]

Kumnorkaew, P.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

Laguna, M. F.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors2(4), 291–304 (2012).
[CrossRef]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-photonic sensing cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron.26(12), 4842–4847 (2011).
[CrossRef] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron.25(12), 2553–2558 (2010).
[CrossRef] [PubMed]

Lavrik, N. V.

M. Kandziolka, J. J. Charlton, I. I. Kravchenko, J. A. Bradshaw, I. A. Merkulov, M. J. Sepaniak, and N. V. Lavrik, “Silicon nanopillars as a platform for enhanced fluorescence analysis,” Anal. Chem.85(19), 9031–9038 (2013).
[CrossRef] [PubMed]

S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
[CrossRef] [PubMed]

Lee, C. S.

H. Wang, X. Han, X. Ou, C. S. Lee, X. Zhang, and S. T. Lee, “Silicon nanowire based single-molecule SERS sensor,” Nanoscale5(17), 8172–8176 (2013).
[CrossRef] [PubMed]

Lee, S. T.

H. Wang, X. Han, X. Ou, C. S. Lee, X. Zhang, and S. T. Lee, “Silicon nanowire based single-molecule SERS sensor,” Nanoscale5(17), 8172–8176 (2013).
[CrossRef] [PubMed]

K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater.23(2), 198–215 (2011).
[CrossRef] [PubMed]

Leiste, H.

Li, X. H.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

Lichtenstein, A.

V. Krivitsky, L. C. Hsiung, A. Lichtenstein, B. Brudnik, R. Kantaev, R. Elnathan, A. Pevzner, A. Khatchtourints, and F. Patolsky, “Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all,” Nano Lett.12(9), 4748–4756 (2012).
[CrossRef] [PubMed]

Liu, G.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Liu, G. Y.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

Liu, W. T.

B. R. Murthy, J. K. K. Ng, E. S. Selamat, N. Balasubramanian, and W. T. Liu, “Silicon nanopillar substrates for enhancing signal intensity in DNA microarrays,” Biosens. Bioelectron.24(4), 723–728 (2008).
[CrossRef] [PubMed]

Loa, G.

M. K. Parka, J. S. Keea, J. Y. Quaha, V. Nettob, J. Songa, Q. Fanga, E. M. Fosseb, and G. Loa, “Label-free aptamer sensor based on silicon microring resonators,” Sensors and Actuators B: Chem.176, 552–559 (2013).

López-Romero, D.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors2(4), 291–304 (2012).
[CrossRef]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-photonic sensing cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron.26(12), 4842–4847 (2011).
[CrossRef] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron.25(12), 2553–2558 (2010).
[CrossRef] [PubMed]

Louwerse, M. C.

H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
[CrossRef]

Manso, M.

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel)9(7), 5149–5172 (2009).
[CrossRef] [PubMed]

Maquieira, A.

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-photonic sensing cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron.26(12), 4842–4847 (2011).
[CrossRef] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron.25(12), 2553–2558 (2010).
[CrossRef] [PubMed]

Maquieira, Á.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors2(4), 291–304 (2012).
[CrossRef]

Martín-Palma, R. J.

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel)9(7), 5149–5172 (2009).
[CrossRef] [PubMed]

Mawst, L. J.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Merkulov, I. A.

M. Kandziolka, J. J. Charlton, I. I. Kravchenko, J. A. Bradshaw, I. A. Merkulov, M. J. Sepaniak, and N. V. Lavrik, “Silicon nanopillars as a platform for enhanced fluorescence analysis,” Anal. Chem.85(19), 9031–9038 (2013).
[CrossRef] [PubMed]

S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
[CrossRef] [PubMed]

Merzsch, S.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem.189, 146–156 (2013).
[CrossRef]

Mooney, D. J.

E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed, and T. M. Fahmy, “Label-free biomarker detection from whole blood,” Nat. Nanotechnol.5(2), 138–142 (2010).
[CrossRef] [PubMed]

Murthy, B. R.

B. R. Murthy, J. K. K. Ng, E. S. Selamat, N. Balasubramanian, and W. T. Liu, “Silicon nanopillar substrates for enhancing signal intensity in DNA microarrays,” Biosens. Bioelectron.24(4), 723–728 (2008).
[CrossRef] [PubMed]

Nazirizadeh, Y.

Nettob, V.

M. K. Parka, J. S. Keea, J. Y. Quaha, V. Nettob, J. Songa, Q. Fanga, E. M. Fosseb, and G. Loa, “Label-free aptamer sensor based on silicon microring resonators,” Sensors and Actuators B: Chem.176, 552–559 (2013).

Ng, J. K. K.

B. R. Murthy, J. K. K. Ng, E. S. Selamat, N. Balasubramanian, and W. T. Liu, “Silicon nanopillar substrates for enhancing signal intensity in DNA microarrays,” Biosens. Bioelectron.24(4), 723–728 (2008).
[CrossRef] [PubMed]

Oertzen, F.

Ortega, F. J.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors2(4), 291–304 (2012).
[CrossRef]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-photonic sensing cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron.26(12), 4842–4847 (2011).
[CrossRef] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron.25(12), 2553–2558 (2010).
[CrossRef] [PubMed]

Ou, X.

H. Wang, X. Han, X. Ou, C. S. Lee, X. Zhang, and S. T. Lee, “Silicon nanowire based single-molecule SERS sensor,” Nanoscale5(17), 8172–8176 (2013).
[CrossRef] [PubMed]

Park, J.

E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed, and T. M. Fahmy, “Label-free biomarker detection from whole blood,” Nat. Nanotechnol.5(2), 138–142 (2010).
[CrossRef] [PubMed]

Park, J. H.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Parka, M. K.

M. K. Parka, J. S. Keea, J. Y. Quaha, V. Nettob, J. Songa, Q. Fanga, E. M. Fosseb, and G. Loa, “Label-free aptamer sensor based on silicon microring resonators,” Sensors and Actuators B: Chem.176, 552–559 (2013).

Patolsky, F.

V. Krivitsky, L. C. Hsiung, A. Lichtenstein, B. Brudnik, R. Kantaev, R. Elnathan, A. Pevzner, A. Khatchtourints, and F. Patolsky, “Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all,” Nano Lett.12(9), 4748–4756 (2012).
[CrossRef] [PubMed]

Peiner, E.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem.189, 146–156 (2013).
[CrossRef]

Peng, K. Q.

K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater.23(2), 198–215 (2011).
[CrossRef] [PubMed]

Peterson, R. D.

R. D. Peterson, B. T. Cunningham, and J. E. Andrade, “A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles,” Biosens. Bioelectron.56, 320–327 (2014).
[CrossRef] [PubMed]

Pevzner, A.

V. Krivitsky, L. C. Hsiung, A. Lichtenstein, B. Brudnik, R. Kantaev, R. Elnathan, A. Pevzner, A. Khatchtourints, and F. Patolsky, “Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all,” Nano Lett.12(9), 4748–4756 (2012).
[CrossRef] [PubMed]

Plewa, K.

Popa, A. M.

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci.256(3), S12–S17 (2009).
[CrossRef]

Puchades, R.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors2(4), 291–304 (2012).
[CrossRef]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-photonic sensing cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron.26(12), 4842–4847 (2011).
[CrossRef] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron.25(12), 2553–2558 (2010).
[CrossRef] [PubMed]

Pugin, R.

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci.256(3), S12–S17 (2009).
[CrossRef]

Quaha, J. Y.

M. K. Parka, J. S. Keea, J. Y. Quaha, V. Nettob, J. Songa, Q. Fanga, E. M. Fosseb, and G. Loa, “Label-free aptamer sensor based on silicon microring resonators,” Sensors and Actuators B: Chem.176, 552–559 (2013).

Rajan, N. K.

E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed, and T. M. Fahmy, “Label-free biomarker detection from whole blood,” Nat. Nanotechnol.5(2), 138–142 (2010).
[CrossRef] [PubMed]

Reed, M. A.

E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed, and T. M. Fahmy, “Label-free biomarker detection from whole blood,” Nat. Nanotechnol.5(2), 138–142 (2010).
[CrossRef] [PubMed]

Reinhoudt, D. N.

C. M. Bruinink, M. Burresi, M. J. de Boer, F. B. Segerink, H. V. Jansen, E. Berenschot, D. N. Reinhoudt, J. Huskens, and L. Kuipers, “Nanoimprint lithography for nanophotonics in silicon,” Nano Lett.8(9), 2872–2877 (2008).
[CrossRef] [PubMed]

Salthammer, T.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem.189, 146–156 (2013).
[CrossRef]

Sanatinia, R.

Sanza, F. J.

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors2(4), 291–304 (2012).
[CrossRef]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-photonic sensing cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron.26(12), 4842–4847 (2011).
[CrossRef] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron.25(12), 2553–2558 (2010).
[CrossRef] [PubMed]

Scolan, E.

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci.256(3), S12–S17 (2009).
[CrossRef]

Segerink, F. B.

C. M. Bruinink, M. Burresi, M. J. de Boer, F. B. Segerink, H. V. Jansen, E. Berenschot, D. N. Reinhoudt, J. Huskens, and L. Kuipers, “Nanoimprint lithography for nanophotonics in silicon,” Nano Lett.8(9), 2872–2877 (2008).
[CrossRef] [PubMed]

Selamat, E. S.

B. R. Murthy, J. K. K. Ng, E. S. Selamat, N. Balasubramanian, and W. T. Liu, “Silicon nanopillar substrates for enhancing signal intensity in DNA microarrays,” Biosens. Bioelectron.24(4), 723–728 (2008).
[CrossRef] [PubMed]

Sepaniak, M. J.

M. Kandziolka, J. J. Charlton, I. I. Kravchenko, J. A. Bradshaw, I. A. Merkulov, M. J. Sepaniak, and N. V. Lavrik, “Silicon nanopillars as a platform for enhanced fluorescence analysis,” Anal. Chem.85(19), 9031–9038 (2013).
[CrossRef] [PubMed]

S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
[CrossRef] [PubMed]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Song, R. B.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

Songa, J.

M. K. Parka, J. S. Keea, J. Y. Quaha, V. Nettob, J. Songa, Q. Fanga, E. M. Fosseb, and G. Loa, “Label-free aptamer sensor based on silicon microring resonators,” Sensors and Actuators B: Chem.176, 552–559 (2013).

Stern, E.

E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed, and T. M. Fahmy, “Label-free biomarker detection from whole blood,” Nat. Nanotechnol.5(2), 138–142 (2010).
[CrossRef] [PubMed]

Stranz, A.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem.189, 146–156 (2013).
[CrossRef]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Tansu, N.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Tinnefeld, P.

P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, “Breaking the concentration limit of optical single-molecule detection,” Chem. Soc. Rev.43(4), 1014–1028 (2014).
[CrossRef] [PubMed]

Torres-Costa, V.

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel)9(7), 5149–5172 (2009).
[CrossRef] [PubMed]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Uhde, E.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem.189, 146–156 (2013).
[CrossRef]

Unnikrishnan, S.

H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
[CrossRef]

Vacic, A.

E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed, and T. M. Fahmy, “Label-free biomarker detection from whole blood,” Nat. Nanotechnol.5(2), 138–142 (2010).
[CrossRef] [PubMed]

Voirin, G.

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci.256(3), S12–S17 (2009).
[CrossRef]

Waag, A.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem.189, 146–156 (2013).
[CrossRef]

Wang, H.

H. Wang, X. Han, X. Ou, C. S. Lee, X. Zhang, and S. T. Lee, “Silicon nanowire based single-molecule SERS sensor,” Nanoscale5(17), 8172–8176 (2013).
[CrossRef] [PubMed]

Wasisto, H. S.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem.189, 146–156 (2013).
[CrossRef]

Wells, S. M.

S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
[CrossRef] [PubMed]

Wenger, B.

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci.256(3), S12–S17 (2009).
[CrossRef]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Wood, M. A.

M. A. Wood, “Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications,” J. R. Soc. Interface4(12), 1–17 (2007).
[CrossRef] [PubMed]

Xie, C.

C. Xie, L. Hanson, Y. Cui, and B. Cui, “Vertical nanopillars for highly localized fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.108(10), 3894–3899 (2011).
[CrossRef] [PubMed]

Zhang, J.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Zhang, X.

H. Wang, X. Han, X. Ou, C. S. Lee, X. Zhang, and S. T. Lee, “Silicon nanowire based single-molecule SERS sensor,” Nanoscale5(17), 8172–8176 (2013).
[CrossRef] [PubMed]

Zhao, H.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Zhou, G.-Y.

J. K. Chen, G.-Y. Zhou, C. F. Huang, and F. H. Ko, “Using nanopillars of silicon oxide as a versatile platform for visualizing a selective immunosorbent,” Appl. Phys. Lett.102(25), 251903 (2013).
[CrossRef]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Zhu, P. F.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

ACS Nano

S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
[CrossRef] [PubMed]

Adv. Mater.

K. Q. Peng and S. T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater.23(2), 198–215 (2011).
[CrossRef] [PubMed]

Anal. Chem.

M. Kandziolka, J. J. Charlton, I. I. Kravchenko, J. A. Bradshaw, I. A. Merkulov, M. J. Sepaniak, and N. V. Lavrik, “Silicon nanopillars as a platform for enhanced fluorescence analysis,” Anal. Chem.85(19), 9031–9038 (2013).
[CrossRef] [PubMed]

Anal. Chim. Acta

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. K. Chen, G.-Y. Zhou, C. F. Huang, and F. H. Ko, “Using nanopillars of silicon oxide as a versatile platform for visualizing a selective immunosorbent,” Appl. Phys. Lett.102(25), 251903 (2013).
[CrossRef]

Appl. Surf. Sci.

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci.256(3), S12–S17 (2009).
[CrossRef]

Biomicrofluidics

M. Altissimo, “E-beam lithography for micro-nanofabrication,” Biomicrofluidics4(2), 026503 (2010).
[CrossRef] [PubMed]

Biosens. Bioelectron.

B. R. Murthy, J. K. K. Ng, E. S. Selamat, N. Balasubramanian, and W. T. Liu, “Silicon nanopillar substrates for enhancing signal intensity in DNA microarrays,” Biosens. Bioelectron.24(4), 723–728 (2008).
[CrossRef] [PubMed]

M. Holgado, C. A. Barrios, F. J. Ortega, F. J. Sanza, R. Casquel, M. F. Laguna, M. J. Bañuls, D. López-Romero, R. Puchades, and A. Maquieira, “Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars,” Biosens. Bioelectron.25(12), 2553–2558 (2010).
[CrossRef] [PubMed]

F. J. Sanza, M. Holgado, F. J. Ortega, R. Casquel, D. López-Romero, M. J. Bañuls, M. F. Laguna, C. A. Barrios, R. Puchades, and A. Maquieira, “Bio-photonic sensing cells over transparent substrates for anti-gestrinone antibodies biosensing,” Biosens. Bioelectron.26(12), 4842–4847 (2011).
[CrossRef] [PubMed]

R. D. Peterson, B. T. Cunningham, and J. E. Andrade, “A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles,” Biosens. Bioelectron.56, 320–327 (2014).
[CrossRef] [PubMed]

Biosensors

F. J. Ortega, M. J. Bañuls, F. J. Sanza, R. Casquel, M. F. Laguna, M. Holgado, D. López-Romero, C. A. Barrios, Á. Maquieira, and R. Puchades, “Biomolecular interaction analysis of gestrinone-anti-gestrinone using arrays of high aspect ratio SU-8 nanopillars,” Biosensors2(4), 291–304 (2012).
[CrossRef]

Chem. Soc. Rev.

P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, “Breaking the concentration limit of optical single-molecule detection,” Chem. Soc. Rev.43(4), 1014–1028 (2014).
[CrossRef] [PubMed]

J. Disp. Technol.

X. H. Li, P. F. Zhu, G. Y. Liu, J. Zhang, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of III-nitride light-emitting diodes by using 2-D close-packed TiO2 microsphere arrays,” J. Disp. Technol.9(5), 324–332 (2013).
[CrossRef]

J. Micromech. Microeng.

H. V. Jansen, M. J. de Boer, S. Unnikrishnan, M. C. Louwerse, and M. C. Elwenspoek, “Black silicon method X: A review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment,” J. Micromech. Microeng.19(3), 033001 (2009).
[CrossRef]

J. R. Soc. Interface

M. A. Wood, “Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications,” J. R. Soc. Interface4(12), 1–17 (2007).
[CrossRef] [PubMed]

Nano Lett.

C. M. Bruinink, M. Burresi, M. J. de Boer, F. B. Segerink, H. V. Jansen, E. Berenschot, D. N. Reinhoudt, J. Huskens, and L. Kuipers, “Nanoimprint lithography for nanophotonics in silicon,” Nano Lett.8(9), 2872–2877 (2008).
[CrossRef] [PubMed]

V. Krivitsky, L. C. Hsiung, A. Lichtenstein, B. Brudnik, R. Kantaev, R. Elnathan, A. Pevzner, A. Khatchtourints, and F. Patolsky, “Si nanowires forest-based on-chip biomolecular filtering, separation and preconcentration devices: nanowires do it all,” Nano Lett.12(9), 4748–4756 (2012).
[CrossRef] [PubMed]

Nanoscale

H. Wang, X. Han, X. Ou, C. S. Lee, X. Zhang, and S. T. Lee, “Silicon nanowire based single-molecule SERS sensor,” Nanoscale5(17), 8172–8176 (2013).
[CrossRef] [PubMed]

Nanoscale Res. Lett.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett.6(1), 342 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol.

E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed, and T. M. Fahmy, “Label-free biomarker detection from whole blood,” Nat. Nanotechnol.5(2), 138–142 (2010).
[CrossRef] [PubMed]

Nature

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Opt. Mater. Express

Proc. Natl. Acad. Sci. U.S.A.

C. Xie, L. Hanson, Y. Cui, and B. Cui, “Vertical nanopillars for highly localized fluorescence imaging,” Proc. Natl. Acad. Sci. U.S.A.108(10), 3894–3899 (2011).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, T. Salthammer, and E. Peiner, “Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection,” Sens. Actuators B Chem.189, 146–156 (2013).
[CrossRef]

Sensors (Basel)

R. J. Martín-Palma, M. Manso, and V. Torres-Costa, “Optical biosensors based on semiconductor nanostructures,” Sensors (Basel)9(7), 5149–5172 (2009).
[CrossRef] [PubMed]

Sensors and Actuators B: Chem.

M. K. Parka, J. S. Keea, J. Y. Quaha, V. Nettob, J. Songa, Q. Fanga, E. M. Fosseb, and G. Loa, “Label-free aptamer sensor based on silicon microring resonators,” Sensors and Actuators B: Chem.176, 552–559 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a)-(d): Schematics of SiO2 coated Si nanopillar fabrication process steps. (a) SiO2 colloidal particles dispersed on a Si substrate. (b) Size reduction (by RIE) of the SiO2 colloidal particles. (c) Anisotropic ICP-RIE etching of Si to produce Si nanopillars. (d) PECVD deposition of a SiO2 over-layer on the Si nanopillars.

Fig. 2
Fig. 2

Representative SEM images showing (a) an hexagonal array of colloidal SiO2 particles on a Si sample, after size reduction by RIE; (b) a 20 degree tilted view of a 500 nm period Si nanopillar array with remnant silica (mask) particles; (c) cross sectional view of a 1000 nm period Si nanopillar array with remnant silica particles; and (d) a 20 degrees tilted view of a 1000 nm period nanopillar array.

Fig. 3
Fig. 3

SEM images (30 degree tilted views) of Si nanopillar arrays coated with a SiO2 over-layer: (a) 500 nm period and (b) 1000 nm period.

Fig. 4
Fig. 4

Optical micrograph of a Si nanopillar sample showing a sensing area defined by laser scribing.

Fig. 5
Fig. 5

SEM images of a) sample ‘A’ after BSA treatment (functionalization) and b) sample ‘B’ after BSA + anti-BSA biorecognition assays.

Fig. 6
Fig. 6

Spectral reflectance curves of the Si nanopillar arrays obtained from the sensing areas in (a) sample ‘A’ and (b) sample ‘B’.

Fig. 7
Fig. 7

(a) and (b) Axial cross section view at the middle of the pillar showing the field confinement in nanopillar array for sample A and sample B respectively. The color scale bar indicates the electric field intensity. (c) and (d) Reflection spectra showing the wavelength shift due to addition of the model bio-layer in sample A and sample B respectively.

Fig. 8
Fig. 8

Spectral shift of the interference peak versus anti-BSA concentration for (a) sample A (interference peak at 1030 nm) and (b) sample B (interference peak at 1040 nm); and the corresponding sigmoidal fits.

Metrics