Abstract

Tm3+-doped 0.1Tm2O3-1Al2O3-98.9SiO2 (mol%) silica glass with good uniformity was prepared by sol-gel method combining with high temperature sintering. The core glass sized Φ3.2 × 50 mm with Δn of 5 × 10−4 was obtained after gelation, heat treatment, melting and polishing. Its spectroscopic properties were evaluated according to the detected absorption and fluorescence spectra. The maximum emission cross-section of Tm3+ ion in this glass is 6.2 × 10−21 cm2 and tested fluorescence lifetime is 836 μs at 1806 nm. Large core double cladding fiber with core NA of 0.102 was prepared by rod-in-tube and high temperature drawing. Its tested optical loss is 1.1 dB/m at 1333 nm. 1.11 W fiber laser output centered at 1969 nm with M2 factor of 1.99 was obtained from a 140 cm length double-cladding fiber with core diameter of 38 μm. The quasi-single mode laser with M2 factor of 1.33 was achieved in the fiber with core diameter of 19 μm.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Tang, L. Xu, Y. Yang, and J. Xu, “High-power gain-switched Tm3+-doped fiber laser,” Opt. Express18(22), 22964–22972 (2010).
    [CrossRef] [PubMed]
  2. J. L. Yang, Y. L. Tang, and J. Q. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res.1(1), 52–57 (2013).
    [CrossRef]
  3. X. Wang, P. Zhou, X. L. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97μm Tm-doped fiber amplifier,” High Power Laser Science and Engineering1(3-4), 123–125 (2013).
    [CrossRef]
  4. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun.230(1-3), 197–203 (2004).
    [CrossRef]
  5. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004).
    [CrossRef] [PubMed]
  6. B. Assaad, E. H. Hicham, F. Ihsan, B. Geraud, B. Mohamed, and B. Laurent, “A pure silica ytterbium- doped sol-gel-based fiber laser,” Laser Phys. Lett.10, 5106–5111 (2013).
  7. L. Andreas, S. Gerhard, S. Mario, K. Thomas, R. Volker, G. Stephan, K. Johannes, K. Volker, and R. Georg, “A new material for high power laser fibers,” Proc SPIE 6873, 11–19 (2008).
  8. L. Andreas, S. Gerhard, S. Mario, K. Thomas, R. Volker, G. Stephan, K. Johannes, K. Volker, and R. Georg, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 0F 1-12 (2012).
  9. L. Andreas, S. Gerhard, S. Mario, K. Thomas, R. Volker, G. Stephan, K. Johannes, K. Volker, and R. Georg, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 0G–1-13 (2013).
  10. S. K. Wang, F. G. Lou, M. Wang, and L. Hu, “Characteristics and laser performance of Yb3+-doped silica large mode area fibers prepared by sol-gel method,” Fibers.1(3), 93–100 (2013).
    [CrossRef]
  11. U. Pedrazza, V. Romano, and W. Luthy, “Yb3+: Al3+: sol-gel silica glass fiber laser,” Opt. Mater.29(7), 905–907 (2007).
    [CrossRef]
  12. L. Y. Gang, J. P. Huang, Y. F. Li, Y. J. He, S. J. Gu, G. H. Chen, L. Y. Liu, and L. Xu, “Optical properties and laser output of heavily Yb-doped fiber prepared by sol-gel method and DC-RTA technique,” J. Lightw. Tech.26(18), 3256–3260 (2008).
    [CrossRef]
  13. Z. L. Li, S. K. Wang, X. Wang, P. W. Kuan, and L. Hu, “Spectral Properties of Tm3+-Doped Silica Glasses and Laser Behaviors of Fibers by Sol-Gel Technology,” Chin. J. Lasers40, 6003–6015 (2013).
  14. S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared cross-section measurements for crystals doped with Er3+,Tm3+,and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
    [CrossRef]
  15. X. L. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B Condens. Matter52(22), 15889–15897 (1995).
    [CrossRef] [PubMed]
  16. G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin.129(9), 1042–1047 (2009).
    [CrossRef]
  17. G. J. Gao, L. L. Hu, H. Y. Fan, G. N. Wang, K. F. Li, S. Y. Feng, S. J. Fan, H. Y. Chen, J. J. Pan, and J. J. Zhang, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2 O3 glasses,” Opt. Mater.32(2), 402–405 (2009).
    [CrossRef]
  18. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express14(1), 50–57 (2006).
    [CrossRef] [PubMed]
  19. M. Engelbrecht, F. Haxsen, D. Wandt, and D. Kracht, “Wavelength resolved intracavity measurement of the cross sections of a Tm-doped fiber,” Opt. Express16(3), 1610–1615 (2008).
    [CrossRef] [PubMed]
  20. S. D. Jackson and T. A. King, “Theoretical Modeling of Tm-Doped Silica Fiber Lasers,” J. Lightw. Tech.17(5), 948–956 (1999).
    [CrossRef]
  21. X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Lightw. Tech.195, 113–124 (1996).
  22. B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μ m,” Appl. Phys. B78(3-4), 325–333 (2004).
    [CrossRef]
  23. S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater.35(9), 1752–1755 (2013).
    [CrossRef]
  24. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Quantum Electron.13(3), 567–572 (2007).
    [CrossRef]

2013 (6)

J. L. Yang, Y. L. Tang, and J. Q. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res.1(1), 52–57 (2013).
[CrossRef]

X. Wang, P. Zhou, X. L. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97μm Tm-doped fiber amplifier,” High Power Laser Science and Engineering1(3-4), 123–125 (2013).
[CrossRef]

B. Assaad, E. H. Hicham, F. Ihsan, B. Geraud, B. Mohamed, and B. Laurent, “A pure silica ytterbium- doped sol-gel-based fiber laser,” Laser Phys. Lett.10, 5106–5111 (2013).

S. K. Wang, F. G. Lou, M. Wang, and L. Hu, “Characteristics and laser performance of Yb3+-doped silica large mode area fibers prepared by sol-gel method,” Fibers.1(3), 93–100 (2013).
[CrossRef]

Z. L. Li, S. K. Wang, X. Wang, P. W. Kuan, and L. Hu, “Spectral Properties of Tm3+-Doped Silica Glasses and Laser Behaviors of Fibers by Sol-Gel Technology,” Chin. J. Lasers40, 6003–6015 (2013).

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater.35(9), 1752–1755 (2013).
[CrossRef]

2010 (1)

2009 (2)

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin.129(9), 1042–1047 (2009).
[CrossRef]

G. J. Gao, L. L. Hu, H. Y. Fan, G. N. Wang, K. F. Li, S. Y. Feng, S. J. Fan, H. Y. Chen, J. J. Pan, and J. J. Zhang, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2 O3 glasses,” Opt. Mater.32(2), 402–405 (2009).
[CrossRef]

2008 (2)

M. Engelbrecht, F. Haxsen, D. Wandt, and D. Kracht, “Wavelength resolved intracavity measurement of the cross sections of a Tm-doped fiber,” Opt. Express16(3), 1610–1615 (2008).
[CrossRef] [PubMed]

L. Y. Gang, J. P. Huang, Y. F. Li, Y. J. He, S. J. Gu, G. H. Chen, L. Y. Liu, and L. Xu, “Optical properties and laser output of heavily Yb-doped fiber prepared by sol-gel method and DC-RTA technique,” J. Lightw. Tech.26(18), 3256–3260 (2008).
[CrossRef]

2007 (2)

U. Pedrazza, V. Romano, and W. Luthy, “Yb3+: Al3+: sol-gel silica glass fiber laser,” Opt. Mater.29(7), 905–907 (2007).
[CrossRef]

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Quantum Electron.13(3), 567–572 (2007).
[CrossRef]

2006 (1)

2004 (3)

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μ m,” Appl. Phys. B78(3-4), 325–333 (2004).
[CrossRef]

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun.230(1-3), 197–203 (2004).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004).
[CrossRef] [PubMed]

1999 (1)

S. D. Jackson and T. A. King, “Theoretical Modeling of Tm-Doped Silica Fiber Lasers,” J. Lightw. Tech.17(5), 948–956 (1999).
[CrossRef]

1996 (1)

X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Lightw. Tech.195, 113–124 (1996).

1995 (1)

X. L. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B Condens. Matter52(22), 15889–15897 (1995).
[CrossRef] [PubMed]

1992 (1)

S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared cross-section measurements for crystals doped with Er3+,Tm3+,and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Agger, S. D.

Assaad, B.

B. Assaad, E. H. Hicham, F. Ihsan, B. Geraud, B. Mohamed, and B. Laurent, “A pure silica ytterbium- doped sol-gel-based fiber laser,” Laser Phys. Lett.10, 5106–5111 (2013).

Barnes, N. P.

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μ m,” Appl. Phys. B78(3-4), 325–333 (2004).
[CrossRef]

Chase, L.

S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared cross-section measurements for crystals doped with Er3+,Tm3+,and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Chen, D. P.

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater.35(9), 1752–1755 (2013).
[CrossRef]

Chen, G. H.

L. Y. Gang, J. P. Huang, Y. F. Li, Y. J. He, S. J. Gu, G. H. Chen, L. Y. Liu, and L. Xu, “Optical properties and laser output of heavily Yb-doped fiber prepared by sol-gel method and DC-RTA technique,” J. Lightw. Tech.26(18), 3256–3260 (2008).
[CrossRef]

Chen, H. Y.

G. J. Gao, L. L. Hu, H. Y. Fan, G. N. Wang, K. F. Li, S. Y. Feng, S. J. Fan, H. Y. Chen, J. J. Pan, and J. J. Zhang, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2 O3 glasses,” Opt. Mater.32(2), 402–405 (2009).
[CrossRef]

Engelbrecht, M.

Fan, H. Y.

G. J. Gao, L. L. Hu, H. Y. Fan, G. N. Wang, K. F. Li, S. Y. Feng, S. J. Fan, H. Y. Chen, J. J. Pan, and J. J. Zhang, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2 O3 glasses,” Opt. Mater.32(2), 402–405 (2009).
[CrossRef]

Fan, S. J.

G. J. Gao, L. L. Hu, H. Y. Fan, G. N. Wang, K. F. Li, S. Y. Feng, S. J. Fan, H. Y. Chen, J. J. Pan, and J. J. Zhang, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2 O3 glasses,” Opt. Mater.32(2), 402–405 (2009).
[CrossRef]

Feng, S. Y.

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater.35(9), 1752–1755 (2013).
[CrossRef]

G. J. Gao, L. L. Hu, H. Y. Fan, G. N. Wang, K. F. Li, S. Y. Feng, S. J. Fan, H. Y. Chen, J. J. Pan, and J. J. Zhang, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2 O3 glasses,” Opt. Mater.32(2), 402–405 (2009).
[CrossRef]

Gang, L. Y.

L. Y. Gang, J. P. Huang, Y. F. Li, Y. J. He, S. J. Gu, G. H. Chen, L. Y. Liu, and L. Xu, “Optical properties and laser output of heavily Yb-doped fiber prepared by sol-gel method and DC-RTA technique,” J. Lightw. Tech.26(18), 3256–3260 (2008).
[CrossRef]

Gao, G. J.

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin.129(9), 1042–1047 (2009).
[CrossRef]

G. J. Gao, L. L. Hu, H. Y. Fan, G. N. Wang, K. F. Li, S. Y. Feng, S. J. Fan, H. Y. Chen, J. J. Pan, and J. J. Zhang, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2 O3 glasses,” Opt. Mater.32(2), 402–405 (2009).
[CrossRef]

Geraud, B.

B. Assaad, E. H. Hicham, F. Ihsan, B. Geraud, B. Mohamed, and B. Laurent, “A pure silica ytterbium- doped sol-gel-based fiber laser,” Laser Phys. Lett.10, 5106–5111 (2013).

Gu, S. J.

L. Y. Gang, J. P. Huang, Y. F. Li, Y. J. He, S. J. Gu, G. H. Chen, L. Y. Liu, and L. Xu, “Optical properties and laser output of heavily Yb-doped fiber prepared by sol-gel method and DC-RTA technique,” J. Lightw. Tech.26(18), 3256–3260 (2008).
[CrossRef]

Haxsen, F.

He, Y. J.

L. Y. Gang, J. P. Huang, Y. F. Li, Y. J. He, S. J. Gu, G. H. Chen, L. Y. Liu, and L. Xu, “Optical properties and laser output of heavily Yb-doped fiber prepared by sol-gel method and DC-RTA technique,” J. Lightw. Tech.26(18), 3256–3260 (2008).
[CrossRef]

Hicham, E. H.

B. Assaad, E. H. Hicham, F. Ihsan, B. Geraud, B. Mohamed, and B. Laurent, “A pure silica ytterbium- doped sol-gel-based fiber laser,” Laser Phys. Lett.10, 5106–5111 (2013).

Hu, L.

S. K. Wang, F. G. Lou, M. Wang, and L. Hu, “Characteristics and laser performance of Yb3+-doped silica large mode area fibers prepared by sol-gel method,” Fibers.1(3), 93–100 (2013).
[CrossRef]

Z. L. Li, S. K. Wang, X. Wang, P. W. Kuan, and L. Hu, “Spectral Properties of Tm3+-Doped Silica Glasses and Laser Behaviors of Fibers by Sol-Gel Technology,” Chin. J. Lasers40, 6003–6015 (2013).

Hu, L. L.

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater.35(9), 1752–1755 (2013).
[CrossRef]

G. J. Gao, L. L. Hu, H. Y. Fan, G. N. Wang, K. F. Li, S. Y. Feng, S. J. Fan, H. Y. Chen, J. J. Pan, and J. J. Zhang, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2 O3 glasses,” Opt. Mater.32(2), 402–405 (2009).
[CrossRef]

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin.129(9), 1042–1047 (2009).
[CrossRef]

Huang, J. P.

L. Y. Gang, J. P. Huang, Y. F. Li, Y. J. He, S. J. Gu, G. H. Chen, L. Y. Liu, and L. Xu, “Optical properties and laser output of heavily Yb-doped fiber prepared by sol-gel method and DC-RTA technique,” J. Lightw. Tech.26(18), 3256–3260 (2008).
[CrossRef]

Ihsan, F.

B. Assaad, E. H. Hicham, F. Ihsan, B. Geraud, B. Mohamed, and B. Laurent, “A pure silica ytterbium- doped sol-gel-based fiber laser,” Laser Phys. Lett.10, 5106–5111 (2013).

Jackson, S. D.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Quantum Electron.13(3), 567–572 (2007).
[CrossRef]

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun.230(1-3), 197–203 (2004).
[CrossRef]

S. D. Jackson and T. A. King, “Theoretical Modeling of Tm-Doped Silica Fiber Lasers,” J. Lightw. Tech.17(5), 948–956 (1999).
[CrossRef]

Jeong, Y.

King, T. A.

S. D. Jackson and T. A. King, “Theoretical Modeling of Tm-Doped Silica Fiber Lasers,” J. Lightw. Tech.17(5), 948–956 (1999).
[CrossRef]

Kracht, D.

Krupke, W.

S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared cross-section measurements for crystals doped with Er3+,Tm3+,and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Kuan, P. W.

Z. L. Li, S. K. Wang, X. Wang, P. W. Kuan, and L. Hu, “Spectral Properties of Tm3+-Doped Silica Glasses and Laser Behaviors of Fibers by Sol-Gel Technology,” Chin. J. Lasers40, 6003–6015 (2013).

Kway, W.

S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared cross-section measurements for crystals doped with Er3+,Tm3+,and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Lancaster, D. G.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Quantum Electron.13(3), 567–572 (2007).
[CrossRef]

Laurent, B.

B. Assaad, E. H. Hicham, F. Ihsan, B. Geraud, B. Mohamed, and B. Laurent, “A pure silica ytterbium- doped sol-gel-based fiber laser,” Laser Phys. Lett.10, 5106–5111 (2013).

Li, K. F.

G. J. Gao, L. L. Hu, H. Y. Fan, G. N. Wang, K. F. Li, S. Y. Feng, S. J. Fan, H. Y. Chen, J. J. Pan, and J. J. Zhang, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2 O3 glasses,” Opt. Mater.32(2), 402–405 (2009).
[CrossRef]

Li, Y. F.

L. Y. Gang, J. P. Huang, Y. F. Li, Y. J. He, S. J. Gu, G. H. Chen, L. Y. Liu, and L. Xu, “Optical properties and laser output of heavily Yb-doped fiber prepared by sol-gel method and DC-RTA technique,” J. Lightw. Tech.26(18), 3256–3260 (2008).
[CrossRef]

Li, Z. L.

Z. L. Li, S. K. Wang, X. Wang, P. W. Kuan, and L. Hu, “Spectral Properties of Tm3+-Doped Silica Glasses and Laser Behaviors of Fibers by Sol-Gel Technology,” Chin. J. Lasers40, 6003–6015 (2013).

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater.35(9), 1752–1755 (2013).
[CrossRef]

Liu, L. Y.

L. Y. Gang, J. P. Huang, Y. F. Li, Y. J. He, S. J. Gu, G. H. Chen, L. Y. Liu, and L. Xu, “Optical properties and laser output of heavily Yb-doped fiber prepared by sol-gel method and DC-RTA technique,” J. Lightw. Tech.26(18), 3256–3260 (2008).
[CrossRef]

Lou, F. G.

S. K. Wang, F. G. Lou, M. Wang, and L. Hu, “Characteristics and laser performance of Yb3+-doped silica large mode area fibers prepared by sol-gel method,” Fibers.1(3), 93–100 (2013).
[CrossRef]

Luthy, W.

U. Pedrazza, V. Romano, and W. Luthy, “Yb3+: Al3+: sol-gel silica glass fiber laser,” Opt. Mater.29(7), 905–907 (2007).
[CrossRef]

Mohamed, B.

B. Assaad, E. H. Hicham, F. Ihsan, B. Geraud, B. Mohamed, and B. Laurent, “A pure silica ytterbium- doped sol-gel-based fiber laser,” Laser Phys. Lett.10, 5106–5111 (2013).

Nilsson, J.

Pan, J. J.

G. J. Gao, L. L. Hu, H. Y. Fan, G. N. Wang, K. F. Li, S. Y. Feng, S. J. Fan, H. Y. Chen, J. J. Pan, and J. J. Zhang, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2 O3 glasses,” Opt. Mater.32(2), 402–405 (2009).
[CrossRef]

Payne, D. N.

Payne, S.

S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared cross-section measurements for crystals doped with Er3+,Tm3+,and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Pedrazza, U.

U. Pedrazza, V. Romano, and W. Luthy, “Yb3+: Al3+: sol-gel silica glass fiber laser,” Opt. Mater.29(7), 905–907 (2007).
[CrossRef]

Povlsen, J. H.

Romano, V.

U. Pedrazza, V. Romano, and W. Luthy, “Yb3+: Al3+: sol-gel silica glass fiber laser,” Opt. Mater.29(7), 905–907 (2007).
[CrossRef]

Sabella, A.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Quantum Electron.13(3), 567–572 (2007).
[CrossRef]

Sahu, J. K.

Si, L.

X. Wang, P. Zhou, X. L. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97μm Tm-doped fiber amplifier,” High Power Laser Science and Engineering1(3-4), 123–125 (2013).
[CrossRef]

Smith, L.

S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared cross-section measurements for crystals doped with Er3+,Tm3+,and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

Tang, Y.

Tang, Y. L.

Toratani, H.

X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Lightw. Tech.195, 113–124 (1996).

X. L. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B Condens. Matter52(22), 15889–15897 (1995).
[CrossRef] [PubMed]

Walsh, B. M.

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μ m,” Appl. Phys. B78(3-4), 325–333 (2004).
[CrossRef]

Wandt, D.

Wang, G. N.

G. J. Gao, L. L. Hu, H. Y. Fan, G. N. Wang, K. F. Li, S. Y. Feng, S. J. Fan, H. Y. Chen, J. J. Pan, and J. J. Zhang, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2 O3 glasses,” Opt. Mater.32(2), 402–405 (2009).
[CrossRef]

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin.129(9), 1042–1047 (2009).
[CrossRef]

Wang, M.

S. K. Wang, F. G. Lou, M. Wang, and L. Hu, “Characteristics and laser performance of Yb3+-doped silica large mode area fibers prepared by sol-gel method,” Fibers.1(3), 93–100 (2013).
[CrossRef]

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater.35(9), 1752–1755 (2013).
[CrossRef]

Wang, S. K.

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater.35(9), 1752–1755 (2013).
[CrossRef]

S. K. Wang, F. G. Lou, M. Wang, and L. Hu, “Characteristics and laser performance of Yb3+-doped silica large mode area fibers prepared by sol-gel method,” Fibers.1(3), 93–100 (2013).
[CrossRef]

Z. L. Li, S. K. Wang, X. Wang, P. W. Kuan, and L. Hu, “Spectral Properties of Tm3+-Doped Silica Glasses and Laser Behaviors of Fibers by Sol-Gel Technology,” Chin. J. Lasers40, 6003–6015 (2013).

Wang, X.

Z. L. Li, S. K. Wang, X. Wang, P. W. Kuan, and L. Hu, “Spectral Properties of Tm3+-Doped Silica Glasses and Laser Behaviors of Fibers by Sol-Gel Technology,” Chin. J. Lasers40, 6003–6015 (2013).

X. Wang, P. Zhou, X. L. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97μm Tm-doped fiber amplifier,” High Power Laser Science and Engineering1(3-4), 123–125 (2013).
[CrossRef]

Wang, X. L.

X. Wang, P. Zhou, X. L. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97μm Tm-doped fiber amplifier,” High Power Laser Science and Engineering1(3-4), 123–125 (2013).
[CrossRef]

Xiao, H.

X. Wang, P. Zhou, X. L. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97μm Tm-doped fiber amplifier,” High Power Laser Science and Engineering1(3-4), 123–125 (2013).
[CrossRef]

Xu, J.

Xu, J. Q.

Xu, L.

Y. Tang, L. Xu, Y. Yang, and J. Xu, “High-power gain-switched Tm3+-doped fiber laser,” Opt. Express18(22), 22964–22972 (2010).
[CrossRef] [PubMed]

L. Y. Gang, J. P. Huang, Y. F. Li, Y. J. He, S. J. Gu, G. H. Chen, L. Y. Liu, and L. Xu, “Optical properties and laser output of heavily Yb-doped fiber prepared by sol-gel method and DC-RTA technique,” J. Lightw. Tech.26(18), 3256–3260 (2008).
[CrossRef]

Yang, J. L.

Yang, Y.

Yu, C. L.

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater.35(9), 1752–1755 (2013).
[CrossRef]

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin.129(9), 1042–1047 (2009).
[CrossRef]

Zhang, J. J.

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin.129(9), 1042–1047 (2009).
[CrossRef]

G. J. Gao, L. L. Hu, H. Y. Fan, G. N. Wang, K. F. Li, S. Y. Feng, S. J. Fan, H. Y. Chen, J. J. Pan, and J. J. Zhang, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2 O3 glasses,” Opt. Mater.32(2), 402–405 (2009).
[CrossRef]

Zhou, P.

X. Wang, P. Zhou, X. L. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97μm Tm-doped fiber amplifier,” High Power Laser Science and Engineering1(3-4), 123–125 (2013).
[CrossRef]

Zhou, Q. L.

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater.35(9), 1752–1755 (2013).
[CrossRef]

Zou, X.

X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Lightw. Tech.195, 113–124 (1996).

Zou, X. L.

X. L. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B Condens. Matter52(22), 15889–15897 (1995).
[CrossRef] [PubMed]

Appl. Phys. B (1)

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm:silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μ m,” Appl. Phys. B78(3-4), 325–333 (2004).
[CrossRef]

Chin. J. Lasers (1)

Z. L. Li, S. K. Wang, X. Wang, P. W. Kuan, and L. Hu, “Spectral Properties of Tm3+-Doped Silica Glasses and Laser Behaviors of Fibers by Sol-Gel Technology,” Chin. J. Lasers40, 6003–6015 (2013).

Fibers. (1)

S. K. Wang, F. G. Lou, M. Wang, and L. Hu, “Characteristics and laser performance of Yb3+-doped silica large mode area fibers prepared by sol-gel method,” Fibers.1(3), 93–100 (2013).
[CrossRef]

High Power Laser Science and Engineering (1)

X. Wang, P. Zhou, X. L. Wang, H. Xiao, and L. Si, “51.5 W monolithic single frequency 1.97μm Tm-doped fiber amplifier,” High Power Laser Science and Engineering1(3-4), 123–125 (2013).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke, “Infrared cross-section measurements for crystals doped with Er3+,Tm3+,and Ho3+,” IEEE J. Quantum Electron.28(11), 2619–2630 (1992).
[CrossRef]

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Quantum Electron.13(3), 567–572 (2007).
[CrossRef]

J. Lightw. Tech. (3)

L. Y. Gang, J. P. Huang, Y. F. Li, Y. J. He, S. J. Gu, G. H. Chen, L. Y. Liu, and L. Xu, “Optical properties and laser output of heavily Yb-doped fiber prepared by sol-gel method and DC-RTA technique,” J. Lightw. Tech.26(18), 3256–3260 (2008).
[CrossRef]

S. D. Jackson and T. A. King, “Theoretical Modeling of Tm-Doped Silica Fiber Lasers,” J. Lightw. Tech.17(5), 948–956 (1999).
[CrossRef]

X. Zou and H. Toratani, “Spectroscopic properties and energy transfer in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses,” J. Lightw. Tech.195, 113–124 (1996).

J. Lumin. (1)

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin.129(9), 1042–1047 (2009).
[CrossRef]

Laser Phys. Lett. (1)

B. Assaad, E. H. Hicham, F. Ihsan, B. Geraud, B. Mohamed, and B. Laurent, “A pure silica ytterbium- doped sol-gel-based fiber laser,” Laser Phys. Lett.10, 5106–5111 (2013).

Opt. Commun. (1)

S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun.230(1-3), 197–203 (2004).
[CrossRef]

Opt. Express (4)

Opt. Mater. (3)

G. J. Gao, L. L. Hu, H. Y. Fan, G. N. Wang, K. F. Li, S. Y. Feng, S. J. Fan, H. Y. Chen, J. J. Pan, and J. J. Zhang, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2-ZnO-Bi2 O3 glasses,” Opt. Mater.32(2), 402–405 (2009).
[CrossRef]

U. Pedrazza, V. Romano, and W. Luthy, “Yb3+: Al3+: sol-gel silica glass fiber laser,” Opt. Mater.29(7), 905–907 (2007).
[CrossRef]

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater.35(9), 1752–1755 (2013).
[CrossRef]

Photon. Res. (1)

Phys. Rev. B Condens. Matter (1)

X. L. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B Condens. Matter52(22), 15889–15897 (1995).
[CrossRef] [PubMed]

Other (3)

L. Andreas, S. Gerhard, S. Mario, K. Thomas, R. Volker, G. Stephan, K. Johannes, K. Volker, and R. Georg, “A new material for high power laser fibers,” Proc SPIE 6873, 11–19 (2008).

L. Andreas, S. Gerhard, S. Mario, K. Thomas, R. Volker, G. Stephan, K. Johannes, K. Volker, and R. Georg, “Multi-kW single fiber laser based on an extra large mode area fiber design,” Proc. SPIE 8237, 0F 1-12 (2012).

L. Andreas, S. Gerhard, S. Mario, K. Thomas, R. Volker, G. Stephan, K. Johannes, K. Volker, and R. Georg, “Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers,” Proc. SPIE 8601, 0G–1-13 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The normalized absorption and emission spectra (stimulated by 808 nm laser) of TAS glass ranging from 1400 ~2200 nm

Fig. 2
Fig. 2

Absorption and emission cross-sections of TAS glass ranging from 1400~2200 nm.

Fig. 3
Fig. 3

The refractive index profile of preform made from Tm3+ doped TAS core glass and pure silica cladding, laser with wavelength of 632 nm was used.

Fig. 4
Fig. 4

Optical attenuation spectrum of Tm3+ doped silica fiber ranging from 850 to 1450 nm measured by the cutback method.

Fig. 5
Fig. 5

Schematic diagram of the fiber laser experiment setup, pump laser with wavelength of 793 nm was used

Fig. 6
Fig. 6

Laser spectrum of TAS double cladding fiber inserted with cross section of fiber

Fig. 7
Fig. 7

Laser output power versus absorbed pump power curves of TAS-F1 and TAS-F2 double cladding fibers with core diameters (a) 38 μm and (b) 19 μm.

Tables (2)

Tables Icon

Table 1 The spectroscopic parameters of TAS glass compared with those of Tm3+ doped silica glasses from MCVD

Tables Icon

Table 2 The basic optical parameters and sizes of TAS double cladding fibers

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ abs = 2.303 Nl OD( λ )
σ emi = λ 4 A rad 8πc n 2 × I( λ ) λI( λ )dλ
N A core = n innercladding 2 n core 2
N A innercladding = n outercladding 2 n innercladding 2
V= πd λ N A core
M 2 = R×θ R 0 × θ 0

Metrics