Abstract

A direct deposition methodology has been optimized for highly crystalline inorganic-organic (IO) perovskite thin films. The simplest deposition ensures long-range order with high c-oriented thin films, thicknesses ranging from ultra-thin (~20nm) and upto 1.5 µm. These self-assembled layered perovskites are naturally aligned alternative stacking arrangement of inorganic and organic monolayers, resemble multiple quantum wells (MQWs), which offers superior optoelectronic properties such as room-temperature optical excitons, strong electrically induced photo-carrier mobilities etc. The established fabrication is having device-compatible advantage over other conventional solution–processed thin films wherein the optical features are restricted by thickness limitations (<200nm) and with possible corrugated surface morphologies with multi-phases. The universally acceptable ability has been demonstrated for wide varieties of organic moieties (R) as well as different lead halide networks in type (R-NH3)2PbX4 (X = I, Br,Cl).The potential of the direct deposition methodology for demonstrated in 3D template structure fabrication as well as in photocurrent response capability.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J. Phys. Chem. Lett.4(15), 2423–2429 (2013).
    [CrossRef]
  2. H. J. Snaith, “Perovskites: the emergence of a new era for low-cost, high- efficiency solar cells,” J. Phys. Chem. Lett.4(21), 3623–3630 (2013).
    [CrossRef]
  3. M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett.65(6), 676–678 (1994).
    [CrossRef]
  4. K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity,” Opt. Express17(24), 22171–22178 (2009).
    [CrossRef] [PubMed]
  5. D. B. Mitzi, “Templating and structural engineering in organic–inorganic perovskites,” J. Chem. Soc. Dalton1(1), 1–12 (2001).
    [CrossRef]
  6. D. B. Mitzi, K. Chondroudis, and C. R. Kagan, “Organic–inorganic electronics,” IBM J. Res. Develop.45(1), 29–45 (2001).
    [CrossRef]
  7. D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature369(6480), 467–469 (1994).
    [CrossRef]
  8. N. Kitazawa, “Optical absorption and photoluminescence properties of Pb(I, Br)-based two-dimensional layered perovskite,” Jpn. J. Appl. Phys.36(Part 1, No. 4A), 2272–2276 (1997).
    [CrossRef]
  9. Z. Xu and D. B. Mitzi, “[CH(3)(CH(2))(11)NH(3)]SnI(3): a hybrid semiconductor with MoO(3)-type tin(II) iodide layers,” Inorg. Chem.42(21), 6589–6591 (2003).
    [CrossRef] [PubMed]
  10. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,” Science286(5441), 945–947 (1999).
    [CrossRef] [PubMed]
  11. D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing (110)-oriented perovskite sheets,” Science267(5203), 1473–1476 (1995).
    [CrossRef] [PubMed]
  12. E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B Condens. Matter51(20), 14370–14378 (1995).
    [CrossRef] [PubMed]
  13. M. Shimizu, J. Fujisawa, and J. Ishi-Hayase, “Influence of dielectric confinement on excitonic nonlinearity in inorganic-organic layered semiconductors,” Phys. Rev. B71(20), 205306 (2005).
    [CrossRef]
  14. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem.52(15), 9019–9038 (2013).
    [CrossRef] [PubMed]
  15. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science338(6107), 643–647 (2012).
    [CrossRef] [PubMed]
  16. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
    [CrossRef]
  17. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science342(6156), 341–344 (2013).
    [CrossRef] [PubMed]
  18. Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc.136(2), 622–625 (2014).
    [CrossRef] [PubMed]
  19. T. Matsui, A. Yamaguchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Fabrication of two-dimensional layered perovskite [NH3(CH2)12NH3]PbX4 thin films using a self-assembly method,” Chem. Commun. (Camb.)10(10), 1094–1095 (2002).
    [CrossRef] [PubMed]
  20. D. B. Mitzi, D. R. Medeiros, and P. W. DeHaven, “Low-temperature melt processing of organic-inorganic hybrid films,” Chem. Mater.14(7), 2839–2841 (2002).
    [CrossRef]
  21. K. Ikegami, “Spectroscopic study of J aggregates of amphiphilic merocyanine dyes formed in their pure Langmuir films,” J. Chem. Phys.121(5), 2337–2347 (2004).
    [CrossRef] [PubMed]
  22. K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett.95(3), 033309 (2009).
    [CrossRef]
  23. Y. Sawada and M. Suzuki, “Thermal change of SnI2 thin films. Part 4: TG-DTA and DSC,” Thermochim. Acta254, 261–266 (1995).
    [CrossRef]
  24. M. Era, T. Hattori, T. Taira, and T. Tsutsui, “Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition,” Chem. Mater.9(1), 8–10 (1997).
    [CrossRef]
  25. D. B. Mitzi, M. T. Prikas, and K. Chondroudis, “Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique,” Chem. Mater.11(3), 542–544 (1999).
    [CrossRef]
  26. T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronics transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4,” Phys. Rev. B42(17), 11099–11107 (1990).
    [CrossRef]
  27. I. B. Koutselas, L. Ducasse, and G. C. Papavassiliou, “Electronic properties of three-and low-dimensional semiconducting materials with Pb halide and Sn halide units,” J. Phys. Condens. Matter8(9), 1217–1227 (1996).
    [CrossRef]
  28. M. Hirasawa, T. Ishihara, and T. Goto, “Exciton features in 0-, 2-, and 3-dimensional networks of [PbI6]4- octahedra,” J. Phys. Soc. Jpn.63(10), 3870–3879 (1994).
    [CrossRef]
  29. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature499(7458), 316–319 (2013).
    [CrossRef] [PubMed]
  30. K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “Exciton switching and Peierls transitions in hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett.95(17), 173305 (2009).
    [CrossRef]
  31. K. Pradeesh, K. Nageswara Rao, and G. Vijaya Prakash, “Synthesis, Structural, Thermal and Optical Studies of Inorganic-Organic Hybrid Semiconductors, R-PbI4,” J. Appl. Phys.113(8), 083523 (2013).
    [CrossRef]
  32. S. Ahmad and G. Vijaya Prakash, “Two-step fabrication of R-PbI4(1-y)Br4y type light emitting inorganic-organic hybrid photonic structures,” Opt. Mater. Express4(1), 101–110 (2014).
    [CrossRef]
  33. S. Ahmad and G. V. Prakash, “Strong room-temperature UV to red excitons from inorganic organic layered perovskites, (R-NH3)2MX4 (M=Pb2+, Sn2+, Hg2+; X=I-, Br-),” J. Nanophotonics8(1), 083892 (2014).
    [CrossRef]
  34. Z. Y. Cheng, Z. Wang, R. B. Xing, Y. C. Han, and J. Lin, “Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography,” Chem. Phys. Lett.376(3-4), 481–486 (2003).
    [CrossRef]
  35. Y. Jun, P. Nagpal, and D. J. Norris, “Thermally stable organic–inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing,” Adv. Mater.20(3), 606–610 (2008).
    [CrossRef]
  36. G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, “Excitonic switches operating at around 100 K,” Nat. Photonics3(10), 577–580 (2009).
    [CrossRef]
  37. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science342(6156), 344–347 (2013).
    [CrossRef] [PubMed]
  38. S. Ahmad, J. J. Baumberg, and G. Vijaya Prakash, “Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides,” J. Appl. Phys.114(23), 233511 (2013).
    [CrossRef]

2014

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc.136(2), 622–625 (2014).
[CrossRef] [PubMed]

S. Ahmad and G. V. Prakash, “Strong room-temperature UV to red excitons from inorganic organic layered perovskites, (R-NH3)2MX4 (M=Pb2+, Sn2+, Hg2+; X=I-, Br-),” J. Nanophotonics8(1), 083892 (2014).
[CrossRef]

S. Ahmad and G. Vijaya Prakash, “Two-step fabrication of R-PbI4(1-y)Br4y type light emitting inorganic-organic hybrid photonic structures,” Opt. Mater. Express4(1), 101–110 (2014).
[CrossRef]

2013

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science342(6156), 344–347 (2013).
[CrossRef] [PubMed]

S. Ahmad, J. J. Baumberg, and G. Vijaya Prakash, “Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides,” J. Appl. Phys.114(23), 233511 (2013).
[CrossRef]

K. Pradeesh, K. Nageswara Rao, and G. Vijaya Prakash, “Synthesis, Structural, Thermal and Optical Studies of Inorganic-Organic Hybrid Semiconductors, R-PbI4,” J. Appl. Phys.113(8), 083523 (2013).
[CrossRef]

N. G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J. Phys. Chem. Lett.4(15), 2423–2429 (2013).
[CrossRef]

H. J. Snaith, “Perovskites: the emergence of a new era for low-cost, high- efficiency solar cells,” J. Phys. Chem. Lett.4(21), 3623–3630 (2013).
[CrossRef]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature499(7458), 316–319 (2013).
[CrossRef] [PubMed]

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem.52(15), 9019–9038 (2013).
[CrossRef] [PubMed]

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
[CrossRef]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science342(6156), 341–344 (2013).
[CrossRef] [PubMed]

2012

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science338(6107), 643–647 (2012).
[CrossRef] [PubMed]

2009

K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett.95(3), 033309 (2009).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “Exciton switching and Peierls transitions in hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett.95(17), 173305 (2009).
[CrossRef]

G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, “Excitonic switches operating at around 100 K,” Nat. Photonics3(10), 577–580 (2009).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity,” Opt. Express17(24), 22171–22178 (2009).
[CrossRef] [PubMed]

2008

Y. Jun, P. Nagpal, and D. J. Norris, “Thermally stable organic–inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing,” Adv. Mater.20(3), 606–610 (2008).
[CrossRef]

2005

M. Shimizu, J. Fujisawa, and J. Ishi-Hayase, “Influence of dielectric confinement on excitonic nonlinearity in inorganic-organic layered semiconductors,” Phys. Rev. B71(20), 205306 (2005).
[CrossRef]

2004

K. Ikegami, “Spectroscopic study of J aggregates of amphiphilic merocyanine dyes formed in their pure Langmuir films,” J. Chem. Phys.121(5), 2337–2347 (2004).
[CrossRef] [PubMed]

2003

Z. Y. Cheng, Z. Wang, R. B. Xing, Y. C. Han, and J. Lin, “Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography,” Chem. Phys. Lett.376(3-4), 481–486 (2003).
[CrossRef]

Z. Xu and D. B. Mitzi, “[CH(3)(CH(2))(11)NH(3)]SnI(3): a hybrid semiconductor with MoO(3)-type tin(II) iodide layers,” Inorg. Chem.42(21), 6589–6591 (2003).
[CrossRef] [PubMed]

2002

T. Matsui, A. Yamaguchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Fabrication of two-dimensional layered perovskite [NH3(CH2)12NH3]PbX4 thin films using a self-assembly method,” Chem. Commun. (Camb.)10(10), 1094–1095 (2002).
[CrossRef] [PubMed]

D. B. Mitzi, D. R. Medeiros, and P. W. DeHaven, “Low-temperature melt processing of organic-inorganic hybrid films,” Chem. Mater.14(7), 2839–2841 (2002).
[CrossRef]

2001

D. B. Mitzi, “Templating and structural engineering in organic–inorganic perovskites,” J. Chem. Soc. Dalton1(1), 1–12 (2001).
[CrossRef]

D. B. Mitzi, K. Chondroudis, and C. R. Kagan, “Organic–inorganic electronics,” IBM J. Res. Develop.45(1), 29–45 (2001).
[CrossRef]

1999

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,” Science286(5441), 945–947 (1999).
[CrossRef] [PubMed]

D. B. Mitzi, M. T. Prikas, and K. Chondroudis, “Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique,” Chem. Mater.11(3), 542–544 (1999).
[CrossRef]

1997

M. Era, T. Hattori, T. Taira, and T. Tsutsui, “Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition,” Chem. Mater.9(1), 8–10 (1997).
[CrossRef]

N. Kitazawa, “Optical absorption and photoluminescence properties of Pb(I, Br)-based two-dimensional layered perovskite,” Jpn. J. Appl. Phys.36(Part 1, No. 4A), 2272–2276 (1997).
[CrossRef]

1996

I. B. Koutselas, L. Ducasse, and G. C. Papavassiliou, “Electronic properties of three-and low-dimensional semiconducting materials with Pb halide and Sn halide units,” J. Phys. Condens. Matter8(9), 1217–1227 (1996).
[CrossRef]

1995

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing (110)-oriented perovskite sheets,” Science267(5203), 1473–1476 (1995).
[CrossRef] [PubMed]

E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B Condens. Matter51(20), 14370–14378 (1995).
[CrossRef] [PubMed]

Y. Sawada and M. Suzuki, “Thermal change of SnI2 thin films. Part 4: TG-DTA and DSC,” Thermochim. Acta254, 261–266 (1995).
[CrossRef]

1994

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature369(6480), 467–469 (1994).
[CrossRef]

M. Hirasawa, T. Ishihara, and T. Goto, “Exciton features in 0-, 2-, and 3-dimensional networks of [PbI6]4- octahedra,” J. Phys. Soc. Jpn.63(10), 3870–3879 (1994).
[CrossRef]

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett.65(6), 676–678 (1994).
[CrossRef]

1990

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronics transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4,” Phys. Rev. B42(17), 11099–11107 (1990).
[CrossRef]

Ahmad, S.

S. Ahmad and G. Vijaya Prakash, “Two-step fabrication of R-PbI4(1-y)Br4y type light emitting inorganic-organic hybrid photonic structures,” Opt. Mater. Express4(1), 101–110 (2014).
[CrossRef]

S. Ahmad and G. V. Prakash, “Strong room-temperature UV to red excitons from inorganic organic layered perovskites, (R-NH3)2MX4 (M=Pb2+, Sn2+, Hg2+; X=I-, Br-),” J. Nanophotonics8(1), 083892 (2014).
[CrossRef]

S. Ahmad, J. J. Baumberg, and G. Vijaya Prakash, “Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides,” J. Appl. Phys.114(23), 233511 (2013).
[CrossRef]

Alcocer, M. J. P.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science342(6156), 341–344 (2013).
[CrossRef] [PubMed]

Baumberg, J. J.

S. Ahmad, J. J. Baumberg, and G. Vijaya Prakash, “Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides,” J. Appl. Phys.114(23), 233511 (2013).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “Exciton switching and Peierls transitions in hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett.95(17), 173305 (2009).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett.95(3), 033309 (2009).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity,” Opt. Express17(24), 22171–22178 (2009).
[CrossRef] [PubMed]

Burschka, J.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature499(7458), 316–319 (2013).
[CrossRef] [PubMed]

Butov, L. V.

G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, “Excitonic switches operating at around 100 K,” Nat. Photonics3(10), 577–580 (2009).
[CrossRef]

Chang, J. A.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
[CrossRef]

Chen, Q.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc.136(2), 622–625 (2014).
[CrossRef] [PubMed]

Cheng, Z. Y.

Z. Y. Cheng, Z. Wang, R. B. Xing, Y. C. Han, and J. Lin, “Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography,” Chem. Phys. Lett.376(3-4), 481–486 (2003).
[CrossRef]

Chess, C. A.

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing (110)-oriented perovskite sheets,” Science267(5203), 1473–1476 (1995).
[CrossRef] [PubMed]

Chondroudis, K.

D. B. Mitzi, K. Chondroudis, and C. R. Kagan, “Organic–inorganic electronics,” IBM J. Res. Develop.45(1), 29–45 (2001).
[CrossRef]

D. B. Mitzi, M. T. Prikas, and K. Chondroudis, “Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique,” Chem. Mater.11(3), 542–544 (1999).
[CrossRef]

DeHaven, P. W.

D. B. Mitzi, D. R. Medeiros, and P. W. DeHaven, “Low-temperature melt processing of organic-inorganic hybrid films,” Chem. Mater.14(7), 2839–2841 (2002).
[CrossRef]

Dimitrakopoulos, C. D.

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,” Science286(5441), 945–947 (1999).
[CrossRef] [PubMed]

Duan, H. S.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc.136(2), 622–625 (2014).
[CrossRef] [PubMed]

Ducasse, L.

I. B. Koutselas, L. Ducasse, and G. C. Papavassiliou, “Electronic properties of three-and low-dimensional semiconducting materials with Pb halide and Sn halide units,” J. Phys. Condens. Matter8(9), 1217–1227 (1996).
[CrossRef]

Eperon, G. E.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science342(6156), 341–344 (2013).
[CrossRef] [PubMed]

Era, M.

M. Era, T. Hattori, T. Taira, and T. Tsutsui, “Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition,” Chem. Mater.9(1), 8–10 (1997).
[CrossRef]

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett.65(6), 676–678 (1994).
[CrossRef]

Feild, C. A.

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing (110)-oriented perovskite sheets,” Science267(5203), 1473–1476 (1995).
[CrossRef] [PubMed]

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature369(6480), 467–469 (1994).
[CrossRef]

Fujisawa, J.

M. Shimizu, J. Fujisawa, and J. Ishi-Hayase, “Influence of dielectric confinement on excitonic nonlinearity in inorganic-organic layered semiconductors,” Phys. Rev. B71(20), 205306 (2005).
[CrossRef]

Gao, P.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature499(7458), 316–319 (2013).
[CrossRef] [PubMed]

Gippius, N. A.

E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B Condens. Matter51(20), 14370–14378 (1995).
[CrossRef] [PubMed]

Gossard, A. C.

G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, “Excitonic switches operating at around 100 K,” Nat. Photonics3(10), 577–580 (2009).
[CrossRef]

Goto, T.

M. Hirasawa, T. Ishihara, and T. Goto, “Exciton features in 0-, 2-, and 3-dimensional networks of [PbI6]4- octahedra,” J. Phys. Soc. Jpn.63(10), 3870–3879 (1994).
[CrossRef]

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronics transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4,” Phys. Rev. B42(17), 11099–11107 (1990).
[CrossRef]

Grancini, G.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science342(6156), 341–344 (2013).
[CrossRef] [PubMed]

Gratzel, M.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
[CrossRef]

Grätzel, M.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science342(6156), 344–347 (2013).
[CrossRef] [PubMed]

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature499(7458), 316–319 (2013).
[CrossRef] [PubMed]

Graves, J.

G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, “Excitonic switches operating at around 100 K,” Nat. Photonics3(10), 577–580 (2009).
[CrossRef]

Grosso, G.

G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, “Excitonic switches operating at around 100 K,” Nat. Photonics3(10), 577–580 (2009).
[CrossRef]

Guloy, A. M.

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing (110)-oriented perovskite sheets,” Science267(5203), 1473–1476 (1995).
[CrossRef] [PubMed]

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature369(6480), 467–469 (1994).
[CrossRef]

Hammack, A. T.

G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, “Excitonic switches operating at around 100 K,” Nat. Photonics3(10), 577–580 (2009).
[CrossRef]

Han, Y. C.

Z. Y. Cheng, Z. Wang, R. B. Xing, Y. C. Han, and J. Lin, “Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography,” Chem. Phys. Lett.376(3-4), 481–486 (2003).
[CrossRef]

Hanson, M.

G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, “Excitonic switches operating at around 100 K,” Nat. Photonics3(10), 577–580 (2009).
[CrossRef]

Harrison, W. T. A.

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature369(6480), 467–469 (1994).
[CrossRef]

Hattori, T.

M. Era, T. Hattori, T. Taira, and T. Tsutsui, “Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition,” Chem. Mater.9(1), 8–10 (1997).
[CrossRef]

Heo, J. H.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
[CrossRef]

Herz, L. M.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science342(6156), 341–344 (2013).
[CrossRef] [PubMed]

High, A. A.

G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, “Excitonic switches operating at around 100 K,” Nat. Photonics3(10), 577–580 (2009).
[CrossRef]

Hirasawa, M.

M. Hirasawa, T. Ishihara, and T. Goto, “Exciton features in 0-, 2-, and 3-dimensional networks of [PbI6]4- octahedra,” J. Phys. Soc. Jpn.63(10), 3870–3879 (1994).
[CrossRef]

Hong, Z.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc.136(2), 622–625 (2014).
[CrossRef] [PubMed]

Humphry-Baker, R.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature499(7458), 316–319 (2013).
[CrossRef] [PubMed]

Ikegami, K.

K. Ikegami, “Spectroscopic study of J aggregates of amphiphilic merocyanine dyes formed in their pure Langmuir films,” J. Chem. Phys.121(5), 2337–2347 (2004).
[CrossRef] [PubMed]

Im, S. H.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
[CrossRef]

Ishihara, T.

E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B Condens. Matter51(20), 14370–14378 (1995).
[CrossRef] [PubMed]

M. Hirasawa, T. Ishihara, and T. Goto, “Exciton features in 0-, 2-, and 3-dimensional networks of [PbI6]4- octahedra,” J. Phys. Soc. Jpn.63(10), 3870–3879 (1994).
[CrossRef]

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronics transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4,” Phys. Rev. B42(17), 11099–11107 (1990).
[CrossRef]

Ishi-Hayase, J.

M. Shimizu, J. Fujisawa, and J. Ishi-Hayase, “Influence of dielectric confinement on excitonic nonlinearity in inorganic-organic layered semiconductors,” Phys. Rev. B71(20), 205306 (2005).
[CrossRef]

Jun, Y.

Y. Jun, P. Nagpal, and D. J. Norris, “Thermally stable organic–inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing,” Adv. Mater.20(3), 606–610 (2008).
[CrossRef]

Kagan, C. R.

D. B. Mitzi, K. Chondroudis, and C. R. Kagan, “Organic–inorganic electronics,” IBM J. Res. Develop.45(1), 29–45 (2001).
[CrossRef]

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,” Science286(5441), 945–947 (1999).
[CrossRef] [PubMed]

Kanatzidis, M. G.

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem.52(15), 9019–9038 (2013).
[CrossRef] [PubMed]

Kim, H.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
[CrossRef]

Kitazawa, N.

N. Kitazawa, “Optical absorption and photoluminescence properties of Pb(I, Br)-based two-dimensional layered perovskite,” Jpn. J. Appl. Phys.36(Part 1, No. 4A), 2272–2276 (1997).
[CrossRef]

Koutselas, I. B.

I. B. Koutselas, L. Ducasse, and G. C. Papavassiliou, “Electronic properties of three-and low-dimensional semiconducting materials with Pb halide and Sn halide units,” J. Phys. Condens. Matter8(9), 1217–1227 (1996).
[CrossRef]

Lam, Y. M.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science342(6156), 344–347 (2013).
[CrossRef] [PubMed]

Lee, M. M.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science338(6107), 643–647 (2012).
[CrossRef] [PubMed]

Lee, Y. H.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
[CrossRef]

Leijtens, T.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science342(6156), 341–344 (2013).
[CrossRef] [PubMed]

Li, G.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc.136(2), 622–625 (2014).
[CrossRef] [PubMed]

Lim, C.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
[CrossRef]

Lim, S. S.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science342(6156), 344–347 (2013).
[CrossRef] [PubMed]

Lin, J.

Z. Y. Cheng, Z. Wang, R. B. Xing, Y. C. Han, and J. Lin, “Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography,” Chem. Phys. Lett.376(3-4), 481–486 (2003).
[CrossRef]

Liu, Y.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc.136(2), 622–625 (2014).
[CrossRef] [PubMed]

Luo, S.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc.136(2), 622–625 (2014).
[CrossRef] [PubMed]

Malliakas, C. D.

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem.52(15), 9019–9038 (2013).
[CrossRef] [PubMed]

Mandal, T. N.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
[CrossRef]

Mathews, N.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science342(6156), 344–347 (2013).
[CrossRef] [PubMed]

Matsui, T.

T. Matsui, A. Yamaguchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Fabrication of two-dimensional layered perovskite [NH3(CH2)12NH3]PbX4 thin films using a self-assembly method,” Chem. Commun. (Camb.)10(10), 1094–1095 (2002).
[CrossRef] [PubMed]

Medeiros, D. R.

D. B. Mitzi, D. R. Medeiros, and P. W. DeHaven, “Low-temperature melt processing of organic-inorganic hybrid films,” Chem. Mater.14(7), 2839–2841 (2002).
[CrossRef]

Menelaou, C.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science342(6156), 341–344 (2013).
[CrossRef] [PubMed]

Mhaisalkar, S.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science342(6156), 344–347 (2013).
[CrossRef] [PubMed]

Mitzi, D. B.

Z. Xu and D. B. Mitzi, “[CH(3)(CH(2))(11)NH(3)]SnI(3): a hybrid semiconductor with MoO(3)-type tin(II) iodide layers,” Inorg. Chem.42(21), 6589–6591 (2003).
[CrossRef] [PubMed]

D. B. Mitzi, D. R. Medeiros, and P. W. DeHaven, “Low-temperature melt processing of organic-inorganic hybrid films,” Chem. Mater.14(7), 2839–2841 (2002).
[CrossRef]

D. B. Mitzi, “Templating and structural engineering in organic–inorganic perovskites,” J. Chem. Soc. Dalton1(1), 1–12 (2001).
[CrossRef]

D. B. Mitzi, K. Chondroudis, and C. R. Kagan, “Organic–inorganic electronics,” IBM J. Res. Develop.45(1), 29–45 (2001).
[CrossRef]

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,” Science286(5441), 945–947 (1999).
[CrossRef] [PubMed]

D. B. Mitzi, M. T. Prikas, and K. Chondroudis, “Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique,” Chem. Mater.11(3), 542–544 (1999).
[CrossRef]

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing (110)-oriented perovskite sheets,” Science267(5203), 1473–1476 (1995).
[CrossRef] [PubMed]

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature369(6480), 467–469 (1994).
[CrossRef]

Miyasaka, T.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science338(6107), 643–647 (2012).
[CrossRef] [PubMed]

Moon, S. J.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature499(7458), 316–319 (2013).
[CrossRef] [PubMed]

Morimoto, S.

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett.65(6), 676–678 (1994).
[CrossRef]

Muljarov, E. A.

E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B Condens. Matter51(20), 14370–14378 (1995).
[CrossRef] [PubMed]

Murakami, T. N.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science338(6107), 643–647 (2012).
[CrossRef] [PubMed]

Nageswara Rao, K.

K. Pradeesh, K. Nageswara Rao, and G. Vijaya Prakash, “Synthesis, Structural, Thermal and Optical Studies of Inorganic-Organic Hybrid Semiconductors, R-PbI4,” J. Appl. Phys.113(8), 083523 (2013).
[CrossRef]

Nagpal, P.

Y. Jun, P. Nagpal, and D. J. Norris, “Thermally stable organic–inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing,” Adv. Mater.20(3), 606–610 (2008).
[CrossRef]

Nazeeruddin, M. K.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature499(7458), 316–319 (2013).
[CrossRef] [PubMed]

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
[CrossRef]

Noh, J. H.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
[CrossRef]

Norris, D. J.

Y. Jun, P. Nagpal, and D. J. Norris, “Thermally stable organic–inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing,” Adv. Mater.20(3), 606–610 (2008).
[CrossRef]

Papavassiliou, G. C.

I. B. Koutselas, L. Ducasse, and G. C. Papavassiliou, “Electronic properties of three-and low-dimensional semiconducting materials with Pb halide and Sn halide units,” J. Phys. Condens. Matter8(9), 1217–1227 (1996).
[CrossRef]

Park, N. G.

N. G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J. Phys. Chem. Lett.4(15), 2423–2429 (2013).
[CrossRef]

Pellet, N.

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature499(7458), 316–319 (2013).
[CrossRef] [PubMed]

Petrozza, A.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science342(6156), 341–344 (2013).
[CrossRef] [PubMed]

Pradeesh, K.

K. Pradeesh, K. Nageswara Rao, and G. Vijaya Prakash, “Synthesis, Structural, Thermal and Optical Studies of Inorganic-Organic Hybrid Semiconductors, R-PbI4,” J. Appl. Phys.113(8), 083523 (2013).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “Exciton switching and Peierls transitions in hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett.95(17), 173305 (2009).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett.95(3), 033309 (2009).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity,” Opt. Express17(24), 22171–22178 (2009).
[CrossRef] [PubMed]

Prakash, G. V.

S. Ahmad and G. V. Prakash, “Strong room-temperature UV to red excitons from inorganic organic layered perovskites, (R-NH3)2MX4 (M=Pb2+, Sn2+, Hg2+; X=I-, Br-),” J. Nanophotonics8(1), 083892 (2014).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. V. Prakash, “Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity,” Opt. Express17(24), 22171–22178 (2009).
[CrossRef] [PubMed]

Prikas, M. T.

D. B. Mitzi, M. T. Prikas, and K. Chondroudis, “Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique,” Chem. Mater.11(3), 542–544 (1999).
[CrossRef]

Rikukawa, M.

T. Matsui, A. Yamaguchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Fabrication of two-dimensional layered perovskite [NH3(CH2)12NH3]PbX4 thin films using a self-assembly method,” Chem. Commun. (Camb.)10(10), 1094–1095 (2002).
[CrossRef] [PubMed]

Saito, S.

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett.65(6), 676–678 (1994).
[CrossRef]

Sanui, K.

T. Matsui, A. Yamaguchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Fabrication of two-dimensional layered perovskite [NH3(CH2)12NH3]PbX4 thin films using a self-assembly method,” Chem. Commun. (Camb.)10(10), 1094–1095 (2002).
[CrossRef] [PubMed]

Sarkar, A.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
[CrossRef]

Sawada, Y.

Y. Sawada and M. Suzuki, “Thermal change of SnI2 thin films. Part 4: TG-DTA and DSC,” Thermochim. Acta254, 261–266 (1995).
[CrossRef]

Seok, S. I.

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
[CrossRef]

Shimizu, M.

M. Shimizu, J. Fujisawa, and J. Ishi-Hayase, “Influence of dielectric confinement on excitonic nonlinearity in inorganic-organic layered semiconductors,” Phys. Rev. B71(20), 205306 (2005).
[CrossRef]

Snaith, H. J.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science342(6156), 341–344 (2013).
[CrossRef] [PubMed]

H. J. Snaith, “Perovskites: the emergence of a new era for low-cost, high- efficiency solar cells,” J. Phys. Chem. Lett.4(21), 3623–3630 (2013).
[CrossRef]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science338(6107), 643–647 (2012).
[CrossRef] [PubMed]

Stoumpos, C. C.

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem.52(15), 9019–9038 (2013).
[CrossRef] [PubMed]

Stranks, S. D.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science342(6156), 341–344 (2013).
[CrossRef] [PubMed]

Sum, T. C.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science342(6156), 344–347 (2013).
[CrossRef] [PubMed]

Sun, S.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science342(6156), 344–347 (2013).
[CrossRef] [PubMed]

Suzuki, M.

Y. Sawada and M. Suzuki, “Thermal change of SnI2 thin films. Part 4: TG-DTA and DSC,” Thermochim. Acta254, 261–266 (1995).
[CrossRef]

Taira, T.

M. Era, T. Hattori, T. Taira, and T. Tsutsui, “Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition,” Chem. Mater.9(1), 8–10 (1997).
[CrossRef]

Takahashi, J.

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronics transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4,” Phys. Rev. B42(17), 11099–11107 (1990).
[CrossRef]

Takeoka, Y.

T. Matsui, A. Yamaguchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Fabrication of two-dimensional layered perovskite [NH3(CH2)12NH3]PbX4 thin films using a self-assembly method,” Chem. Commun. (Camb.)10(10), 1094–1095 (2002).
[CrossRef] [PubMed]

Teuscher, J.

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science338(6107), 643–647 (2012).
[CrossRef] [PubMed]

Tikhodeev, S. G.

E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B Condens. Matter51(20), 14370–14378 (1995).
[CrossRef] [PubMed]

Tsutsui, T.

M. Era, T. Hattori, T. Taira, and T. Tsutsui, “Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition,” Chem. Mater.9(1), 8–10 (1997).
[CrossRef]

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett.65(6), 676–678 (1994).
[CrossRef]

Vijaya Prakash, G.

S. Ahmad and G. Vijaya Prakash, “Two-step fabrication of R-PbI4(1-y)Br4y type light emitting inorganic-organic hybrid photonic structures,” Opt. Mater. Express4(1), 101–110 (2014).
[CrossRef]

K. Pradeesh, K. Nageswara Rao, and G. Vijaya Prakash, “Synthesis, Structural, Thermal and Optical Studies of Inorganic-Organic Hybrid Semiconductors, R-PbI4,” J. Appl. Phys.113(8), 083523 (2013).
[CrossRef]

S. Ahmad, J. J. Baumberg, and G. Vijaya Prakash, “Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides,” J. Appl. Phys.114(23), 233511 (2013).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “Exciton switching and Peierls transitions in hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett.95(17), 173305 (2009).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett.95(3), 033309 (2009).
[CrossRef]

Wang, H. H.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc.136(2), 622–625 (2014).
[CrossRef] [PubMed]

Wang, S.

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing (110)-oriented perovskite sheets,” Science267(5203), 1473–1476 (1995).
[CrossRef] [PubMed]

Wang, Z.

Z. Y. Cheng, Z. Wang, R. B. Xing, Y. C. Han, and J. Lin, “Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography,” Chem. Phys. Lett.376(3-4), 481–486 (2003).
[CrossRef]

Xing, G.

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science342(6156), 344–347 (2013).
[CrossRef] [PubMed]

Xing, R. B.

Z. Y. Cheng, Z. Wang, R. B. Xing, Y. C. Han, and J. Lin, “Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography,” Chem. Phys. Lett.376(3-4), 481–486 (2003).
[CrossRef]

Xu, Z.

Z. Xu and D. B. Mitzi, “[CH(3)(CH(2))(11)NH(3)]SnI(3): a hybrid semiconductor with MoO(3)-type tin(II) iodide layers,” Inorg. Chem.42(21), 6589–6591 (2003).
[CrossRef] [PubMed]

Yamaguchi, A.

T. Matsui, A. Yamaguchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Fabrication of two-dimensional layered perovskite [NH3(CH2)12NH3]PbX4 thin films using a self-assembly method,” Chem. Commun. (Camb.)10(10), 1094–1095 (2002).
[CrossRef] [PubMed]

Yang, Y.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc.136(2), 622–625 (2014).
[CrossRef] [PubMed]

Zhou, H.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc.136(2), 622–625 (2014).
[CrossRef] [PubMed]

Adv. Mater.

Y. Jun, P. Nagpal, and D. J. Norris, “Thermally stable organic–inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing,” Adv. Mater.20(3), 606–610 (2008).
[CrossRef]

Appl. Phys. Lett.

M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett.65(6), 676–678 (1994).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “Exciton switching and Peierls transitions in hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett.95(17), 173305 (2009).
[CrossRef]

K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Appl. Phys. Lett.95(3), 033309 (2009).
[CrossRef]

Chem. Commun. (Camb.)

T. Matsui, A. Yamaguchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Fabrication of two-dimensional layered perovskite [NH3(CH2)12NH3]PbX4 thin films using a self-assembly method,” Chem. Commun. (Camb.)10(10), 1094–1095 (2002).
[CrossRef] [PubMed]

Chem. Mater.

D. B. Mitzi, D. R. Medeiros, and P. W. DeHaven, “Low-temperature melt processing of organic-inorganic hybrid films,” Chem. Mater.14(7), 2839–2841 (2002).
[CrossRef]

M. Era, T. Hattori, T. Taira, and T. Tsutsui, “Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition,” Chem. Mater.9(1), 8–10 (1997).
[CrossRef]

D. B. Mitzi, M. T. Prikas, and K. Chondroudis, “Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique,” Chem. Mater.11(3), 542–544 (1999).
[CrossRef]

Chem. Phys. Lett.

Z. Y. Cheng, Z. Wang, R. B. Xing, Y. C. Han, and J. Lin, “Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography,” Chem. Phys. Lett.376(3-4), 481–486 (2003).
[CrossRef]

IBM J. Res. Develop.

D. B. Mitzi, K. Chondroudis, and C. R. Kagan, “Organic–inorganic electronics,” IBM J. Res. Develop.45(1), 29–45 (2001).
[CrossRef]

Inorg. Chem.

Z. Xu and D. B. Mitzi, “[CH(3)(CH(2))(11)NH(3)]SnI(3): a hybrid semiconductor with MoO(3)-type tin(II) iodide layers,” Inorg. Chem.42(21), 6589–6591 (2003).
[CrossRef] [PubMed]

C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,” Inorg. Chem.52(15), 9019–9038 (2013).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc.136(2), 622–625 (2014).
[CrossRef] [PubMed]

J. Appl. Phys.

S. Ahmad, J. J. Baumberg, and G. Vijaya Prakash, “Structural tunability and switchable exciton emission in inorganic-organic hybrids with mixed halides,” J. Appl. Phys.114(23), 233511 (2013).
[CrossRef]

K. Pradeesh, K. Nageswara Rao, and G. Vijaya Prakash, “Synthesis, Structural, Thermal and Optical Studies of Inorganic-Organic Hybrid Semiconductors, R-PbI4,” J. Appl. Phys.113(8), 083523 (2013).
[CrossRef]

J. Chem. Phys.

K. Ikegami, “Spectroscopic study of J aggregates of amphiphilic merocyanine dyes formed in their pure Langmuir films,” J. Chem. Phys.121(5), 2337–2347 (2004).
[CrossRef] [PubMed]

J. Chem. Soc. Dalton

D. B. Mitzi, “Templating and structural engineering in organic–inorganic perovskites,” J. Chem. Soc. Dalton1(1), 1–12 (2001).
[CrossRef]

J. Nanophotonics

S. Ahmad and G. V. Prakash, “Strong room-temperature UV to red excitons from inorganic organic layered perovskites, (R-NH3)2MX4 (M=Pb2+, Sn2+, Hg2+; X=I-, Br-),” J. Nanophotonics8(1), 083892 (2014).
[CrossRef]

J. Phys. Chem. Lett.

N. G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell,” J. Phys. Chem. Lett.4(15), 2423–2429 (2013).
[CrossRef]

H. J. Snaith, “Perovskites: the emergence of a new era for low-cost, high- efficiency solar cells,” J. Phys. Chem. Lett.4(21), 3623–3630 (2013).
[CrossRef]

J. Phys. Condens. Matter

I. B. Koutselas, L. Ducasse, and G. C. Papavassiliou, “Electronic properties of three-and low-dimensional semiconducting materials with Pb halide and Sn halide units,” J. Phys. Condens. Matter8(9), 1217–1227 (1996).
[CrossRef]

J. Phys. Soc. Jpn.

M. Hirasawa, T. Ishihara, and T. Goto, “Exciton features in 0-, 2-, and 3-dimensional networks of [PbI6]4- octahedra,” J. Phys. Soc. Jpn.63(10), 3870–3879 (1994).
[CrossRef]

Jpn. J. Appl. Phys.

N. Kitazawa, “Optical absorption and photoluminescence properties of Pb(I, Br)-based two-dimensional layered perovskite,” Jpn. J. Appl. Phys.36(Part 1, No. 4A), 2272–2276 (1997).
[CrossRef]

Nat. Photonics

J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel, and S. I. Seok, “Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nat. Photonics7(6), 486–491 (2013).
[CrossRef]

G. Grosso, J. Graves, A. T. Hammack, A. A. High, L. V. Butov, M. Hanson, and A. C. Gossard, “Excitonic switches operating at around 100 K,” Nat. Photonics3(10), 577–580 (2009).
[CrossRef]

Nature

J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature499(7458), 316–319 (2013).
[CrossRef] [PubMed]

D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature369(6480), 467–469 (1994).
[CrossRef]

Opt. Express

Opt. Mater. Express

Phys. Rev. B

T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronics transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4,” Phys. Rev. B42(17), 11099–11107 (1990).
[CrossRef]

M. Shimizu, J. Fujisawa, and J. Ishi-Hayase, “Influence of dielectric confinement on excitonic nonlinearity in inorganic-organic layered semiconductors,” Phys. Rev. B71(20), 205306 (2005).
[CrossRef]

Phys. Rev. B Condens. Matter

E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B Condens. Matter51(20), 14370–14378 (1995).
[CrossRef] [PubMed]

Science

C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors,” Science286(5441), 945–947 (1999).
[CrossRef] [PubMed]

D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing (110)-oriented perovskite sheets,” Science267(5203), 1473–1476 (1995).
[CrossRef] [PubMed]

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science342(6156), 341–344 (2013).
[CrossRef] [PubMed]

M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites,” Science338(6107), 643–647 (2012).
[CrossRef] [PubMed]

G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3.,” Science342(6156), 344–347 (2013).
[CrossRef] [PubMed]

Thermochim. Acta

Y. Sawada and M. Suzuki, “Thermal change of SnI2 thin films. Part 4: TG-DTA and DSC,” Thermochim. Acta254, 261–266 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(A) Shows the schematic crystal structure packing representation of typical (C6H9C2H4NH3)2PbI4 [CHPI] layered perovskite, viewed along b-direction. (B) XRD patterns of as direct deposited CHPI films of various thicknesses.

Fig. 2
Fig. 2

(A) PL spectra (λex~410nm) of direct deposited CHPI films of various thicknesses. (B) and (C) shows the corresponding PL peak position and PL peak intensity variation with thickness respectively. (The data represented in cross symbol in (B) is obtained for solution processed (intercalation) films, having thickness limitations [22]).

Fig. 3
Fig. 3

(A) XRD patterns and corresponding (B) room-temperature exciton absorption and PL spectra of various organic moieties (R = cyclic and long carbon chain) based IO perovskite [(R-NH3)2PbI4] thin films (~100nm). The XRD pattern of PbI2 is also shown for comparison.

Fig. 4
Fig. 4

(A) XRD patterns and corresponding (B) room-temperature exciton PL spectra of direct deposited CHPB and CHPC films (excitation wavelengths are 337nm and 288nm respectively). CHPI is shown for comparison.

Fig. 5
Fig. 5

Confocal microscopic (A) white light (bright field) and (B) PL (λex~410 nm, ALP filter>425nm) images of circular 3D structures of (C6H9C2H4NH3)2PbI4 (CHPI) IO perovskite. (C) Room-temperature exciton PL line scan spectral mapping along the diameter of the circular structures, using 410 nm laser excitation (inset shows the PL spectra obtained from the central portion of the structure). (D) PL peak position (λem~520nm) variation observed along one of the structure. (E) AFM surface roughness line scan over a length of 5μm.

Fig. 6
Fig. 6

(A) Schematic representation of photodetector configuration with (C7H15NH3)2PbI4 [C7PI] IO perovskite direct deposited film as active material layer. Room-temperature (B) ON-OFF photocurrent response characteristics recorded under 410nm illumination at 0V bias, (C) current-voltage characteristics under 410nm illumination and dark conditions and (D) photocurrent spectral response plot at 0V bias condition (optical absorption spectra of C7PI is also included for comparison).

Tables (1)

Tables Icon

Table 1 The empirical names and chemical formulae of various cyclic and long carbon chain group based organic moieties and corresponding synthesized IO-perovskite.

Metrics