Abstract

The Xe ion irradiation-induced structural modifications of implantation-synthesized Ag NPs were explored in this paper. Our results clearly show that Xe ion irradiation could induce transformation of crystalline Ag NPs into polycrystalline ones with various shapes. The modified Ag NPs exhibit a notable shoulder absorption band around 550 nm besides the surface plasmon resonance (SPR) peak located at about 400 nm. Reduction of the electron mean-free-path and interaction between crystallites in the formed polycrystalline NPs have been proposed to interpret the appearance of the shoulder absorption band. Moreover, our results also show that subsequent thermal annealing at 400 °C for 1h can restore polycrystalline Ag NPs to crystalline ones with spherical shape, which are nearly aligned around the end of the Ag ion range, and contribute a much narrower SPR absorption peak at 400 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1985).
  2. G. Mattei, P. Mazzoldi, and H. Bernas, “Metal nanoclusters for optical properties,” Top. Appl. Phys.116, 287–316 (2009).
    [CrossRef]
  3. O. A. Yeshchenko, “Temperature effects on the surface plasmon resonance in copper nanoparticles,” Ukr. J. Phys.58(3), 249–259 (2013).
  4. E. E. Bedford, J. Spadavecchia, C. M. Pradier, and F. X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles,” Macromol. Biosci.12(6), 724–739 (2012).
    [CrossRef] [PubMed]
  5. G. Fuertes, O. L. Sánchez-Muñoz, E. Pedrueza, K. Abderrafi, J. Salgado, and E. Jiménez, “Switchable bactericidal effects from novel silica-coated silver nanoparticles mediated by light irradiation,” Langmuir27(6), 2826–2833 (2011).
    [CrossRef] [PubMed]
  6. P. L. Inácio, B. J. Barreto, F. Horowitz, R. R. B. Correia, and M. B. Pereira, “Silver migration at the surface of ion-exchange waveguides: a plasmonic template,” Opt. Mater. Express3(3), 390–399 (2013).
    [CrossRef]
  7. R. C. Gamez, E. T. Castellana, and D. H. Russell, “Sol-gel-derived silver-nanoparticle-embedded thin film for mass spectrometry-based biosensing,” Langmuir29(21), 6502–6507 (2013).
    [CrossRef] [PubMed]
  8. A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys. A Mater. Sci. Process.111(1), 261–264 (2013).
    [CrossRef]
  9. O. Sánchez-Dena, P. Mota-Santiago, L. Tamayo-Rivera, E. V. García-Ramíre, A. Crespo-Sosa, A. Oliver, and J.-A. Reyes-Esqueda,“Size-and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire,” Opt. Mater. Express4(1), 92–100 (2014).
    [CrossRef]
  10. T. Cesca, P. Calvelli, G. Battaglin, P. Mazzoldi, and G. Mattei, “Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets,” Opt. Express20(4), 4537–4547 (2012).
    [CrossRef] [PubMed]
  11. H. Amekura, M. L. Sele, N. Ishikawa, and N. Okubo, “Thermal stability of embedded metal nanoparticles elongated by swift heavy ion irradiation: Zn nanoparticles in a molten state but preserving elongated shapes,” Nanotechnology23(9), 095704 (2012).
    [CrossRef] [PubMed]
  12. C. H. Kerboua, J.-M. Lamarre, M. Chicoine, L. Martinu, and S. Roorda, “Elongation of gold nanoparticles by swift heavy ion irradiation: surface plasmon resonance shift dependence on the electronic stopping power,” Thin Solid Films527, 186–192 (2013).
    [CrossRef]
  13. L. M. Wang, S. X. Wang, R. C. Ewing, A. Meldrum, R. C. Birtcher, P. Newcomer Provencio, W. J. Weber, and H. Matzke, “Irradiation-induced nanostructures,” Mater. Sci. Eng. A286(1), 72–80 (2000).
    [CrossRef]
  14. J. Y. W. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys.46(12), 5247–5254 (1975).
    [CrossRef]
  15. K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
    [CrossRef] [PubMed]
  16. P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
    [CrossRef] [PubMed]
  17. J. Zheng, Y. Ding, B. Z. Tian, Z. L. Wang, and X. W. Zhuang, “Luminescent and Raman active silver nanoparticles with polycrystalline structure,” J. Am. Chem. Soc.130(32), 10472–10473 (2008).
    [CrossRef] [PubMed]
  18. G. H. Li, X. Z. Cui, C. Y. Tan, and N. Lin, “Solvothermal synthesis of polycrystalline tellurium nanoplates and their conversion into single crystalline nanorods,” RSC Adv.4(2), 954–958 (2013).
    [CrossRef]
  19. B. Johannessen, P. Kluth, D. J. Llewellyn, G. J. Foran, D. J. Cookson, and M. C. Ridgway, “Ion-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2,” Phys. Rev. B76(18), 184203 (2007).
    [CrossRef]
  20. D. J. Sprouster, R. Giulian, L. L. Araujo, P. Kluth, B. Johannessen, N. Kirby, K. Nordlund, and M. C. Ridgway, “Ion-irradiation-induced amorphization of cobalt nanoparticles,” Phys. Rev. B81(15), 155414 (2010).
    [CrossRef]
  21. H. Amekura, B. Johannessen, D. J. Sprouster, and M. C. Ridgway, “Amorphization of Cu nanoparticles: Effects on surface plasmon resonance,” Appl. Phys. Lett.99(4), 043102 (2011).
    [CrossRef]
  22. J. Wang, G. Y. Jia, X. Y. Mu, and C. L. Liu, “Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation,” Appl. Phys. Lett.102(13), 133102 (2013).
    [CrossRef]
  23. J. F. Ziegler, computer code, SRIM 2013, available online at: http://www.srim.org/ .
  24. M. José Yacamán, J. A. Ascencio, H. B. Liu, and J. Gardea-Torresdey, “Structure shape and stability of nanometric sized particles,” J. Vac. Sci. Technol. B19(4), 1091–1103 (2001).
    [CrossRef]
  25. Z. L. Wang, “Transmission electron microscopy of shape-controlled nanocrystals and their assemblies,” J. Phys. Chem. B104(6), 1153–1175 (2000).
    [CrossRef]
  26. J. A. Ascencio, H. B. Liu, U. Pal, A. Medina, and Z. L. Wang, “Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior,” Microsc. Res. Tech.69(7), 522–530 (2006).
    [CrossRef] [PubMed]
  27. H. Hofmeister, “Shape variations and anisotropic growth of multiply twinned nanoparticles,” Z. Kristallogr.224(11), 528–538 (2009).
    [CrossRef]
  28. F. Ren, C. Z. Jiang, L. Zhang, Y. Shi, J. B. Wang, and R. H. Wang, “Formation and microstructural investigation of Ag-Cu alloy nanoclusters embedded in SiO2 formed by sequential ion implantation,” Micron35(6), 489–493 (2004).
    [CrossRef] [PubMed]
  29. H. X. Liu, X. D. Zhang, Y. Y. Shen, L. H. Zhang, J. Wang, F. Zhu, B. Zhang, and C. L. Liu, “Tailoring the size distribution of Ag nanoparticles embedded in SiO2 by Xe ion postirradiation,” Appl. Phys. Express5(10), 105002 (2012).
    [CrossRef]
  30. G. Rizza, E. A. Dawi, A. M. Vredenberg, and I. Monnet, “Ion engineering of embedded nanostructures: From spherical to facetted nanoparticles,” Appl. Phys. Lett.95(4), 043105 (2009).
    [CrossRef]
  31. S. Klaumünzer, “Modification of nanostructures by high-energy ion beams,” Nucl. Instr. and Meth. in Phys, Res. B244(1), 1–7 (2006).
  32. H. Assaf, E. Ntsoenzok, M.-F. Barthe, M.-O. Ruault, T. Sauvage, and S. Ashok, ““Structural and nuclear characterizations of defects created by noble gas implantation in silicon oxide,” Nucl. Instr. and Meth. in Phys, Res. B253(1–2), 222–226 (2006).
  33. G. W. Arnold, “Ion-implantation effects in noncrystalline SiO2,” IEEE Trans. Nucl. Sci.20(6), 220–223 (1973).
    [CrossRef]
  34. G. W. Arnold, “Ion implantation in silicate glasses,” J. Non-Cryst. Solids179(4), 288–299 (1994).
    [CrossRef]
  35. M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol–gel films,” Chem. Phys. Lett.315(5–6), 313–320 (1999).
    [CrossRef]
  36. R. Ruppin, “Validity range of the Maxwell-Garnett theory,” Phys. Status Solidi, B Basic Res.87(2), 619–624 (1978).
    [CrossRef]
  37. P. Benzo, C. Bonafos, M. Bayle, R. Carles, L. Cattaneo, C. Farcau, G. Benassayag, B. Pécassou, and D. Muller, “Controlled synthesis of buried delta-layers of Ag nanocrystals for near-field plasmonic effects on free surfaces,” J. Appl. Phys.113(19), 193505 (2013).
    [CrossRef]
  38. K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, “Thermal behavior of silver nanoparticles for low-temperature interconnect applications,” J. Electron. Mater.34(2), 168–175 (2005).
    [CrossRef]
  39. J. C. Cheang-Wong, A. Oliver, J. Roiz, L. Rodríguez-Fernández, J. M. Hernández, and A. Crespo-Sosa, “Relationship between the Ag depth profiles and nanoparticle formation in Ag-implanted silica,” J. Phys. Condens. Matter13(45), 10207–10219 (2001).
    [CrossRef]
  40. Z. L. Wang, J. M. Petroski, T. C. Green, and M. A. El-Sayed, “Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals,” J. Phys. Chem. B102(32), 6145–6151 (1998).
    [CrossRef]
  41. P. W. Voorhees, “The theory of Ostwald ripening,” J. Stat. Phys.38(1–2), 231–252 (1985).
    [CrossRef]

2014

2013

P. L. Inácio, B. J. Barreto, F. Horowitz, R. R. B. Correia, and M. B. Pereira, “Silver migration at the surface of ion-exchange waveguides: a plasmonic template,” Opt. Mater. Express3(3), 390–399 (2013).
[CrossRef]

R. C. Gamez, E. T. Castellana, and D. H. Russell, “Sol-gel-derived silver-nanoparticle-embedded thin film for mass spectrometry-based biosensing,” Langmuir29(21), 6502–6507 (2013).
[CrossRef] [PubMed]

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys. A Mater. Sci. Process.111(1), 261–264 (2013).
[CrossRef]

O. A. Yeshchenko, “Temperature effects on the surface plasmon resonance in copper nanoparticles,” Ukr. J. Phys.58(3), 249–259 (2013).

P. Benzo, C. Bonafos, M. Bayle, R. Carles, L. Cattaneo, C. Farcau, G. Benassayag, B. Pécassou, and D. Muller, “Controlled synthesis of buried delta-layers of Ag nanocrystals for near-field plasmonic effects on free surfaces,” J. Appl. Phys.113(19), 193505 (2013).
[CrossRef]

C. H. Kerboua, J.-M. Lamarre, M. Chicoine, L. Martinu, and S. Roorda, “Elongation of gold nanoparticles by swift heavy ion irradiation: surface plasmon resonance shift dependence on the electronic stopping power,” Thin Solid Films527, 186–192 (2013).
[CrossRef]

G. H. Li, X. Z. Cui, C. Y. Tan, and N. Lin, “Solvothermal synthesis of polycrystalline tellurium nanoplates and their conversion into single crystalline nanorods,” RSC Adv.4(2), 954–958 (2013).
[CrossRef]

J. Wang, G. Y. Jia, X. Y. Mu, and C. L. Liu, “Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation,” Appl. Phys. Lett.102(13), 133102 (2013).
[CrossRef]

2012

H. X. Liu, X. D. Zhang, Y. Y. Shen, L. H. Zhang, J. Wang, F. Zhu, B. Zhang, and C. L. Liu, “Tailoring the size distribution of Ag nanoparticles embedded in SiO2 by Xe ion postirradiation,” Appl. Phys. Express5(10), 105002 (2012).
[CrossRef]

H. Amekura, M. L. Sele, N. Ishikawa, and N. Okubo, “Thermal stability of embedded metal nanoparticles elongated by swift heavy ion irradiation: Zn nanoparticles in a molten state but preserving elongated shapes,” Nanotechnology23(9), 095704 (2012).
[CrossRef] [PubMed]

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

E. E. Bedford, J. Spadavecchia, C. M. Pradier, and F. X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles,” Macromol. Biosci.12(6), 724–739 (2012).
[CrossRef] [PubMed]

T. Cesca, P. Calvelli, G. Battaglin, P. Mazzoldi, and G. Mattei, “Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets,” Opt. Express20(4), 4537–4547 (2012).
[CrossRef] [PubMed]

2011

G. Fuertes, O. L. Sánchez-Muñoz, E. Pedrueza, K. Abderrafi, J. Salgado, and E. Jiménez, “Switchable bactericidal effects from novel silica-coated silver nanoparticles mediated by light irradiation,” Langmuir27(6), 2826–2833 (2011).
[CrossRef] [PubMed]

H. Amekura, B. Johannessen, D. J. Sprouster, and M. C. Ridgway, “Amorphization of Cu nanoparticles: Effects on surface plasmon resonance,” Appl. Phys. Lett.99(4), 043102 (2011).
[CrossRef]

2010

D. J. Sprouster, R. Giulian, L. L. Araujo, P. Kluth, B. Johannessen, N. Kirby, K. Nordlund, and M. C. Ridgway, “Ion-irradiation-induced amorphization of cobalt nanoparticles,” Phys. Rev. B81(15), 155414 (2010).
[CrossRef]

2009

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

G. Rizza, E. A. Dawi, A. M. Vredenberg, and I. Monnet, “Ion engineering of embedded nanostructures: From spherical to facetted nanoparticles,” Appl. Phys. Lett.95(4), 043105 (2009).
[CrossRef]

G. Mattei, P. Mazzoldi, and H. Bernas, “Metal nanoclusters for optical properties,” Top. Appl. Phys.116, 287–316 (2009).
[CrossRef]

H. Hofmeister, “Shape variations and anisotropic growth of multiply twinned nanoparticles,” Z. Kristallogr.224(11), 528–538 (2009).
[CrossRef]

2008

J. Zheng, Y. Ding, B. Z. Tian, Z. L. Wang, and X. W. Zhuang, “Luminescent and Raman active silver nanoparticles with polycrystalline structure,” J. Am. Chem. Soc.130(32), 10472–10473 (2008).
[CrossRef] [PubMed]

2007

B. Johannessen, P. Kluth, D. J. Llewellyn, G. J. Foran, D. J. Cookson, and M. C. Ridgway, “Ion-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2,” Phys. Rev. B76(18), 184203 (2007).
[CrossRef]

2006

S. Klaumünzer, “Modification of nanostructures by high-energy ion beams,” Nucl. Instr. and Meth. in Phys, Res. B244(1), 1–7 (2006).

H. Assaf, E. Ntsoenzok, M.-F. Barthe, M.-O. Ruault, T. Sauvage, and S. Ashok, ““Structural and nuclear characterizations of defects created by noble gas implantation in silicon oxide,” Nucl. Instr. and Meth. in Phys, Res. B253(1–2), 222–226 (2006).

J. A. Ascencio, H. B. Liu, U. Pal, A. Medina, and Z. L. Wang, “Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior,” Microsc. Res. Tech.69(7), 522–530 (2006).
[CrossRef] [PubMed]

2005

K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, “Thermal behavior of silver nanoparticles for low-temperature interconnect applications,” J. Electron. Mater.34(2), 168–175 (2005).
[CrossRef]

2004

F. Ren, C. Z. Jiang, L. Zhang, Y. Shi, J. B. Wang, and R. H. Wang, “Formation and microstructural investigation of Ag-Cu alloy nanoclusters embedded in SiO2 formed by sequential ion implantation,” Micron35(6), 489–493 (2004).
[CrossRef] [PubMed]

2001

J. C. Cheang-Wong, A. Oliver, J. Roiz, L. Rodríguez-Fernández, J. M. Hernández, and A. Crespo-Sosa, “Relationship between the Ag depth profiles and nanoparticle formation in Ag-implanted silica,” J. Phys. Condens. Matter13(45), 10207–10219 (2001).
[CrossRef]

M. José Yacamán, J. A. Ascencio, H. B. Liu, and J. Gardea-Torresdey, “Structure shape and stability of nanometric sized particles,” J. Vac. Sci. Technol. B19(4), 1091–1103 (2001).
[CrossRef]

2000

Z. L. Wang, “Transmission electron microscopy of shape-controlled nanocrystals and their assemblies,” J. Phys. Chem. B104(6), 1153–1175 (2000).
[CrossRef]

L. M. Wang, S. X. Wang, R. C. Ewing, A. Meldrum, R. C. Birtcher, P. Newcomer Provencio, W. J. Weber, and H. Matzke, “Irradiation-induced nanostructures,” Mater. Sci. Eng. A286(1), 72–80 (2000).
[CrossRef]

1999

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol–gel films,” Chem. Phys. Lett.315(5–6), 313–320 (1999).
[CrossRef]

1998

Z. L. Wang, J. M. Petroski, T. C. Green, and M. A. El-Sayed, “Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals,” J. Phys. Chem. B102(32), 6145–6151 (1998).
[CrossRef]

1994

G. W. Arnold, “Ion implantation in silicate glasses,” J. Non-Cryst. Solids179(4), 288–299 (1994).
[CrossRef]

1985

P. W. Voorhees, “The theory of Ostwald ripening,” J. Stat. Phys.38(1–2), 231–252 (1985).
[CrossRef]

1978

R. Ruppin, “Validity range of the Maxwell-Garnett theory,” Phys. Status Solidi, B Basic Res.87(2), 619–624 (1978).
[CrossRef]

1975

J. Y. W. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys.46(12), 5247–5254 (1975).
[CrossRef]

1973

G. W. Arnold, “Ion-implantation effects in noncrystalline SiO2,” IEEE Trans. Nucl. Sci.20(6), 220–223 (1973).
[CrossRef]

Abderrafi, K.

G. Fuertes, O. L. Sánchez-Muñoz, E. Pedrueza, K. Abderrafi, J. Salgado, and E. Jiménez, “Switchable bactericidal effects from novel silica-coated silver nanoparticles mediated by light irradiation,” Langmuir27(6), 2826–2833 (2011).
[CrossRef] [PubMed]

Amekura, H.

H. Amekura, M. L. Sele, N. Ishikawa, and N. Okubo, “Thermal stability of embedded metal nanoparticles elongated by swift heavy ion irradiation: Zn nanoparticles in a molten state but preserving elongated shapes,” Nanotechnology23(9), 095704 (2012).
[CrossRef] [PubMed]

H. Amekura, B. Johannessen, D. J. Sprouster, and M. C. Ridgway, “Amorphization of Cu nanoparticles: Effects on surface plasmon resonance,” Appl. Phys. Lett.99(4), 043102 (2011).
[CrossRef]

Appavoo, K.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

Araujo, L. L.

D. J. Sprouster, R. Giulian, L. L. Araujo, P. Kluth, B. Johannessen, N. Kirby, K. Nordlund, and M. C. Ridgway, “Ion-irradiation-induced amorphization of cobalt nanoparticles,” Phys. Rev. B81(15), 155414 (2010).
[CrossRef]

Arnold, G. W.

G. W. Arnold, “Ion implantation in silicate glasses,” J. Non-Cryst. Solids179(4), 288–299 (1994).
[CrossRef]

G. W. Arnold, “Ion-implantation effects in noncrystalline SiO2,” IEEE Trans. Nucl. Sci.20(6), 220–223 (1973).
[CrossRef]

Ascencio, J. A.

J. A. Ascencio, H. B. Liu, U. Pal, A. Medina, and Z. L. Wang, “Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior,” Microsc. Res. Tech.69(7), 522–530 (2006).
[CrossRef] [PubMed]

M. José Yacamán, J. A. Ascencio, H. B. Liu, and J. Gardea-Torresdey, “Structure shape and stability of nanometric sized particles,” J. Vac. Sci. Technol. B19(4), 1091–1103 (2001).
[CrossRef]

Ashok, S.

H. Assaf, E. Ntsoenzok, M.-F. Barthe, M.-O. Ruault, T. Sauvage, and S. Ashok, ““Structural and nuclear characterizations of defects created by noble gas implantation in silicon oxide,” Nucl. Instr. and Meth. in Phys, Res. B253(1–2), 222–226 (2006).

Assaf, H.

H. Assaf, E. Ntsoenzok, M.-F. Barthe, M.-O. Ruault, T. Sauvage, and S. Ashok, ““Structural and nuclear characterizations of defects created by noble gas implantation in silicon oxide,” Nucl. Instr. and Meth. in Phys, Res. B253(1–2), 222–226 (2006).

Barreto, B. J.

Barthe, M.-F.

H. Assaf, E. Ntsoenzok, M.-F. Barthe, M.-O. Ruault, T. Sauvage, and S. Ashok, ““Structural and nuclear characterizations of defects created by noble gas implantation in silicon oxide,” Nucl. Instr. and Meth. in Phys, Res. B253(1–2), 222–226 (2006).

Battaglin, G.

Bayle, M.

P. Benzo, C. Bonafos, M. Bayle, R. Carles, L. Cattaneo, C. Farcau, G. Benassayag, B. Pécassou, and D. Muller, “Controlled synthesis of buried delta-layers of Ag nanocrystals for near-field plasmonic effects on free surfaces,” J. Appl. Phys.113(19), 193505 (2013).
[CrossRef]

Bedford, E. E.

E. E. Bedford, J. Spadavecchia, C. M. Pradier, and F. X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles,” Macromol. Biosci.12(6), 724–739 (2012).
[CrossRef] [PubMed]

Benassayag, G.

P. Benzo, C. Bonafos, M. Bayle, R. Carles, L. Cattaneo, C. Farcau, G. Benassayag, B. Pécassou, and D. Muller, “Controlled synthesis of buried delta-layers of Ag nanocrystals for near-field plasmonic effects on free surfaces,” J. Appl. Phys.113(19), 193505 (2013).
[CrossRef]

Benzo, P.

P. Benzo, C. Bonafos, M. Bayle, R. Carles, L. Cattaneo, C. Farcau, G. Benassayag, B. Pécassou, and D. Muller, “Controlled synthesis of buried delta-layers of Ag nanocrystals for near-field plasmonic effects on free surfaces,” J. Appl. Phys.113(19), 193505 (2013).
[CrossRef]

Bernas, H.

G. Mattei, P. Mazzoldi, and H. Bernas, “Metal nanoclusters for optical properties,” Top. Appl. Phys.116, 287–316 (2009).
[CrossRef]

Birtcher, R. C.

L. M. Wang, S. X. Wang, R. C. Ewing, A. Meldrum, R. C. Birtcher, P. Newcomer Provencio, W. J. Weber, and H. Matzke, “Irradiation-induced nanostructures,” Mater. Sci. Eng. A286(1), 72–80 (2000).
[CrossRef]

Bonafos, C.

P. Benzo, C. Bonafos, M. Bayle, R. Carles, L. Cattaneo, C. Farcau, G. Benassayag, B. Pécassou, and D. Muller, “Controlled synthesis of buried delta-layers of Ag nanocrystals for near-field plasmonic effects on free surfaces,” J. Appl. Phys.113(19), 193505 (2013).
[CrossRef]

Calvelli, P.

Carles, R.

P. Benzo, C. Bonafos, M. Bayle, R. Carles, L. Cattaneo, C. Farcau, G. Benassayag, B. Pécassou, and D. Muller, “Controlled synthesis of buried delta-layers of Ag nanocrystals for near-field plasmonic effects on free surfaces,” J. Appl. Phys.113(19), 193505 (2013).
[CrossRef]

Castellana, E. T.

R. C. Gamez, E. T. Castellana, and D. H. Russell, “Sol-gel-derived silver-nanoparticle-embedded thin film for mass spectrometry-based biosensing,” Langmuir29(21), 6502–6507 (2013).
[CrossRef] [PubMed]

Cattaneo, L.

P. Benzo, C. Bonafos, M. Bayle, R. Carles, L. Cattaneo, C. Farcau, G. Benassayag, B. Pécassou, and D. Muller, “Controlled synthesis of buried delta-layers of Ag nanocrystals for near-field plasmonic effects on free surfaces,” J. Appl. Phys.113(19), 193505 (2013).
[CrossRef]

Cesca, T.

Cheang-Wong, J. C.

J. C. Cheang-Wong, A. Oliver, J. Roiz, L. Rodríguez-Fernández, J. M. Hernández, and A. Crespo-Sosa, “Relationship between the Ag depth profiles and nanoparticle formation in Ag-implanted silica,” J. Phys. Condens. Matter13(45), 10207–10219 (2001).
[CrossRef]

Chichkov, B. N.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys. A Mater. Sci. Process.111(1), 261–264 (2013).
[CrossRef]

Chicoine, M.

C. H. Kerboua, J.-M. Lamarre, M. Chicoine, L. Martinu, and S. Roorda, “Elongation of gold nanoparticles by swift heavy ion irradiation: surface plasmon resonance shift dependence on the electronic stopping power,” Thin Solid Films527, 186–192 (2013).
[CrossRef]

Cookson, D. J.

B. Johannessen, P. Kluth, D. J. Llewellyn, G. J. Foran, D. J. Cookson, and M. C. Ridgway, “Ion-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2,” Phys. Rev. B76(18), 184203 (2007).
[CrossRef]

Correia, R. R. B.

Crespo-Sosa, A.

O. Sánchez-Dena, P. Mota-Santiago, L. Tamayo-Rivera, E. V. García-Ramíre, A. Crespo-Sosa, A. Oliver, and J.-A. Reyes-Esqueda,“Size-and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire,” Opt. Mater. Express4(1), 92–100 (2014).
[CrossRef]

J. C. Cheang-Wong, A. Oliver, J. Roiz, L. Rodríguez-Fernández, J. M. Hernández, and A. Crespo-Sosa, “Relationship between the Ag depth profiles and nanoparticle formation in Ag-implanted silica,” J. Phys. Condens. Matter13(45), 10207–10219 (2001).
[CrossRef]

Cui, X. Z.

G. H. Li, X. Z. Cui, C. Y. Tan, and N. Lin, “Solvothermal synthesis of polycrystalline tellurium nanoplates and their conversion into single crystalline nanorods,” RSC Adv.4(2), 954–958 (2013).
[CrossRef]

Dawi, E. A.

G. Rizza, E. A. Dawi, A. M. Vredenberg, and I. Monnet, “Ion engineering of embedded nanostructures: From spherical to facetted nanoparticles,” Appl. Phys. Lett.95(4), 043105 (2009).
[CrossRef]

Ding, Y.

J. Zheng, Y. Ding, B. Z. Tian, Z. L. Wang, and X. W. Zhuang, “Luminescent and Raman active silver nanoparticles with polycrystalline structure,” J. Am. Chem. Soc.130(32), 10472–10473 (2008).
[CrossRef] [PubMed]

Dong, H.

K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, “Thermal behavior of silver nanoparticles for low-temperature interconnect applications,” J. Electron. Mater.34(2), 168–175 (2005).
[CrossRef]

El-Sayed, M. A.

Z. L. Wang, J. M. Petroski, T. C. Green, and M. A. El-Sayed, “Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals,” J. Phys. Chem. B102(32), 6145–6151 (1998).
[CrossRef]

Evlyukhin, A. B.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys. A Mater. Sci. Process.111(1), 261–264 (2013).
[CrossRef]

Evlyukhin, E. A.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys. A Mater. Sci. Process.111(1), 261–264 (2013).
[CrossRef]

Ewing, R. C.

L. M. Wang, S. X. Wang, R. C. Ewing, A. Meldrum, R. C. Birtcher, P. Newcomer Provencio, W. J. Weber, and H. Matzke, “Irradiation-induced nanostructures,” Mater. Sci. Eng. A286(1), 72–80 (2000).
[CrossRef]

Farcau, C.

P. Benzo, C. Bonafos, M. Bayle, R. Carles, L. Cattaneo, C. Farcau, G. Benassayag, B. Pécassou, and D. Muller, “Controlled synthesis of buried delta-layers of Ag nanocrystals for near-field plasmonic effects on free surfaces,” J. Appl. Phys.113(19), 193505 (2013).
[CrossRef]

Foran, G. J.

B. Johannessen, P. Kluth, D. J. Llewellyn, G. J. Foran, D. J. Cookson, and M. C. Ridgway, “Ion-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2,” Phys. Rev. B76(18), 184203 (2007).
[CrossRef]

Fuertes, G.

G. Fuertes, O. L. Sánchez-Muñoz, E. Pedrueza, K. Abderrafi, J. Salgado, and E. Jiménez, “Switchable bactericidal effects from novel silica-coated silver nanoparticles mediated by light irradiation,” Langmuir27(6), 2826–2833 (2011).
[CrossRef] [PubMed]

Galyautdinov, M. F.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys. A Mater. Sci. Process.111(1), 261–264 (2013).
[CrossRef]

Gamez, R. C.

R. C. Gamez, E. T. Castellana, and D. H. Russell, “Sol-gel-derived silver-nanoparticle-embedded thin film for mass spectrometry-based biosensing,” Langmuir29(21), 6502–6507 (2013).
[CrossRef] [PubMed]

García, M. A.

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol–gel films,” Chem. Phys. Lett.315(5–6), 313–320 (1999).
[CrossRef]

García-Ramíre, E. V.

Gardea-Torresdey, J.

M. José Yacamán, J. A. Ascencio, H. B. Liu, and J. Gardea-Torresdey, “Structure shape and stability of nanometric sized particles,” J. Vac. Sci. Technol. B19(4), 1091–1103 (2001).
[CrossRef]

Giulian, R.

D. J. Sprouster, R. Giulian, L. L. Araujo, P. Kluth, B. Johannessen, N. Kirby, K. Nordlund, and M. C. Ridgway, “Ion-irradiation-induced amorphization of cobalt nanoparticles,” Phys. Rev. B81(15), 155414 (2010).
[CrossRef]

Green, T. C.

Z. L. Wang, J. M. Petroski, T. C. Green, and M. A. El-Sayed, “Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals,” J. Phys. Chem. B102(32), 6145–6151 (1998).
[CrossRef]

Gu, F. X.

E. E. Bedford, J. Spadavecchia, C. M. Pradier, and F. X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles,” Macromol. Biosci.12(6), 724–739 (2012).
[CrossRef] [PubMed]

Haglund, R. F.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

Hernández, J. M.

J. C. Cheang-Wong, A. Oliver, J. Roiz, L. Rodríguez-Fernández, J. M. Hernández, and A. Crespo-Sosa, “Relationship between the Ag depth profiles and nanoparticle formation in Ag-implanted silica,” J. Phys. Condens. Matter13(45), 10207–10219 (2001).
[CrossRef]

Hofmeister, H.

H. Hofmeister, “Shape variations and anisotropic growth of multiply twinned nanoparticles,” Z. Kristallogr.224(11), 528–538 (2009).
[CrossRef]

Horowitz, F.

Hunt, A.

K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, “Thermal behavior of silver nanoparticles for low-temperature interconnect applications,” J. Electron. Mater.34(2), 168–175 (2005).
[CrossRef]

Inácio, P. L.

Ishikawa, N.

H. Amekura, M. L. Sele, N. Ishikawa, and N. Okubo, “Thermal stability of embedded metal nanoparticles elongated by swift heavy ion irradiation: Zn nanoparticles in a molten state but preserving elongated shapes,” Nanotechnology23(9), 095704 (2012).
[CrossRef] [PubMed]

Jia, G. Y.

J. Wang, G. Y. Jia, X. Y. Mu, and C. L. Liu, “Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation,” Appl. Phys. Lett.102(13), 133102 (2013).
[CrossRef]

Jiang, C. Z.

F. Ren, C. Z. Jiang, L. Zhang, Y. Shi, J. B. Wang, and R. H. Wang, “Formation and microstructural investigation of Ag-Cu alloy nanoclusters embedded in SiO2 formed by sequential ion implantation,” Micron35(6), 489–493 (2004).
[CrossRef] [PubMed]

Jiménez, E.

G. Fuertes, O. L. Sánchez-Muñoz, E. Pedrueza, K. Abderrafi, J. Salgado, and E. Jiménez, “Switchable bactericidal effects from novel silica-coated silver nanoparticles mediated by light irradiation,” Langmuir27(6), 2826–2833 (2011).
[CrossRef] [PubMed]

Johannessen, B.

H. Amekura, B. Johannessen, D. J. Sprouster, and M. C. Ridgway, “Amorphization of Cu nanoparticles: Effects on surface plasmon resonance,” Appl. Phys. Lett.99(4), 043102 (2011).
[CrossRef]

D. J. Sprouster, R. Giulian, L. L. Araujo, P. Kluth, B. Johannessen, N. Kirby, K. Nordlund, and M. C. Ridgway, “Ion-irradiation-induced amorphization of cobalt nanoparticles,” Phys. Rev. B81(15), 155414 (2010).
[CrossRef]

B. Johannessen, P. Kluth, D. J. Llewellyn, G. J. Foran, D. J. Cookson, and M. C. Ridgway, “Ion-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2,” Phys. Rev. B76(18), 184203 (2007).
[CrossRef]

José Yacamán, M.

M. José Yacamán, J. A. Ascencio, H. B. Liu, and J. Gardea-Torresdey, “Structure shape and stability of nanometric sized particles,” J. Vac. Sci. Technol. B19(4), 1091–1103 (2001).
[CrossRef]

Kavetskyy, T. S.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys. A Mater. Sci. Process.111(1), 261–264 (2013).
[CrossRef]

Kerboua, C. H.

C. H. Kerboua, J.-M. Lamarre, M. Chicoine, L. Martinu, and S. Roorda, “Elongation of gold nanoparticles by swift heavy ion irradiation: surface plasmon resonance shift dependence on the electronic stopping power,” Thin Solid Films527, 186–192 (2013).
[CrossRef]

Kirby, N.

D. J. Sprouster, R. Giulian, L. L. Araujo, P. Kluth, B. Johannessen, N. Kirby, K. Nordlund, and M. C. Ridgway, “Ion-irradiation-induced amorphization of cobalt nanoparticles,” Phys. Rev. B81(15), 155414 (2010).
[CrossRef]

Kiyan, R.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys. A Mater. Sci. Process.111(1), 261–264 (2013).
[CrossRef]

Klaumünzer, S.

S. Klaumünzer, “Modification of nanostructures by high-energy ion beams,” Nucl. Instr. and Meth. in Phys, Res. B244(1), 1–7 (2006).

Kluth, P.

D. J. Sprouster, R. Giulian, L. L. Araujo, P. Kluth, B. Johannessen, N. Kirby, K. Nordlund, and M. C. Ridgway, “Ion-irradiation-induced amorphization of cobalt nanoparticles,” Phys. Rev. B81(15), 155414 (2010).
[CrossRef]

B. Johannessen, P. Kluth, D. J. Llewellyn, G. J. Foran, D. J. Cookson, and M. C. Ridgway, “Ion-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2,” Phys. Rev. B76(18), 184203 (2007).
[CrossRef]

Lamarre, J.-M.

C. H. Kerboua, J.-M. Lamarre, M. Chicoine, L. Martinu, and S. Roorda, “Elongation of gold nanoparticles by swift heavy ion irradiation: surface plasmon resonance shift dependence on the electronic stopping power,” Thin Solid Films527, 186–192 (2013).
[CrossRef]

Lei, D. Y.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

Li, G. H.

G. H. Li, X. Z. Cui, C. Y. Tan, and N. Lin, “Solvothermal synthesis of polycrystalline tellurium nanoplates and their conversion into single crystalline nanorods,” RSC Adv.4(2), 954–958 (2013).
[CrossRef]

Li, Y.

K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, “Thermal behavior of silver nanoparticles for low-temperature interconnect applications,” J. Electron. Mater.34(2), 168–175 (2005).
[CrossRef]

Lin, N.

G. H. Li, X. Z. Cui, C. Y. Tan, and N. Lin, “Solvothermal synthesis of polycrystalline tellurium nanoplates and their conversion into single crystalline nanorods,” RSC Adv.4(2), 954–958 (2013).
[CrossRef]

Lindquist, N. C.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Liu, C. L.

J. Wang, G. Y. Jia, X. Y. Mu, and C. L. Liu, “Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation,” Appl. Phys. Lett.102(13), 133102 (2013).
[CrossRef]

H. X. Liu, X. D. Zhang, Y. Y. Shen, L. H. Zhang, J. Wang, F. Zhu, B. Zhang, and C. L. Liu, “Tailoring the size distribution of Ag nanoparticles embedded in SiO2 by Xe ion postirradiation,” Appl. Phys. Express5(10), 105002 (2012).
[CrossRef]

Liu, H. B.

J. A. Ascencio, H. B. Liu, U. Pal, A. Medina, and Z. L. Wang, “Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior,” Microsc. Res. Tech.69(7), 522–530 (2006).
[CrossRef] [PubMed]

M. José Yacamán, J. A. Ascencio, H. B. Liu, and J. Gardea-Torresdey, “Structure shape and stability of nanometric sized particles,” J. Vac. Sci. Technol. B19(4), 1091–1103 (2001).
[CrossRef]

Liu, H. X.

H. X. Liu, X. D. Zhang, Y. Y. Shen, L. H. Zhang, J. Wang, F. Zhu, B. Zhang, and C. L. Liu, “Tailoring the size distribution of Ag nanoparticles embedded in SiO2 by Xe ion postirradiation,” Appl. Phys. Express5(10), 105002 (2012).
[CrossRef]

Llewellyn, D. J.

B. Johannessen, P. Kluth, D. J. Llewellyn, G. J. Foran, D. J. Cookson, and M. C. Ridgway, “Ion-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2,” Phys. Rev. B76(18), 184203 (2007).
[CrossRef]

Llopis, J.

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol–gel films,” Chem. Phys. Lett.315(5–6), 313–320 (1999).
[CrossRef]

Maier, S. A.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

Maric, R.

K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, “Thermal behavior of silver nanoparticles for low-temperature interconnect applications,” J. Electron. Mater.34(2), 168–175 (2005).
[CrossRef]

Martinu, L.

C. H. Kerboua, J.-M. Lamarre, M. Chicoine, L. Martinu, and S. Roorda, “Elongation of gold nanoparticles by swift heavy ion irradiation: surface plasmon resonance shift dependence on the electronic stopping power,” Thin Solid Films527, 186–192 (2013).
[CrossRef]

Mattei, G.

Matzke, H.

L. M. Wang, S. X. Wang, R. C. Ewing, A. Meldrum, R. C. Birtcher, P. Newcomer Provencio, W. J. Weber, and H. Matzke, “Irradiation-induced nanostructures,” Mater. Sci. Eng. A286(1), 72–80 (2000).
[CrossRef]

Mazzoldi, P.

Medina, A.

J. A. Ascencio, H. B. Liu, U. Pal, A. Medina, and Z. L. Wang, “Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior,” Microsc. Res. Tech.69(7), 522–530 (2006).
[CrossRef] [PubMed]

Meldrum, A.

L. M. Wang, S. X. Wang, R. C. Ewing, A. Meldrum, R. C. Birtcher, P. Newcomer Provencio, W. J. Weber, and H. Matzke, “Irradiation-induced nanostructures,” Mater. Sci. Eng. A286(1), 72–80 (2000).
[CrossRef]

Monnet, I.

G. Rizza, E. A. Dawi, A. M. Vredenberg, and I. Monnet, “Ion engineering of embedded nanostructures: From spherical to facetted nanoparticles,” Appl. Phys. Lett.95(4), 043105 (2009).
[CrossRef]

Moon, K. S.

K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, “Thermal behavior of silver nanoparticles for low-temperature interconnect applications,” J. Electron. Mater.34(2), 168–175 (2005).
[CrossRef]

Mota-Santiago, P.

Mu, X. Y.

J. Wang, G. Y. Jia, X. Y. Mu, and C. L. Liu, “Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation,” Appl. Phys. Lett.102(13), 133102 (2013).
[CrossRef]

Muller, D.

P. Benzo, C. Bonafos, M. Bayle, R. Carles, L. Cattaneo, C. Farcau, G. Benassayag, B. Pécassou, and D. Muller, “Controlled synthesis of buried delta-layers of Ag nanocrystals for near-field plasmonic effects on free surfaces,” J. Appl. Phys.113(19), 193505 (2013).
[CrossRef]

Nagpal, P.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Newcomer Provencio, P.

L. M. Wang, S. X. Wang, R. C. Ewing, A. Meldrum, R. C. Birtcher, P. Newcomer Provencio, W. J. Weber, and H. Matzke, “Irradiation-induced nanostructures,” Mater. Sci. Eng. A286(1), 72–80 (2000).
[CrossRef]

Nordlund, K.

D. J. Sprouster, R. Giulian, L. L. Araujo, P. Kluth, B. Johannessen, N. Kirby, K. Nordlund, and M. C. Ridgway, “Ion-irradiation-induced amorphization of cobalt nanoparticles,” Phys. Rev. B81(15), 155414 (2010).
[CrossRef]

Norris, D. J.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Ntsoenzok, E.

H. Assaf, E. Ntsoenzok, M.-F. Barthe, M.-O. Ruault, T. Sauvage, and S. Ashok, ““Structural and nuclear characterizations of defects created by noble gas implantation in silicon oxide,” Nucl. Instr. and Meth. in Phys, Res. B253(1–2), 222–226 (2006).

Nuzhdin, V. I.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys. A Mater. Sci. Process.111(1), 261–264 (2013).
[CrossRef]

Oh, S. H.

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Okubo, N.

H. Amekura, M. L. Sele, N. Ishikawa, and N. Okubo, “Thermal stability of embedded metal nanoparticles elongated by swift heavy ion irradiation: Zn nanoparticles in a molten state but preserving elongated shapes,” Nanotechnology23(9), 095704 (2012).
[CrossRef] [PubMed]

Oliver, A.

O. Sánchez-Dena, P. Mota-Santiago, L. Tamayo-Rivera, E. V. García-Ramíre, A. Crespo-Sosa, A. Oliver, and J.-A. Reyes-Esqueda,“Size-and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire,” Opt. Mater. Express4(1), 92–100 (2014).
[CrossRef]

J. C. Cheang-Wong, A. Oliver, J. Roiz, L. Rodríguez-Fernández, J. M. Hernández, and A. Crespo-Sosa, “Relationship between the Ag depth profiles and nanoparticle formation in Ag-implanted silica,” J. Phys. Condens. Matter13(45), 10207–10219 (2001).
[CrossRef]

Osin, Y. N.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys. A Mater. Sci. Process.111(1), 261–264 (2013).
[CrossRef]

Paje, S. E.

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol–gel films,” Chem. Phys. Lett.315(5–6), 313–320 (1999).
[CrossRef]

Pal, U.

J. A. Ascencio, H. B. Liu, U. Pal, A. Medina, and Z. L. Wang, “Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior,” Microsc. Res. Tech.69(7), 522–530 (2006).
[CrossRef] [PubMed]

Pantelides, S. T.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

Pécassou, B.

P. Benzo, C. Bonafos, M. Bayle, R. Carles, L. Cattaneo, C. Farcau, G. Benassayag, B. Pécassou, and D. Muller, “Controlled synthesis of buried delta-layers of Ag nanocrystals for near-field plasmonic effects on free surfaces,” J. Appl. Phys.113(19), 193505 (2013).
[CrossRef]

Pedrueza, E.

G. Fuertes, O. L. Sánchez-Muñoz, E. Pedrueza, K. Abderrafi, J. Salgado, and E. Jiménez, “Switchable bactericidal effects from novel silica-coated silver nanoparticles mediated by light irradiation,” Langmuir27(6), 2826–2833 (2011).
[CrossRef] [PubMed]

Pereira, M. B.

Petroski, J. M.

Z. L. Wang, J. M. Petroski, T. C. Green, and M. A. El-Sayed, “Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals,” J. Phys. Chem. B102(32), 6145–6151 (1998).
[CrossRef]

Pothukuchi, S.

K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, “Thermal behavior of silver nanoparticles for low-temperature interconnect applications,” J. Electron. Mater.34(2), 168–175 (2005).
[CrossRef]

Pradier, C. M.

E. E. Bedford, J. Spadavecchia, C. M. Pradier, and F. X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles,” Macromol. Biosci.12(6), 724–739 (2012).
[CrossRef] [PubMed]

Ren, F.

F. Ren, C. Z. Jiang, L. Zhang, Y. Shi, J. B. Wang, and R. H. Wang, “Formation and microstructural investigation of Ag-Cu alloy nanoclusters embedded in SiO2 formed by sequential ion implantation,” Micron35(6), 489–493 (2004).
[CrossRef] [PubMed]

Reyes-Esqueda, J.-A.

Ridgway, M. C.

H. Amekura, B. Johannessen, D. J. Sprouster, and M. C. Ridgway, “Amorphization of Cu nanoparticles: Effects on surface plasmon resonance,” Appl. Phys. Lett.99(4), 043102 (2011).
[CrossRef]

D. J. Sprouster, R. Giulian, L. L. Araujo, P. Kluth, B. Johannessen, N. Kirby, K. Nordlund, and M. C. Ridgway, “Ion-irradiation-induced amorphization of cobalt nanoparticles,” Phys. Rev. B81(15), 155414 (2010).
[CrossRef]

B. Johannessen, P. Kluth, D. J. Llewellyn, G. J. Foran, D. J. Cookson, and M. C. Ridgway, “Ion-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2,” Phys. Rev. B76(18), 184203 (2007).
[CrossRef]

Rizza, G.

G. Rizza, E. A. Dawi, A. M. Vredenberg, and I. Monnet, “Ion engineering of embedded nanostructures: From spherical to facetted nanoparticles,” Appl. Phys. Lett.95(4), 043105 (2009).
[CrossRef]

Rodríguez-Fernández, L.

J. C. Cheang-Wong, A. Oliver, J. Roiz, L. Rodríguez-Fernández, J. M. Hernández, and A. Crespo-Sosa, “Relationship between the Ag depth profiles and nanoparticle formation in Ag-implanted silica,” J. Phys. Condens. Matter13(45), 10207–10219 (2001).
[CrossRef]

Roiz, J.

J. C. Cheang-Wong, A. Oliver, J. Roiz, L. Rodríguez-Fernández, J. M. Hernández, and A. Crespo-Sosa, “Relationship between the Ag depth profiles and nanoparticle formation in Ag-implanted silica,” J. Phys. Condens. Matter13(45), 10207–10219 (2001).
[CrossRef]

Roorda, S.

C. H. Kerboua, J.-M. Lamarre, M. Chicoine, L. Martinu, and S. Roorda, “Elongation of gold nanoparticles by swift heavy ion irradiation: surface plasmon resonance shift dependence on the electronic stopping power,” Thin Solid Films527, 186–192 (2013).
[CrossRef]

Ruault, M.-O.

H. Assaf, E. Ntsoenzok, M.-F. Barthe, M.-O. Ruault, T. Sauvage, and S. Ashok, ““Structural and nuclear characterizations of defects created by noble gas implantation in silicon oxide,” Nucl. Instr. and Meth. in Phys, Res. B253(1–2), 222–226 (2006).

Ruppin, R.

R. Ruppin, “Validity range of the Maxwell-Garnett theory,” Phys. Status Solidi, B Basic Res.87(2), 619–624 (1978).
[CrossRef]

Russell, D. H.

R. C. Gamez, E. T. Castellana, and D. H. Russell, “Sol-gel-derived silver-nanoparticle-embedded thin film for mass spectrometry-based biosensing,” Langmuir29(21), 6502–6507 (2013).
[CrossRef] [PubMed]

Salgado, J.

G. Fuertes, O. L. Sánchez-Muñoz, E. Pedrueza, K. Abderrafi, J. Salgado, and E. Jiménez, “Switchable bactericidal effects from novel silica-coated silver nanoparticles mediated by light irradiation,” Langmuir27(6), 2826–2833 (2011).
[CrossRef] [PubMed]

Sánchez-Dena, O.

Sánchez-Muñoz, O. L.

G. Fuertes, O. L. Sánchez-Muñoz, E. Pedrueza, K. Abderrafi, J. Salgado, and E. Jiménez, “Switchable bactericidal effects from novel silica-coated silver nanoparticles mediated by light irradiation,” Langmuir27(6), 2826–2833 (2011).
[CrossRef] [PubMed]

Sauvage, T.

H. Assaf, E. Ntsoenzok, M.-F. Barthe, M.-O. Ruault, T. Sauvage, and S. Ashok, ““Structural and nuclear characterizations of defects created by noble gas implantation in silicon oxide,” Nucl. Instr. and Meth. in Phys, Res. B253(1–2), 222–226 (2006).

Sele, M. L.

H. Amekura, M. L. Sele, N. Ishikawa, and N. Okubo, “Thermal stability of embedded metal nanoparticles elongated by swift heavy ion irradiation: Zn nanoparticles in a molten state but preserving elongated shapes,” Nanotechnology23(9), 095704 (2012).
[CrossRef] [PubMed]

Seto, J. Y. W.

J. Y. W. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys.46(12), 5247–5254 (1975).
[CrossRef]

Shen, Y. Y.

H. X. Liu, X. D. Zhang, Y. Y. Shen, L. H. Zhang, J. Wang, F. Zhu, B. Zhang, and C. L. Liu, “Tailoring the size distribution of Ag nanoparticles embedded in SiO2 by Xe ion postirradiation,” Appl. Phys. Express5(10), 105002 (2012).
[CrossRef]

Shi, Y.

F. Ren, C. Z. Jiang, L. Zhang, Y. Shi, J. B. Wang, and R. H. Wang, “Formation and microstructural investigation of Ag-Cu alloy nanoclusters embedded in SiO2 formed by sequential ion implantation,” Micron35(6), 489–493 (2004).
[CrossRef] [PubMed]

Sonnefraud, Y.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

Spadavecchia, J.

E. E. Bedford, J. Spadavecchia, C. M. Pradier, and F. X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles,” Macromol. Biosci.12(6), 724–739 (2012).
[CrossRef] [PubMed]

Sprouster, D. J.

H. Amekura, B. Johannessen, D. J. Sprouster, and M. C. Ridgway, “Amorphization of Cu nanoparticles: Effects on surface plasmon resonance,” Appl. Phys. Lett.99(4), 043102 (2011).
[CrossRef]

D. J. Sprouster, R. Giulian, L. L. Araujo, P. Kluth, B. Johannessen, N. Kirby, K. Nordlund, and M. C. Ridgway, “Ion-irradiation-induced amorphization of cobalt nanoparticles,” Phys. Rev. B81(15), 155414 (2010).
[CrossRef]

Stepanov, A. L.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys. A Mater. Sci. Process.111(1), 261–264 (2013).
[CrossRef]

Tamayo-Rivera, L.

Tan, C. Y.

G. H. Li, X. Z. Cui, C. Y. Tan, and N. Lin, “Solvothermal synthesis of polycrystalline tellurium nanoplates and their conversion into single crystalline nanorods,” RSC Adv.4(2), 954–958 (2013).
[CrossRef]

Tian, B. Z.

J. Zheng, Y. Ding, B. Z. Tian, Z. L. Wang, and X. W. Zhuang, “Luminescent and Raman active silver nanoparticles with polycrystalline structure,” J. Am. Chem. Soc.130(32), 10472–10473 (2008).
[CrossRef] [PubMed]

Valeev, V. F.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys. A Mater. Sci. Process.111(1), 261–264 (2013).
[CrossRef]

Voorhees, P. W.

P. W. Voorhees, “The theory of Ostwald ripening,” J. Stat. Phys.38(1–2), 231–252 (1985).
[CrossRef]

Vredenberg, A. M.

G. Rizza, E. A. Dawi, A. M. Vredenberg, and I. Monnet, “Ion engineering of embedded nanostructures: From spherical to facetted nanoparticles,” Appl. Phys. Lett.95(4), 043105 (2009).
[CrossRef]

Wang, B.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

Wang, J.

J. Wang, G. Y. Jia, X. Y. Mu, and C. L. Liu, “Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation,” Appl. Phys. Lett.102(13), 133102 (2013).
[CrossRef]

H. X. Liu, X. D. Zhang, Y. Y. Shen, L. H. Zhang, J. Wang, F. Zhu, B. Zhang, and C. L. Liu, “Tailoring the size distribution of Ag nanoparticles embedded in SiO2 by Xe ion postirradiation,” Appl. Phys. Express5(10), 105002 (2012).
[CrossRef]

Wang, J. B.

F. Ren, C. Z. Jiang, L. Zhang, Y. Shi, J. B. Wang, and R. H. Wang, “Formation and microstructural investigation of Ag-Cu alloy nanoclusters embedded in SiO2 formed by sequential ion implantation,” Micron35(6), 489–493 (2004).
[CrossRef] [PubMed]

Wang, L. M.

L. M. Wang, S. X. Wang, R. C. Ewing, A. Meldrum, R. C. Birtcher, P. Newcomer Provencio, W. J. Weber, and H. Matzke, “Irradiation-induced nanostructures,” Mater. Sci. Eng. A286(1), 72–80 (2000).
[CrossRef]

Wang, R. H.

F. Ren, C. Z. Jiang, L. Zhang, Y. Shi, J. B. Wang, and R. H. Wang, “Formation and microstructural investigation of Ag-Cu alloy nanoclusters embedded in SiO2 formed by sequential ion implantation,” Micron35(6), 489–493 (2004).
[CrossRef] [PubMed]

Wang, S. X.

L. M. Wang, S. X. Wang, R. C. Ewing, A. Meldrum, R. C. Birtcher, P. Newcomer Provencio, W. J. Weber, and H. Matzke, “Irradiation-induced nanostructures,” Mater. Sci. Eng. A286(1), 72–80 (2000).
[CrossRef]

Wang, Z. L.

J. Zheng, Y. Ding, B. Z. Tian, Z. L. Wang, and X. W. Zhuang, “Luminescent and Raman active silver nanoparticles with polycrystalline structure,” J. Am. Chem. Soc.130(32), 10472–10473 (2008).
[CrossRef] [PubMed]

J. A. Ascencio, H. B. Liu, U. Pal, A. Medina, and Z. L. Wang, “Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior,” Microsc. Res. Tech.69(7), 522–530 (2006).
[CrossRef] [PubMed]

Z. L. Wang, “Transmission electron microscopy of shape-controlled nanocrystals and their assemblies,” J. Phys. Chem. B104(6), 1153–1175 (2000).
[CrossRef]

Z. L. Wang, J. M. Petroski, T. C. Green, and M. A. El-Sayed, “Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals,” J. Phys. Chem. B102(32), 6145–6151 (1998).
[CrossRef]

Weber, W. J.

L. M. Wang, S. X. Wang, R. C. Ewing, A. Meldrum, R. C. Birtcher, P. Newcomer Provencio, W. J. Weber, and H. Matzke, “Irradiation-induced nanostructures,” Mater. Sci. Eng. A286(1), 72–80 (2000).
[CrossRef]

Wong, C. P.

K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, “Thermal behavior of silver nanoparticles for low-temperature interconnect applications,” J. Electron. Mater.34(2), 168–175 (2005).
[CrossRef]

Yeshchenko, O. A.

O. A. Yeshchenko, “Temperature effects on the surface plasmon resonance in copper nanoparticles,” Ukr. J. Phys.58(3), 249–259 (2013).

Zhang, B.

H. X. Liu, X. D. Zhang, Y. Y. Shen, L. H. Zhang, J. Wang, F. Zhu, B. Zhang, and C. L. Liu, “Tailoring the size distribution of Ag nanoparticles embedded in SiO2 by Xe ion postirradiation,” Appl. Phys. Express5(10), 105002 (2012).
[CrossRef]

Zhang, L.

F. Ren, C. Z. Jiang, L. Zhang, Y. Shi, J. B. Wang, and R. H. Wang, “Formation and microstructural investigation of Ag-Cu alloy nanoclusters embedded in SiO2 formed by sequential ion implantation,” Micron35(6), 489–493 (2004).
[CrossRef] [PubMed]

Zhang, L. H.

H. X. Liu, X. D. Zhang, Y. Y. Shen, L. H. Zhang, J. Wang, F. Zhu, B. Zhang, and C. L. Liu, “Tailoring the size distribution of Ag nanoparticles embedded in SiO2 by Xe ion postirradiation,” Appl. Phys. Express5(10), 105002 (2012).
[CrossRef]

Zhang, X. D.

H. X. Liu, X. D. Zhang, Y. Y. Shen, L. H. Zhang, J. Wang, F. Zhu, B. Zhang, and C. L. Liu, “Tailoring the size distribution of Ag nanoparticles embedded in SiO2 by Xe ion postirradiation,” Appl. Phys. Express5(10), 105002 (2012).
[CrossRef]

Zheng, J.

J. Zheng, Y. Ding, B. Z. Tian, Z. L. Wang, and X. W. Zhuang, “Luminescent and Raman active silver nanoparticles with polycrystalline structure,” J. Am. Chem. Soc.130(32), 10472–10473 (2008).
[CrossRef] [PubMed]

Zhu, F.

H. X. Liu, X. D. Zhang, Y. Y. Shen, L. H. Zhang, J. Wang, F. Zhu, B. Zhang, and C. L. Liu, “Tailoring the size distribution of Ag nanoparticles embedded in SiO2 by Xe ion postirradiation,” Appl. Phys. Express5(10), 105002 (2012).
[CrossRef]

Zhuang, X. W.

J. Zheng, Y. Ding, B. Z. Tian, Z. L. Wang, and X. W. Zhuang, “Luminescent and Raman active silver nanoparticles with polycrystalline structure,” J. Am. Chem. Soc.130(32), 10472–10473 (2008).
[CrossRef] [PubMed]

Appl. Phys. A Mater. Sci. Process.

A. L. Stepanov, M. F. Galyautdinov, A. B. Evlyukhin, V. I. Nuzhdin, V. F. Valeev, Y. N. Osin, E. A. Evlyukhin, R. Kiyan, T. S. Kavetskyy, and B. N. Chichkov, “Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation,” Appl. Phys. A Mater. Sci. Process.111(1), 261–264 (2013).
[CrossRef]

Appl. Phys. Express

H. X. Liu, X. D. Zhang, Y. Y. Shen, L. H. Zhang, J. Wang, F. Zhu, B. Zhang, and C. L. Liu, “Tailoring the size distribution of Ag nanoparticles embedded in SiO2 by Xe ion postirradiation,” Appl. Phys. Express5(10), 105002 (2012).
[CrossRef]

Appl. Phys. Lett.

G. Rizza, E. A. Dawi, A. M. Vredenberg, and I. Monnet, “Ion engineering of embedded nanostructures: From spherical to facetted nanoparticles,” Appl. Phys. Lett.95(4), 043105 (2009).
[CrossRef]

H. Amekura, B. Johannessen, D. J. Sprouster, and M. C. Ridgway, “Amorphization of Cu nanoparticles: Effects on surface plasmon resonance,” Appl. Phys. Lett.99(4), 043102 (2011).
[CrossRef]

J. Wang, G. Y. Jia, X. Y. Mu, and C. L. Liu, “Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation,” Appl. Phys. Lett.102(13), 133102 (2013).
[CrossRef]

Chem. Phys. Lett.

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol–gel films,” Chem. Phys. Lett.315(5–6), 313–320 (1999).
[CrossRef]

IEEE Trans. Nucl. Sci.

G. W. Arnold, “Ion-implantation effects in noncrystalline SiO2,” IEEE Trans. Nucl. Sci.20(6), 220–223 (1973).
[CrossRef]

J. Am. Chem. Soc.

J. Zheng, Y. Ding, B. Z. Tian, Z. L. Wang, and X. W. Zhuang, “Luminescent and Raman active silver nanoparticles with polycrystalline structure,” J. Am. Chem. Soc.130(32), 10472–10473 (2008).
[CrossRef] [PubMed]

J. Appl. Phys.

J. Y. W. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys.46(12), 5247–5254 (1975).
[CrossRef]

P. Benzo, C. Bonafos, M. Bayle, R. Carles, L. Cattaneo, C. Farcau, G. Benassayag, B. Pécassou, and D. Muller, “Controlled synthesis of buried delta-layers of Ag nanocrystals for near-field plasmonic effects on free surfaces,” J. Appl. Phys.113(19), 193505 (2013).
[CrossRef]

J. Electron. Mater.

K. S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, and C. P. Wong, “Thermal behavior of silver nanoparticles for low-temperature interconnect applications,” J. Electron. Mater.34(2), 168–175 (2005).
[CrossRef]

J. Non-Cryst. Solids

G. W. Arnold, “Ion implantation in silicate glasses,” J. Non-Cryst. Solids179(4), 288–299 (1994).
[CrossRef]

J. Phys. Chem. B

Z. L. Wang, “Transmission electron microscopy of shape-controlled nanocrystals and their assemblies,” J. Phys. Chem. B104(6), 1153–1175 (2000).
[CrossRef]

Z. L. Wang, J. M. Petroski, T. C. Green, and M. A. El-Sayed, “Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals,” J. Phys. Chem. B102(32), 6145–6151 (1998).
[CrossRef]

J. Phys. Condens. Matter

J. C. Cheang-Wong, A. Oliver, J. Roiz, L. Rodríguez-Fernández, J. M. Hernández, and A. Crespo-Sosa, “Relationship between the Ag depth profiles and nanoparticle formation in Ag-implanted silica,” J. Phys. Condens. Matter13(45), 10207–10219 (2001).
[CrossRef]

J. Stat. Phys.

P. W. Voorhees, “The theory of Ostwald ripening,” J. Stat. Phys.38(1–2), 231–252 (1985).
[CrossRef]

J. Vac. Sci. Technol. B

M. José Yacamán, J. A. Ascencio, H. B. Liu, and J. Gardea-Torresdey, “Structure shape and stability of nanometric sized particles,” J. Vac. Sci. Technol. B19(4), 1091–1103 (2001).
[CrossRef]

Langmuir

G. Fuertes, O. L. Sánchez-Muñoz, E. Pedrueza, K. Abderrafi, J. Salgado, and E. Jiménez, “Switchable bactericidal effects from novel silica-coated silver nanoparticles mediated by light irradiation,” Langmuir27(6), 2826–2833 (2011).
[CrossRef] [PubMed]

R. C. Gamez, E. T. Castellana, and D. H. Russell, “Sol-gel-derived silver-nanoparticle-embedded thin film for mass spectrometry-based biosensing,” Langmuir29(21), 6502–6507 (2013).
[CrossRef] [PubMed]

Macromol. Biosci.

E. E. Bedford, J. Spadavecchia, C. M. Pradier, and F. X. Gu, “Surface plasmon resonance biosensors incorporating gold nanoparticles,” Macromol. Biosci.12(6), 724–739 (2012).
[CrossRef] [PubMed]

Mater. Sci. Eng. A

L. M. Wang, S. X. Wang, R. C. Ewing, A. Meldrum, R. C. Birtcher, P. Newcomer Provencio, W. J. Weber, and H. Matzke, “Irradiation-induced nanostructures,” Mater. Sci. Eng. A286(1), 72–80 (2000).
[CrossRef]

Micron

F. Ren, C. Z. Jiang, L. Zhang, Y. Shi, J. B. Wang, and R. H. Wang, “Formation and microstructural investigation of Ag-Cu alloy nanoclusters embedded in SiO2 formed by sequential ion implantation,” Micron35(6), 489–493 (2004).
[CrossRef] [PubMed]

Microsc. Res. Tech.

J. A. Ascencio, H. B. Liu, U. Pal, A. Medina, and Z. L. Wang, “Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior,” Microsc. Res. Tech.69(7), 522–530 (2006).
[CrossRef] [PubMed]

Nano Lett.

K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund., “Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy,” Nano Lett.12(2), 780–786 (2012).
[CrossRef] [PubMed]

Nanotechnology

H. Amekura, M. L. Sele, N. Ishikawa, and N. Okubo, “Thermal stability of embedded metal nanoparticles elongated by swift heavy ion irradiation: Zn nanoparticles in a molten state but preserving elongated shapes,” Nanotechnology23(9), 095704 (2012).
[CrossRef] [PubMed]

Nucl. Instr. and Meth. in Phys, Res. B

S. Klaumünzer, “Modification of nanostructures by high-energy ion beams,” Nucl. Instr. and Meth. in Phys, Res. B244(1), 1–7 (2006).

H. Assaf, E. Ntsoenzok, M.-F. Barthe, M.-O. Ruault, T. Sauvage, and S. Ashok, ““Structural and nuclear characterizations of defects created by noble gas implantation in silicon oxide,” Nucl. Instr. and Meth. in Phys, Res. B253(1–2), 222–226 (2006).

Opt. Express

Opt. Mater. Express

Phys. Rev. B

B. Johannessen, P. Kluth, D. J. Llewellyn, G. J. Foran, D. J. Cookson, and M. C. Ridgway, “Ion-irradiation-induced amorphization of Cu nanoparticles embedded in SiO2,” Phys. Rev. B76(18), 184203 (2007).
[CrossRef]

D. J. Sprouster, R. Giulian, L. L. Araujo, P. Kluth, B. Johannessen, N. Kirby, K. Nordlund, and M. C. Ridgway, “Ion-irradiation-induced amorphization of cobalt nanoparticles,” Phys. Rev. B81(15), 155414 (2010).
[CrossRef]

Phys. Status Solidi, B Basic Res.

R. Ruppin, “Validity range of the Maxwell-Garnett theory,” Phys. Status Solidi, B Basic Res.87(2), 619–624 (1978).
[CrossRef]

RSC Adv.

G. H. Li, X. Z. Cui, C. Y. Tan, and N. Lin, “Solvothermal synthesis of polycrystalline tellurium nanoplates and their conversion into single crystalline nanorods,” RSC Adv.4(2), 954–958 (2013).
[CrossRef]

Science

P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325(5940), 594–597 (2009).
[CrossRef] [PubMed]

Thin Solid Films

C. H. Kerboua, J.-M. Lamarre, M. Chicoine, L. Martinu, and S. Roorda, “Elongation of gold nanoparticles by swift heavy ion irradiation: surface plasmon resonance shift dependence on the electronic stopping power,” Thin Solid Films527, 186–192 (2013).
[CrossRef]

Top. Appl. Phys.

G. Mattei, P. Mazzoldi, and H. Bernas, “Metal nanoclusters for optical properties,” Top. Appl. Phys.116, 287–316 (2009).
[CrossRef]

Ukr. J. Phys.

O. A. Yeshchenko, “Temperature effects on the surface plasmon resonance in copper nanoparticles,” Ukr. J. Phys.58(3), 249–259 (2013).

Z. Kristallogr.

H. Hofmeister, “Shape variations and anisotropic growth of multiply twinned nanoparticles,” Z. Kristallogr.224(11), 528–538 (2009).
[CrossRef]

Other

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1985).

J. F. Ziegler, computer code, SRIM 2013, available online at: http://www.srim.org/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XTEM images showing overall morphologies of NPs created in the (a) Ag and (b) Ag + Xe samples.

Fig. 2
Fig. 2

(a) HRTEM image together with corresponding FFT pattern (inset) of one Ag NP in the Ag sample, (b) close view of the sheet-like nanostructure created in the Ag + Xe sample, and (c-e) HRTEM images showing various polycrystalline Ag NPs in the Ag + Xe sample.

Fig. 3
Fig. 3

GIXRD patterns of the Ag samples before and after Xe ion irradiation.

Fig. 4
Fig. 4

(a) OA spectra of the Ag and Ag + Xe samples. Inset gives the Gaussian fit band with two peaks (1, 2) for the Ag + Xe sample. (b) Calculated absorption cross section σ spectra of a crystalline spherical Ag NP by Mie theory and of polycrystalline Ag NPs by MG theory with different interaction parameters K. A refractive index of 1.46 was used for SiO2 matrix and all calculations are normalized to the height of the spectrum calculated by Mie theory.

Fig. 5
Fig. 5

Schematic illustration of the crystalline and polycrystalline Ag NPs as well as their influences on the EMFP.

Fig. 6
Fig. 6

(a) XTEM image of the Ag + Xe sample after 400 °C annealing. The inset gives the HRTEM image of one particle together with the measured spacings of the crystallographic plane, (b) OA spectra of the Ag and Ag + Xe samples after 400 °C annealing.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G 1 ( λ )   =   0. 1593exp ( ( ( λ 4 0 1 . 3 ) / 22 . 82 ) 2 )             +   0.0 1 0 59exp ( ( ( λ 434 . 3 ) / 13 . 5 ) 2 ) +  4 . 13exp ( ( ( λ 453 . 1 ) / 63 . 97 ) 2 )    4 .0 51exp ( ( ( λ 453 . 8 ) / 63 . 39 ) 2 )             +   0.0 6499exp ( ( ( λ 55 0. 3 ) / 516 . 1 ) 2 )                                                            
G 2 ( λ )   =   0.0 8275exp ( ( ( λ 55 0. 1 ) / 131 . 4 ) 2 )   +   0.0 734exp ( ( ( λ 278 . 7 ) / 1273 ) 2 )
σ abs =7.16× 10 4 ω [ ε 1,eff + ( ε 1,eff 2 + ε 2,eff 2 ) 1/2 ] 1/2
{ ε 1,eff = ε m + AC+BD C 2 + D 2 ε 2,eff = BCAD C 2 + D 2
A=f( ε 1 ε m ),        B=f ε 2 C= ε m +β( ε 1 ε m )f( ε 1 ε m )( 1 3 ε m  + K 4π ε m ) D=β ε 2 f ε 2 ( 1 3 ε m  + K 4π ε m )

Metrics