Abstract

We have studied the effect of samarium doping concentration and thermal annealing on X-ray induced defect centers, including phosphorus-oxygen hole and electron centers (POHC and POEC), in Sm3+-doped fluorophosphate glasses towards developing a potential high-dose, high-resolution detector for microbeam radiation therapy. ESR measurements show that defect center formation is suppressed by increasing the Sm-dopant concentration with POECs more strongly influenced than POHCs. This can be explained by a model based on the competition between defect center formations and Sm3+ ⇆ Sm2+ interconversion. Thermal annealing at increasing moderate temperatures (TA = 100−300 °C) reduces the POHC related ESR and induced absorbance bands while those of POEC continue to survive. ESR measurements over a wider range show the trace of a very broad ESR signal in samples containing Sm2+ ions including those annealed at temperatures between 350 °C and glass transition temperature (Tg 460 °C). Finally, thermal annealing at 550 °C (> Tg) totally erases all the ESR signals and restores the sample to its original unirradiated state.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reduced radiation damage in a multicomponent phosphate glass by Nb5+ or Sb3+ doping

Xiaobo Heng, Qi Qian, Xiaodong Chen, Lihua Liu, Xia Zhao, Dongdan Chen, and Zhongmin Yang
Opt. Mater. Express 5(10) 2272-2280 (2015)

Effects of doping SiO2 on the defect’s change in B2O3-containing phosphate based laser glasses used for high energy UV lasers

Mengya Sun, Zhanjun Duan, Pengfei Wang, Min Lu, and Bo Peng
Opt. Mater. Express 7(11) 4111-4122 (2017)

Enhanced radiation dosimetry of fluoride phosphate glass optical fibres by terbium (III) doping

Christopher A. G. Kalnins, Heike Ebendorff-Heidepriem, Nigel A. Spooner, and Tanya M. Monro
Opt. Mater. Express 6(12) 3692-3703 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Yang, H. Guo, Y. Wei, H. M. Noh, and J. H. Jeong, “Luminescence and energy transfer process in Cu+,Sm3+ co-doped sodium silicate glasses,” Opt. Mater. Express 4(2), 315–320 (2014).
    [Crossref]
  2. G. Gao and L. Wondraczek, “Spectral asymmetry and deep red photoluminescence in Eu3+-activated Na3YSi3O9 glass ceramics,” Opt. Mater. Express 4(3), 476–485 (2014).
    [Crossref]
  3. F. Wang, L. F. Shen, B. J. Chen, E. Y. B. Pun, and H. Lin, “Broadband fluorescence emission of Eu3+ doped germanotellurite glasses for fiber-based irradiation light sources,” Opt. Mater. Express 3(11), 1931–1943 (2013).
    [Crossref]
  4. L. Li, Y. Yang, D. Zhou, Z. Yang, X. Xu, and J. Qiu, “Investigation of the interaction between different types of Ag species and europium ions in Ag+-Na+ ion-exchange glass,” Opt. Mater. Express 3(6), 806–812 (2013).
    [Crossref]
  5. S. Park, K. W. Jang, S. Kim, I. Kim, and H. Seo, “X-ray-induced reduction of Sm3+-doped SrB6O10 and its room temperature optical hole burning,” J. Phys.- Condens. Mat. 18(4), 1267–1274 (2006).
    [Crossref]
  6. M. Nogami and K. Suzuki, “Formation of Sm2+ ions and spectral hole burning in X-ray irradiated glasses,” J. Phys. Chem. B 106(21), 5395–5399 (2002).
    [Crossref]
  7. S. Qi, Y. Huang, T. Tsuboi, W. Huang, and H. J. Seo, “Versatile luminescence of Eu2+,3+-activated fluorosilicate apatites M2Y3[SiO4]3F (M = Sr, Ba) suitable for white light emitting diodes,” Opt. Mater. Express 4(2), 396–402 (2014).
    [Crossref]
  8. E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, “Optical properties and valence state of Sm ions in aluminoborosilicate glass under beta-irradiation,” J. Non-Cryst. Solids 353(24-25), 2397–2402 (2007).
    [Crossref]
  9. G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
    [Crossref]
  10. L. Y. Yang, N. Da, D. P. Chen, Q. Z. Zhao, X. W. Jiang, C. S. Zhu, and J. R. Qiu, “Valence state change and refractive index change induced by femtosecond laser irradiation in Sm3+ doped fluoroaluminate glass,” J. Non-Cryst. Solids 354(12-13), 1353–1356 (2008).
    [Crossref]
  11. K. Miura, J. R. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
    [Crossref]
  12. J. R. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses,” Appl. Phys. Lett. 71(6), 759–761 (1997).
    [Crossref]
  13. Y. D. Li, Y. L. Huang, C. F. Jiang, and K. Jang, “The dependence of luminescence on reduction of Sm2+ ions doped in lithium barium borate glasses,” Appl. Phys., A Mater. Sci. Process. 97(3), 663–669 (2009).
    [Crossref]
  14. Y. D. Li, J. Y. Wang, Y. L. Huang, and H. J. Seo, “Temperature-dependent 5D0→ 7F0 luminescence of Sm2+ ions doped in alkaline earth borophosphate glass,” J. Am. Ceram. Soc. 93(3), 722–726 (2010).
    [Crossref]
  15. K. W. Jang, Y. F. Huang, W. X. Zha, E. J. Cho, H. S. Lee, X. G. Wang, D. Qin, Y. Zhang, C. F. Hang, and H. J. Seo, “Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5,” J. Solid State Chem. 180(12), 3325–3332 (2007).
    [Crossref]
  16. J. R. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
    [Crossref]
  17. B. H. Babu and V. V. R. K. Kumar, “Fluorescence properties and electron paramagnetic resonance studies of gamma-irradiated Sm3+-doped oxyfluoroborate glasses,” J. Appl. Phys. 112(9), 093516 (2012).
    [Crossref]
  18. E. Malchukova, B. Boizot, D. Ghaleb, and G. Petite, “Optical properties of pristine and gamma-irradiated Sm doped borosilicate glasses,” Nucl. Instrum. Meth. A 537(1-2), 411–414 (2005).
    [Crossref]
  19. K. Fujita, C. Yasumoto, and K. Hirao, “Photochemical reactions of samarium ions in sodium borate glasses irradiated with near-infrared femtosecond laser pulses,” J. Lumin. 98(1-4), 317–323 (2002).
    [Crossref]
  20. M. Nogami, G. Kawamura, G. J. Park, H. P. You, and T. Hayakawa, “Effect of Al3+ and Ti4+ ions on the laser reduction of Sm3+ ion in glass,” J. Lumin. 114(3-4), 178–186 (2005).
    [Crossref]
  21. D. L. Griscom, “Esr studies of radiation-damage and structure in oxide glasses not containing transition group ions - a contemporary overview with illustrations from alkali borate system,” J. Non-Cryst. Solids 13(2), 251–285 (1974).
    [Crossref]
  22. P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
    [Crossref]
  23. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses [Invited],” Opt. Mater. Express 1(5), 845–855 (2011).
    [Crossref]
  24. G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
    [Crossref]
  25. H. Ebendorff-Heidepriem and D. Ehrt, “Effect of Tb3+ ions on X-ray-induced defect formation in phosphate containing glasses,” Opt. Mater. 18(4), 419–430 (2002).
    [Crossref]
  26. Y. Huang, C. Jiang, K. Jang, H. S. Lee, E. Cho, M. Jayasimhadri, and S.-S. Yi, “Luminescence and microstructure of Sm2+ ions reduced by X-ray irradiation in Li2O–SrO–B2O3 glass,” J. Appl. Phys. 103(11), 113519 (2008).
    [Crossref]
  27. S. Rydberg and M. Engholm, “Experimental evidence for the formation of divalent ytterbium in the photodarkening process of Yb-doped fiber lasers,” Opt. Express 21(6), 6681–6688 (2013).
    [Crossref] [PubMed]
  28. H. Gebavi, S. Taccheo, D. Tregoat, A. Monteville, and T. Robin, “Photobleaching of photodarkening in ytterbium doped aluminosilicate fibers with 633 nm irradiation,” Opt. Mater. Express 2(9), 1286–1291 (2012).
    [Crossref]
  29. G. Okada, J. Ueda, S. Tanabe, G. Belev, T. Wysokinski, D. Chapman, D. Tonchev, and S. Kasap, “Samarium-doped oxyfluoride glass-ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the Canadian synchrotron,” J. Am. Ceram. Soc. http://dx.doi.org/10.1111/jace.12938(2014), doi:.
    [Crossref]
  30. B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
    [Crossref]
  31. S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy,” J. Appl. Phys. 112(7), 073108 (2012).
    [Crossref]
  32. A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 32(1), 266 (2009).
    [Crossref]
  33. J. J. Witcher, W. J. Reichman, L. B. Fletcher, N. W. Troy, and D. M. Krol, “Thermal annealing of femtosecond laser written structures in silica glass,” Opt. Mater. Express 3(4), 502–510 (2013).
    [Crossref]
  34. A. V. Kiryanov, S. Ghosh, M. C. Paul, Y. O. Barmenkov, V. Aboites, and N. S. Kozlova, “Ce-doped and Ce/Au-codoped alumino-phosphosilicate fibers: Spectral attenuation trends at high-energy electron irradiation and posterior low-power optical bleaching,” Opt. Mater. Express 4(3), 434–448 (2014).
    [Crossref]
  35. G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, and S. Kasap, “Examination of the dynamic range of Sm-doped glasses for high-dose and high-resolution dosimetric applications in microbeam radiation therapy at the Canadian synchrotron,” Opt. Mater. 35(11), 1976–1980 (2013).
    [Crossref]
  36. D. N. Slatkin, P. Spanne, F. A. Dilmanian, and M. Sandborg, “Microbeam radiation therapy,” Med. Phys. 19(6), 1395–1400 (1992).
    [Crossref] [PubMed]
  37. F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
    [Crossref] [PubMed]
  38. J. A. Laissue, H. Blattmann, H. P. Wagner, M. A. Grotzer, and D. N. Slatkin, “Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae,” Dev. Med. Child Neurol. 49(8), 577–581 (2007).
    [Crossref] [PubMed]
  39. P. Regnard, G. Le Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: balance between curing and sparing,” Phys. Med. Biol. 53(4), 861–878 (2008).
    [Crossref] [PubMed]
  40. J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
    [Crossref] [PubMed]
  41. A. Bouchet, A. Boumendjel, E. Khalil, R. Serduc, E. Bräuer, E. A. Siegbahn, J. A. Laissue, and J. Boutonnat, “Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors,” J. Synchrotron Radiat. 19(4), 478–482 (2012).
    [Crossref] [PubMed]
  42. E. Bräuer-Krisch, A. Rosenfeld, M. Lerch, M. Petasecca, M. Akselrod, J. Sykora, J. Bartz, M. Ptaszkiewicz, P. Olko, A. Berg, M. Wieland, S. Doran, T. Brochard, A. Kamlowski, G. Cellere, A. Paccagnella, E. A. Siegbahn, Y. Prezado, I. Martinez-Rovira, A. Bravin, L. Dusseau, and P. Berkvens, “Potential high resolution dosimeters for MRT,” 6th international conference on medical applications of synchrotron radiation 1266, 89–97 (2010).
    [Crossref]
  43. N. Nariyama, T. Ohigashi, K. Umetani, K. Shinohara, H. Tanaka, A. Maruhashi, G. Kashino, A. Kurihara, T. Kondob, M. Fukumoto, and K. Ono, “Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation,” Appl. Radiat. Isot. 67(1), 155–159 (2009).
    [Crossref] [PubMed]
  44. A. T. Abdul Rahman, D. A. Bradley, S. J. Doran, B. Thierry, E. Bräuer-Krisch, and A. Bravin, “The thermoluminescence response of Ge-doped silica fibres for synchrotron microbeam radiation therapy dosimetry,” Nucl. Instrum. Meth. A 619(1-3), 167–170 (2010).
    [Crossref]
  45. K. Rothkamm, J. C. Crosbie, F. Daley, S. Bourne, P. R. Barber, B. Vojnovic, L. Cann, and P. A. W. Rogers, “In situ biological dose mapping estimates the radiation burden delivered to ‘spared’ tissue between synchrotron X-Ray microbeam radiotherapy tracks,” PLoS ONE 7(1), e29853 (2012).
    [Crossref] [PubMed]
  46. J. A. Bartz, G. J. Sykora, E. Brauer-Krisch, and M. S. Akselrod, “Imaging and dosimetry of synchrotron microbeam with aluminum oxide fluorescent detectors,” Radiat. Meas. 46(12), 1936–1939 (2011).
    [Crossref]
  47. T. Ackerly, J. C. Crosbie, A. Fouras, G. J. Sheard, S. Higgins, and R. A. Lewis, “High resolution optical calorimetry for synchrotron microbeam radiation therapy,” J. Instrum. 6, P03003 (2011).
  48. D. Maki, T. Ishii, F. Sato, Y. Kato, T. Yamamoto, and T. Iida, “Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters,” Radiat. Prot. Dosimetry 144(1-4), 222–225 (2011).
    [Crossref] [PubMed]
  49. M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).
  50. G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Edgar, T. Wysokinski, D. Chapman, and S. Kasap, “Valency conversion of samarium ions under high dose synchrotron generated X-ray radiation,” phys Status Solidi C. 8, 2822–2825 (2011).
  51. D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical-absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
    [Crossref]
  52. C. A. G. Kalnins, N. A. Spooner, H. Ebendorff-Heidepriem, and T. M. Monro, “Luminescent properties of fluoride phosphate glass for radiation dosimetry,” Opt. Mater. Express 3(7), 960–967 (2013).
    [Crossref]
  53. Siemens “Simulation of X-ray Spectra,” (Siemens AG, 2014). https://w9.siemens.com/cms/oemproducts/home/x-raytoolbox/spektrum/pages/default.aspx .
  54. A. Edgar, C. R. Varoy, C. Koughia, G. Okada, G. Belev, and S. Kasap, “High-resolution X-ray imaging with samarium-doped fluoroaluminate and fluorophosphate glass,” J. Non-Cryst. Solids 377, 124–128 (2013).
    [Crossref]
  55. J. S. Stroud, “Color centers in a cerium-containing silicate glass,” J. Chem. Phys. 37(4), 836 (1962).
    [Crossref]
  56. T. V. Bocharova, “A model of the capture volume of free carriers in fluorophosphate glasses doped with terbium,” Glass Phys. Chem. 31(2), 119–127 (2005).
    [Crossref]
  57. P. W. Levy, “The kinetics of gamma-ray induced coloring of glass,” J. Am. Ceram. Soc. 43(8), 389–395 (1960).
    [Crossref]
  58. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University, 1970), Chap. 5.

2014 (5)

2013 (7)

S. Rydberg and M. Engholm, “Experimental evidence for the formation of divalent ytterbium in the photodarkening process of Yb-doped fiber lasers,” Opt. Express 21(6), 6681–6688 (2013).
[Crossref] [PubMed]

J. J. Witcher, W. J. Reichman, L. B. Fletcher, N. W. Troy, and D. M. Krol, “Thermal annealing of femtosecond laser written structures in silica glass,” Opt. Mater. Express 3(4), 502–510 (2013).
[Crossref]

L. Li, Y. Yang, D. Zhou, Z. Yang, X. Xu, and J. Qiu, “Investigation of the interaction between different types of Ag species and europium ions in Ag+-Na+ ion-exchange glass,” Opt. Mater. Express 3(6), 806–812 (2013).
[Crossref]

C. A. G. Kalnins, N. A. Spooner, H. Ebendorff-Heidepriem, and T. M. Monro, “Luminescent properties of fluoride phosphate glass for radiation dosimetry,” Opt. Mater. Express 3(7), 960–967 (2013).
[Crossref]

F. Wang, L. F. Shen, B. J. Chen, E. Y. B. Pun, and H. Lin, “Broadband fluorescence emission of Eu3+ doped germanotellurite glasses for fiber-based irradiation light sources,” Opt. Mater. Express 3(11), 1931–1943 (2013).
[Crossref]

A. Edgar, C. R. Varoy, C. Koughia, G. Okada, G. Belev, and S. Kasap, “High-resolution X-ray imaging with samarium-doped fluoroaluminate and fluorophosphate glass,” J. Non-Cryst. Solids 377, 124–128 (2013).
[Crossref]

G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, and S. Kasap, “Examination of the dynamic range of Sm-doped glasses for high-dose and high-resolution dosimetric applications in microbeam radiation therapy at the Canadian synchrotron,” Opt. Mater. 35(11), 1976–1980 (2013).
[Crossref]

2012 (6)

B. H. Babu and V. V. R. K. Kumar, “Fluorescence properties and electron paramagnetic resonance studies of gamma-irradiated Sm3+-doped oxyfluoroborate glasses,” J. Appl. Phys. 112(9), 093516 (2012).
[Crossref]

S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy,” J. Appl. Phys. 112(7), 073108 (2012).
[Crossref]

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

A. Bouchet, A. Boumendjel, E. Khalil, R. Serduc, E. Bräuer, E. A. Siegbahn, J. A. Laissue, and J. Boutonnat, “Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors,” J. Synchrotron Radiat. 19(4), 478–482 (2012).
[Crossref] [PubMed]

K. Rothkamm, J. C. Crosbie, F. Daley, S. Bourne, P. R. Barber, B. Vojnovic, L. Cann, and P. A. W. Rogers, “In situ biological dose mapping estimates the radiation burden delivered to ‘spared’ tissue between synchrotron X-Ray microbeam radiotherapy tracks,” PLoS ONE 7(1), e29853 (2012).
[Crossref] [PubMed]

H. Gebavi, S. Taccheo, D. Tregoat, A. Monteville, and T. Robin, “Photobleaching of photodarkening in ytterbium doped aluminosilicate fibers with 633 nm irradiation,” Opt. Mater. Express 2(9), 1286–1291 (2012).
[Crossref]

2011 (6)

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses [Invited],” Opt. Mater. Express 1(5), 845–855 (2011).
[Crossref]

J. A. Bartz, G. J. Sykora, E. Brauer-Krisch, and M. S. Akselrod, “Imaging and dosimetry of synchrotron microbeam with aluminum oxide fluorescent detectors,” Radiat. Meas. 46(12), 1936–1939 (2011).
[Crossref]

T. Ackerly, J. C. Crosbie, A. Fouras, G. J. Sheard, S. Higgins, and R. A. Lewis, “High resolution optical calorimetry for synchrotron microbeam radiation therapy,” J. Instrum. 6, P03003 (2011).

D. Maki, T. Ishii, F. Sato, Y. Kato, T. Yamamoto, and T. Iida, “Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters,” Radiat. Prot. Dosimetry 144(1-4), 222–225 (2011).
[Crossref] [PubMed]

G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Edgar, T. Wysokinski, D. Chapman, and S. Kasap, “Valency conversion of samarium ions under high dose synchrotron generated X-ray radiation,” phys Status Solidi C. 8, 2822–2825 (2011).

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[Crossref]

2010 (4)

Y. D. Li, J. Y. Wang, Y. L. Huang, and H. J. Seo, “Temperature-dependent 5D0→ 7F0 luminescence of Sm2+ ions doped in alkaline earth borophosphate glass,” J. Am. Ceram. Soc. 93(3), 722–726 (2010).
[Crossref]

J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
[Crossref] [PubMed]

A. T. Abdul Rahman, D. A. Bradley, S. J. Doran, B. Thierry, E. Bräuer-Krisch, and A. Bravin, “The thermoluminescence response of Ge-doped silica fibres for synchrotron microbeam radiation therapy dosimetry,” Nucl. Instrum. Meth. A 619(1-3), 167–170 (2010).
[Crossref]

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

2009 (3)

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 32(1), 266 (2009).
[Crossref]

N. Nariyama, T. Ohigashi, K. Umetani, K. Shinohara, H. Tanaka, A. Maruhashi, G. Kashino, A. Kurihara, T. Kondob, M. Fukumoto, and K. Ono, “Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation,” Appl. Radiat. Isot. 67(1), 155–159 (2009).
[Crossref] [PubMed]

Y. D. Li, Y. L. Huang, C. F. Jiang, and K. Jang, “The dependence of luminescence on reduction of Sm2+ ions doped in lithium barium borate glasses,” Appl. Phys., A Mater. Sci. Process. 97(3), 663–669 (2009).
[Crossref]

2008 (3)

L. Y. Yang, N. Da, D. P. Chen, Q. Z. Zhao, X. W. Jiang, C. S. Zhu, and J. R. Qiu, “Valence state change and refractive index change induced by femtosecond laser irradiation in Sm3+ doped fluoroaluminate glass,” J. Non-Cryst. Solids 354(12-13), 1353–1356 (2008).
[Crossref]

P. Regnard, G. Le Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: balance between curing and sparing,” Phys. Med. Biol. 53(4), 861–878 (2008).
[Crossref] [PubMed]

Y. Huang, C. Jiang, K. Jang, H. S. Lee, E. Cho, M. Jayasimhadri, and S.-S. Yi, “Luminescence and microstructure of Sm2+ ions reduced by X-ray irradiation in Li2O–SrO–B2O3 glass,” J. Appl. Phys. 103(11), 113519 (2008).
[Crossref]

2007 (3)

J. A. Laissue, H. Blattmann, H. P. Wagner, M. A. Grotzer, and D. N. Slatkin, “Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae,” Dev. Med. Child Neurol. 49(8), 577–581 (2007).
[Crossref] [PubMed]

E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, “Optical properties and valence state of Sm ions in aluminoborosilicate glass under beta-irradiation,” J. Non-Cryst. Solids 353(24-25), 2397–2402 (2007).
[Crossref]

K. W. Jang, Y. F. Huang, W. X. Zha, E. J. Cho, H. S. Lee, X. G. Wang, D. Qin, Y. Zhang, C. F. Hang, and H. J. Seo, “Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5,” J. Solid State Chem. 180(12), 3325–3332 (2007).
[Crossref]

2006 (1)

S. Park, K. W. Jang, S. Kim, I. Kim, and H. Seo, “X-ray-induced reduction of Sm3+-doped SrB6O10 and its room temperature optical hole burning,” J. Phys.- Condens. Mat. 18(4), 1267–1274 (2006).
[Crossref]

2005 (4)

T. V. Bocharova, “A model of the capture volume of free carriers in fluorophosphate glasses doped with terbium,” Glass Phys. Chem. 31(2), 119–127 (2005).
[Crossref]

E. Malchukova, B. Boizot, D. Ghaleb, and G. Petite, “Optical properties of pristine and gamma-irradiated Sm doped borosilicate glasses,” Nucl. Instrum. Meth. A 537(1-2), 411–414 (2005).
[Crossref]

M. Nogami, G. Kawamura, G. J. Park, H. P. You, and T. Hayakawa, “Effect of Al3+ and Ti4+ ions on the laser reduction of Sm3+ ion in glass,” J. Lumin. 114(3-4), 178–186 (2005).
[Crossref]

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

2002 (5)

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

K. Fujita, C. Yasumoto, and K. Hirao, “Photochemical reactions of samarium ions in sodium borate glasses irradiated with near-infrared femtosecond laser pulses,” J. Lumin. 98(1-4), 317–323 (2002).
[Crossref]

K. Miura, J. R. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Effect of Tb3+ ions on X-ray-induced defect formation in phosphate containing glasses,” Opt. Mater. 18(4), 419–430 (2002).
[Crossref]

M. Nogami and K. Suzuki, “Formation of Sm2+ ions and spectral hole burning in X-ray irradiated glasses,” J. Phys. Chem. B 106(21), 5395–5399 (2002).
[Crossref]

1999 (1)

J. R. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
[Crossref]

1997 (1)

J. R. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses,” Appl. Phys. Lett. 71(6), 759–761 (1997).
[Crossref]

1992 (1)

D. N. Slatkin, P. Spanne, F. A. Dilmanian, and M. Sandborg, “Microbeam radiation therapy,” Med. Phys. 19(6), 1395–1400 (1992).
[Crossref] [PubMed]

1983 (1)

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical-absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

1974 (1)

D. L. Griscom, “Esr studies of radiation-damage and structure in oxide glasses not containing transition group ions - a contemporary overview with illustrations from alkali borate system,” J. Non-Cryst. Solids 13(2), 251–285 (1974).
[Crossref]

1962 (1)

J. S. Stroud, “Color centers in a cerium-containing silicate glass,” J. Chem. Phys. 37(4), 836 (1962).
[Crossref]

1960 (1)

P. W. Levy, “The kinetics of gamma-ray induced coloring of glass,” J. Am. Ceram. Soc. 43(8), 389–395 (1960).
[Crossref]

Abdul Rahman, A. T.

A. T. Abdul Rahman, D. A. Bradley, S. J. Doran, B. Thierry, E. Bräuer-Krisch, and A. Bravin, “The thermoluminescence response of Ge-doped silica fibres for synchrotron microbeam radiation therapy dosimetry,” Nucl. Instrum. Meth. A 619(1-3), 167–170 (2010).
[Crossref]

Aboites, V.

Ackerly, T.

T. Ackerly, J. C. Crosbie, A. Fouras, G. J. Sheard, S. Higgins, and R. A. Lewis, “High resolution optical calorimetry for synchrotron microbeam radiation therapy,” J. Instrum. 6, P03003 (2011).

Akselrod, M. S.

J. A. Bartz, G. J. Sykora, E. Brauer-Krisch, and M. S. Akselrod, “Imaging and dosimetry of synchrotron microbeam with aluminum oxide fluorescent detectors,” Radiat. Meas. 46(12), 1936–1939 (2011).
[Crossref]

Aldosari, A. H.

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

Anderson, R. L.

J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
[Crossref] [PubMed]

Babu, B. H.

B. H. Babu and V. V. R. K. Kumar, “Fluorescence properties and electron paramagnetic resonance studies of gamma-irradiated Sm3+-doped oxyfluoroborate glasses,” J. Appl. Phys. 112(9), 093516 (2012).
[Crossref]

Barber, P. R.

K. Rothkamm, J. C. Crosbie, F. Daley, S. Bourne, P. R. Barber, B. Vojnovic, L. Cann, and P. A. W. Rogers, “In situ biological dose mapping estimates the radiation burden delivered to ‘spared’ tissue between synchrotron X-Ray microbeam radiotherapy tracks,” PLoS ONE 7(1), e29853 (2012).
[Crossref] [PubMed]

Barmenkov, Y. O.

Bartz, J. A.

J. A. Bartz, G. J. Sykora, E. Brauer-Krisch, and M. S. Akselrod, “Imaging and dosimetry of synchrotron microbeam with aluminum oxide fluorescent detectors,” Radiat. Meas. 46(12), 1936–1939 (2011).
[Crossref]

Belev, G.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, and S. Kasap, “Examination of the dynamic range of Sm-doped glasses for high-dose and high-resolution dosimetric applications in microbeam radiation therapy at the Canadian synchrotron,” Opt. Mater. 35(11), 1976–1980 (2013).
[Crossref]

A. Edgar, C. R. Varoy, C. Koughia, G. Okada, G. Belev, and S. Kasap, “High-resolution X-ray imaging with samarium-doped fluoroaluminate and fluorophosphate glass,” J. Non-Cryst. Solids 377, 124–128 (2013).
[Crossref]

S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy,” J. Appl. Phys. 112(7), 073108 (2012).
[Crossref]

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[Crossref]

G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Edgar, T. Wysokinski, D. Chapman, and S. Kasap, “Valency conversion of samarium ions under high dose synchrotron generated X-ray radiation,” phys Status Solidi C. 8, 2822–2825 (2011).

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 32(1), 266 (2009).
[Crossref]

G. Okada, J. Ueda, S. Tanabe, G. Belev, T. Wysokinski, D. Chapman, D. Tonchev, and S. Kasap, “Samarium-doped oxyfluoride glass-ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the Canadian synchrotron,” J. Am. Ceram. Soc. http://dx.doi.org/10.1111/jace.12938(2014), doi:.
[Crossref]

Bernard, H.

P. Regnard, G. Le Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: balance between curing and sparing,” Phys. Med. Biol. 53(4), 861–878 (2008).
[Crossref] [PubMed]

Blattmann, H.

J. A. Laissue, H. Blattmann, H. P. Wagner, M. A. Grotzer, and D. N. Slatkin, “Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae,” Dev. Med. Child Neurol. 49(8), 577–581 (2007).
[Crossref] [PubMed]

Bocharova, T. V.

T. V. Bocharova, “A model of the capture volume of free carriers in fluorophosphate glasses doped with terbium,” Glass Phys. Chem. 31(2), 119–127 (2005).
[Crossref]

Boizot, B.

E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, “Optical properties and valence state of Sm ions in aluminoborosilicate glass under beta-irradiation,” J. Non-Cryst. Solids 353(24-25), 2397–2402 (2007).
[Crossref]

E. Malchukova, B. Boizot, D. Ghaleb, and G. Petite, “Optical properties of pristine and gamma-irradiated Sm doped borosilicate glasses,” Nucl. Instrum. Meth. A 537(1-2), 411–414 (2005).
[Crossref]

Bouchet, A.

A. Bouchet, A. Boumendjel, E. Khalil, R. Serduc, E. Bräuer, E. A. Siegbahn, J. A. Laissue, and J. Boutonnat, “Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors,” J. Synchrotron Radiat. 19(4), 478–482 (2012).
[Crossref] [PubMed]

Boukenter, A.

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

Boumendjel, A.

A. Bouchet, A. Boumendjel, E. Khalil, R. Serduc, E. Bräuer, E. A. Siegbahn, J. A. Laissue, and J. Boutonnat, “Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors,” J. Synchrotron Radiat. 19(4), 478–482 (2012).
[Crossref] [PubMed]

Bourne, S.

K. Rothkamm, J. C. Crosbie, F. Daley, S. Bourne, P. R. Barber, B. Vojnovic, L. Cann, and P. A. W. Rogers, “In situ biological dose mapping estimates the radiation burden delivered to ‘spared’ tissue between synchrotron X-Ray microbeam radiotherapy tracks,” PLoS ONE 7(1), e29853 (2012).
[Crossref] [PubMed]

Boutonnat, J.

A. Bouchet, A. Boumendjel, E. Khalil, R. Serduc, E. Bräuer, E. A. Siegbahn, J. A. Laissue, and J. Boutonnat, “Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors,” J. Synchrotron Radiat. 19(4), 478–482 (2012).
[Crossref] [PubMed]

Bradley, D. A.

A. T. Abdul Rahman, D. A. Bradley, S. J. Doran, B. Thierry, E. Bräuer-Krisch, and A. Bravin, “The thermoluminescence response of Ge-doped silica fibres for synchrotron microbeam radiation therapy dosimetry,” Nucl. Instrum. Meth. A 619(1-3), 167–170 (2010).
[Crossref]

Bräuer, E.

A. Bouchet, A. Boumendjel, E. Khalil, R. Serduc, E. Bräuer, E. A. Siegbahn, J. A. Laissue, and J. Boutonnat, “Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors,” J. Synchrotron Radiat. 19(4), 478–482 (2012).
[Crossref] [PubMed]

Brauer-Krisch, E.

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

J. A. Bartz, G. J. Sykora, E. Brauer-Krisch, and M. S. Akselrod, “Imaging and dosimetry of synchrotron microbeam with aluminum oxide fluorescent detectors,” Radiat. Meas. 46(12), 1936–1939 (2011).
[Crossref]

Bräuer-Krisch, E.

A. T. Abdul Rahman, D. A. Bradley, S. J. Doran, B. Thierry, E. Bräuer-Krisch, and A. Bravin, “The thermoluminescence response of Ge-doped silica fibres for synchrotron microbeam radiation therapy dosimetry,” Nucl. Instrum. Meth. A 619(1-3), 167–170 (2010).
[Crossref]

P. Regnard, G. Le Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: balance between curing and sparing,” Phys. Med. Biol. 53(4), 861–878 (2008).
[Crossref] [PubMed]

Bravin, A.

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

A. T. Abdul Rahman, D. A. Bradley, S. J. Doran, B. Thierry, E. Bräuer-Krisch, and A. Bravin, “The thermoluminescence response of Ge-doped silica fibres for synchrotron microbeam radiation therapy dosimetry,” Nucl. Instrum. Meth. A 619(1-3), 167–170 (2010).
[Crossref]

P. Regnard, G. Le Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: balance between curing and sparing,” Phys. Med. Biol. 53(4), 861–878 (2008).
[Crossref] [PubMed]

Brow, R. K.

Cann, L.

K. Rothkamm, J. C. Crosbie, F. Daley, S. Bourne, P. R. Barber, B. Vojnovic, L. Cann, and P. A. W. Rogers, “In situ biological dose mapping estimates the radiation burden delivered to ‘spared’ tissue between synchrotron X-Ray microbeam radiotherapy tracks,” PLoS ONE 7(1), e29853 (2012).
[Crossref] [PubMed]

J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
[Crossref] [PubMed]

Cannas, M.

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

Chapman, D.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, and S. Kasap, “Examination of the dynamic range of Sm-doped glasses for high-dose and high-resolution dosimetric applications in microbeam radiation therapy at the Canadian synchrotron,” Opt. Mater. 35(11), 1976–1980 (2013).
[Crossref]

S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy,” J. Appl. Phys. 112(7), 073108 (2012).
[Crossref]

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[Crossref]

G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Edgar, T. Wysokinski, D. Chapman, and S. Kasap, “Valency conversion of samarium ions under high dose synchrotron generated X-ray radiation,” phys Status Solidi C. 8, 2822–2825 (2011).

G. Okada, J. Ueda, S. Tanabe, G. Belev, T. Wysokinski, D. Chapman, D. Tonchev, and S. Kasap, “Samarium-doped oxyfluoride glass-ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the Canadian synchrotron,” J. Am. Ceram. Soc. http://dx.doi.org/10.1111/jace.12938(2014), doi:.
[Crossref]

Chen, B. J.

Chen, D. P.

L. Y. Yang, N. Da, D. P. Chen, Q. Z. Zhao, X. W. Jiang, C. S. Zhu, and J. R. Qiu, “Valence state change and refractive index change induced by femtosecond laser irradiation in Sm3+ doped fluoroaluminate glass,” J. Non-Cryst. Solids 354(12-13), 1353–1356 (2008).
[Crossref]

Cho, E.

Y. Huang, C. Jiang, K. Jang, H. S. Lee, E. Cho, M. Jayasimhadri, and S.-S. Yi, “Luminescence and microstructure of Sm2+ ions reduced by X-ray irradiation in Li2O–SrO–B2O3 glass,” J. Appl. Phys. 103(11), 113519 (2008).
[Crossref]

Cho, E. J.

K. W. Jang, Y. F. Huang, W. X. Zha, E. J. Cho, H. S. Lee, X. G. Wang, D. Qin, Y. Zhang, C. F. Hang, and H. J. Seo, “Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5,” J. Solid State Chem. 180(12), 3325–3332 (2007).
[Crossref]

Clair, C.

P. Regnard, G. Le Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: balance between curing and sparing,” Phys. Med. Biol. 53(4), 861–878 (2008).
[Crossref] [PubMed]

Cool, C. D.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Crosbie, J. C.

K. Rothkamm, J. C. Crosbie, F. Daley, S. Bourne, P. R. Barber, B. Vojnovic, L. Cann, and P. A. W. Rogers, “In situ biological dose mapping estimates the radiation burden delivered to ‘spared’ tissue between synchrotron X-Ray microbeam radiotherapy tracks,” PLoS ONE 7(1), e29853 (2012).
[Crossref] [PubMed]

T. Ackerly, J. C. Crosbie, A. Fouras, G. J. Sheard, S. Higgins, and R. A. Lewis, “High resolution optical calorimetry for synchrotron microbeam radiation therapy,” J. Instrum. 6, P03003 (2011).

J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
[Crossref] [PubMed]

Cullen, A.

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

Da, N.

L. Y. Yang, N. Da, D. P. Chen, Q. Z. Zhao, X. W. Jiang, C. S. Zhu, and J. R. Qiu, “Valence state change and refractive index change induced by femtosecond laser irradiation in Sm3+ doped fluoroaluminate glass,” J. Non-Cryst. Solids 354(12-13), 1353–1356 (2008).
[Crossref]

Daley, F.

K. Rothkamm, J. C. Crosbie, F. Daley, S. Bourne, P. R. Barber, B. Vojnovic, L. Cann, and P. A. W. Rogers, “In situ biological dose mapping estimates the radiation burden delivered to ‘spared’ tissue between synchrotron X-Ray microbeam radiotherapy tracks,” PLoS ONE 7(1), e29853 (2012).
[Crossref] [PubMed]

Dallery, D.

P. Regnard, G. Le Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: balance between curing and sparing,” Phys. Med. Biol. 53(4), 861–878 (2008).
[Crossref] [PubMed]

Dilmanian, F. A.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

D. N. Slatkin, P. Spanne, F. A. Dilmanian, and M. Sandborg, “Microbeam radiation therapy,” Med. Phys. 19(6), 1395–1400 (1992).
[Crossref] [PubMed]

Doran, S. J.

A. T. Abdul Rahman, D. A. Bradley, S. J. Doran, B. Thierry, E. Bräuer-Krisch, and A. Bravin, “The thermoluminescence response of Ge-doped silica fibres for synchrotron microbeam radiation therapy dosimetry,” Nucl. Instrum. Meth. A 619(1-3), 167–170 (2010).
[Crossref]

Ebeling, P.

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

Ebendorff-Heidepriem, H.

C. A. G. Kalnins, N. A. Spooner, H. Ebendorff-Heidepriem, and T. M. Monro, “Luminescent properties of fluoride phosphate glass for radiation dosimetry,” Opt. Mater. Express 3(7), 960–967 (2013).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Effect of Tb3+ ions on X-ray-induced defect formation in phosphate containing glasses,” Opt. Mater. 18(4), 419–430 (2002).
[Crossref]

Edgar, A.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

A. Edgar, C. R. Varoy, C. Koughia, G. Okada, G. Belev, and S. Kasap, “High-resolution X-ray imaging with samarium-doped fluoroaluminate and fluorophosphate glass,” J. Non-Cryst. Solids 377, 124–128 (2013).
[Crossref]

G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, and S. Kasap, “Examination of the dynamic range of Sm-doped glasses for high-dose and high-resolution dosimetric applications in microbeam radiation therapy at the Canadian synchrotron,” Opt. Mater. 35(11), 1976–1980 (2013).
[Crossref]

S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy,” J. Appl. Phys. 112(7), 073108 (2012).
[Crossref]

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[Crossref]

G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Edgar, T. Wysokinski, D. Chapman, and S. Kasap, “Valency conversion of samarium ions under high dose synchrotron generated X-ray radiation,” phys Status Solidi C. 8, 2822–2825 (2011).

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 32(1), 266 (2009).
[Crossref]

Ehrt, D.

H. Ebendorff-Heidepriem and D. Ehrt, “Effect of Tb3+ ions on X-ray-induced defect formation in phosphate containing glasses,” Opt. Mater. 18(4), 419–430 (2002).
[Crossref]

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

Engholm, M.

Espinoza, A.

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

Fleming, J. W.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical-absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Fletcher, L. B.

Fouras, A.

T. Ackerly, J. C. Crosbie, A. Fouras, G. J. Sheard, S. Higgins, and R. A. Lewis, “High resolution optical calorimetry for synchrotron microbeam radiation therapy,” J. Instrum. 6, P03003 (2011).

Friebele, E. J.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical-absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Friedrich, M.

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

Fuduli, I.

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

Fujita, K.

K. Fujita, C. Yasumoto, and K. Hirao, “Photochemical reactions of samarium ions in sodium borate glasses irradiated with near-infrared femtosecond laser pulses,” J. Lumin. 98(1-4), 317–323 (2002).
[Crossref]

Fujiwara, S.

K. Miura, J. R. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
[Crossref]

Fukumoto, M.

N. Nariyama, T. Ohigashi, K. Umetani, K. Shinohara, H. Tanaka, A. Maruhashi, G. Kashino, A. Kurihara, T. Kondob, M. Fukumoto, and K. Ono, “Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation,” Appl. Radiat. Isot. 67(1), 155–159 (2009).
[Crossref] [PubMed]

Gao, G.

Gebavi, H.

Ghaleb, D.

E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, “Optical properties and valence state of Sm ions in aluminoborosilicate glass under beta-irradiation,” J. Non-Cryst. Solids 353(24-25), 2397–2402 (2007).
[Crossref]

E. Malchukova, B. Boizot, D. Ghaleb, and G. Petite, “Optical properties of pristine and gamma-irradiated Sm doped borosilicate glasses,” Nucl. Instrum. Meth. A 537(1-2), 411–414 (2005).
[Crossref]

Ghosh, S.

Gilbert, J.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Girard, S.

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

Griscom, D. L.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical-absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

D. L. Griscom, “Esr studies of radiation-damage and structure in oxide glasses not containing transition group ions - a contemporary overview with illustrations from alkali borate system,” J. Non-Cryst. Solids 13(2), 251–285 (1974).
[Crossref]

Grotzer, M. A.

J. A. Laissue, H. Blattmann, H. P. Wagner, M. A. Grotzer, and D. N. Slatkin, “Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae,” Dev. Med. Child Neurol. 49(8), 577–581 (2007).
[Crossref] [PubMed]

Guo, H.

Hainfeld, J. F.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Hang, C. F.

K. W. Jang, Y. F. Huang, W. X. Zha, E. J. Cho, H. S. Lee, X. G. Wang, D. Qin, Y. Zhang, C. F. Hang, and H. J. Seo, “Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5,” J. Solid State Chem. 180(12), 3325–3332 (2007).
[Crossref]

Hayakawa, T.

M. Nogami, G. Kawamura, G. J. Park, H. P. You, and T. Hayakawa, “Effect of Al3+ and Ti4+ ions on the laser reduction of Sm3+ ion in glass,” J. Lumin. 114(3-4), 178–186 (2005).
[Crossref]

Higgins, S.

T. Ackerly, J. C. Crosbie, A. Fouras, G. J. Sheard, S. Higgins, and R. A. Lewis, “High resolution optical calorimetry for synchrotron microbeam radiation therapy,” J. Instrum. 6, P03003 (2011).

Hirao, K.

K. Fujita, C. Yasumoto, and K. Hirao, “Photochemical reactions of samarium ions in sodium borate glasses irradiated with near-infrared femtosecond laser pulses,” J. Lumin. 98(1-4), 317–323 (2002).
[Crossref]

K. Miura, J. R. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
[Crossref]

J. R. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
[Crossref]

J. R. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses,” Appl. Phys. Lett. 71(6), 759–761 (1997).
[Crossref]

Huang, W.

Huang, Y.

S. Qi, Y. Huang, T. Tsuboi, W. Huang, and H. J. Seo, “Versatile luminescence of Eu2+,3+-activated fluorosilicate apatites M2Y3[SiO4]3F (M = Sr, Ba) suitable for white light emitting diodes,” Opt. Mater. Express 4(2), 396–402 (2014).
[Crossref]

Y. Huang, C. Jiang, K. Jang, H. S. Lee, E. Cho, M. Jayasimhadri, and S.-S. Yi, “Luminescence and microstructure of Sm2+ ions reduced by X-ray irradiation in Li2O–SrO–B2O3 glass,” J. Appl. Phys. 103(11), 113519 (2008).
[Crossref]

Huang, Y. F.

K. W. Jang, Y. F. Huang, W. X. Zha, E. J. Cho, H. S. Lee, X. G. Wang, D. Qin, Y. Zhang, C. F. Hang, and H. J. Seo, “Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5,” J. Solid State Chem. 180(12), 3325–3332 (2007).
[Crossref]

Huang, Y. L.

Y. D. Li, J. Y. Wang, Y. L. Huang, and H. J. Seo, “Temperature-dependent 5D0→ 7F0 luminescence of Sm2+ ions doped in alkaline earth borophosphate glass,” J. Am. Ceram. Soc. 93(3), 722–726 (2010).
[Crossref]

Y. D. Li, Y. L. Huang, C. F. Jiang, and K. Jang, “The dependence of luminescence on reduction of Sm2+ ions doped in lithium barium borate glasses,” Appl. Phys., A Mater. Sci. Process. 97(3), 663–669 (2009).
[Crossref]

Iida, T.

D. Maki, T. Ishii, F. Sato, Y. Kato, T. Yamamoto, and T. Iida, “Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters,” Radiat. Prot. Dosimetry 144(1-4), 222–225 (2011).
[Crossref] [PubMed]

Ishii, T.

D. Maki, T. Ishii, F. Sato, Y. Kato, T. Yamamoto, and T. Iida, “Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters,” Radiat. Prot. Dosimetry 144(1-4), 222–225 (2011).
[Crossref] [PubMed]

Iwabuchi, Y.

J. R. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses,” Appl. Phys. Lett. 71(6), 759–761 (1997).
[Crossref]

Jang, K.

Y. D. Li, Y. L. Huang, C. F. Jiang, and K. Jang, “The dependence of luminescence on reduction of Sm2+ ions doped in lithium barium borate glasses,” Appl. Phys., A Mater. Sci. Process. 97(3), 663–669 (2009).
[Crossref]

Y. Huang, C. Jiang, K. Jang, H. S. Lee, E. Cho, M. Jayasimhadri, and S.-S. Yi, “Luminescence and microstructure of Sm2+ ions reduced by X-ray irradiation in Li2O–SrO–B2O3 glass,” J. Appl. Phys. 103(11), 113519 (2008).
[Crossref]

Jang, K. W.

K. W. Jang, Y. F. Huang, W. X. Zha, E. J. Cho, H. S. Lee, X. G. Wang, D. Qin, Y. Zhang, C. F. Hang, and H. J. Seo, “Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5,” J. Solid State Chem. 180(12), 3325–3332 (2007).
[Crossref]

S. Park, K. W. Jang, S. Kim, I. Kim, and H. Seo, “X-ray-induced reduction of Sm3+-doped SrB6O10 and its room temperature optical hole burning,” J. Phys.- Condens. Mat. 18(4), 1267–1274 (2006).
[Crossref]

Jayasimhadri, M.

Y. Huang, C. Jiang, K. Jang, H. S. Lee, E. Cho, M. Jayasimhadri, and S.-S. Yi, “Luminescence and microstructure of Sm2+ ions reduced by X-ray irradiation in Li2O–SrO–B2O3 glass,” J. Appl. Phys. 103(11), 113519 (2008).
[Crossref]

Jeong, J. H.

Jiang, C.

Y. Huang, C. Jiang, K. Jang, H. S. Lee, E. Cho, M. Jayasimhadri, and S.-S. Yi, “Luminescence and microstructure of Sm2+ ions reduced by X-ray irradiation in Li2O–SrO–B2O3 glass,” J. Appl. Phys. 103(11), 113519 (2008).
[Crossref]

Jiang, C. F.

Y. D. Li, Y. L. Huang, C. F. Jiang, and K. Jang, “The dependence of luminescence on reduction of Sm2+ ions doped in lithium barium borate glasses,” Appl. Phys., A Mater. Sci. Process. 97(3), 663–669 (2009).
[Crossref]

Jiang, X. W.

L. Y. Yang, N. Da, D. P. Chen, Q. Z. Zhao, X. W. Jiang, C. S. Zhu, and J. R. Qiu, “Valence state change and refractive index change induced by femtosecond laser irradiation in Sm3+ doped fluoroaluminate glass,” J. Non-Cryst. Solids 354(12-13), 1353–1356 (2008).
[Crossref]

Kalnins, C. A. G.

Kasap, S.

A. Edgar, C. R. Varoy, C. Koughia, G. Okada, G. Belev, and S. Kasap, “High-resolution X-ray imaging with samarium-doped fluoroaluminate and fluorophosphate glass,” J. Non-Cryst. Solids 377, 124–128 (2013).
[Crossref]

G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, and S. Kasap, “Examination of the dynamic range of Sm-doped glasses for high-dose and high-resolution dosimetric applications in microbeam radiation therapy at the Canadian synchrotron,” Opt. Mater. 35(11), 1976–1980 (2013).
[Crossref]

S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy,” J. Appl. Phys. 112(7), 073108 (2012).
[Crossref]

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[Crossref]

G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Edgar, T. Wysokinski, D. Chapman, and S. Kasap, “Valency conversion of samarium ions under high dose synchrotron generated X-ray radiation,” phys Status Solidi C. 8, 2822–2825 (2011).

G. Okada, J. Ueda, S. Tanabe, G. Belev, T. Wysokinski, D. Chapman, D. Tonchev, and S. Kasap, “Samarium-doped oxyfluoride glass-ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the Canadian synchrotron,” J. Am. Ceram. Soc. http://dx.doi.org/10.1111/jace.12938(2014), doi:.
[Crossref]

Kasap, S. O.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 32(1), 266 (2009).
[Crossref]

Kashino, G.

N. Nariyama, T. Ohigashi, K. Umetani, K. Shinohara, H. Tanaka, A. Maruhashi, G. Kashino, A. Kurihara, T. Kondob, M. Fukumoto, and K. Ono, “Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation,” Appl. Radiat. Isot. 67(1), 155–159 (2009).
[Crossref] [PubMed]

Kato, Y.

D. Maki, T. Ishii, F. Sato, Y. Kato, T. Yamamoto, and T. Iida, “Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters,” Radiat. Prot. Dosimetry 144(1-4), 222–225 (2011).
[Crossref] [PubMed]

Kawamura, G.

M. Nogami, G. Kawamura, G. J. Park, H. P. You, and T. Hayakawa, “Effect of Al3+ and Ti4+ ions on the laser reduction of Sm3+ ion in glass,” J. Lumin. 114(3-4), 178–186 (2005).
[Crossref]

Khalil, E.

A. Bouchet, A. Boumendjel, E. Khalil, R. Serduc, E. Bräuer, E. A. Siegbahn, J. A. Laissue, and J. Boutonnat, “Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors,” J. Synchrotron Radiat. 19(4), 478–482 (2012).
[Crossref] [PubMed]

Kim, I.

S. Park, K. W. Jang, S. Kim, I. Kim, and H. Seo, “X-ray-induced reduction of Sm3+-doped SrB6O10 and its room temperature optical hole burning,” J. Phys.- Condens. Mat. 18(4), 1267–1274 (2006).
[Crossref]

Kim, S.

S. Park, K. W. Jang, S. Kim, I. Kim, and H. Seo, “X-ray-induced reduction of Sm3+-doped SrB6O10 and its room temperature optical hole burning,” J. Phys.- Condens. Mat. 18(4), 1267–1274 (2006).
[Crossref]

Kiryanov, A. V.

Kondob, T.

N. Nariyama, T. Ohigashi, K. Umetani, K. Shinohara, H. Tanaka, A. Maruhashi, G. Kashino, A. Kurihara, T. Kondob, M. Fukumoto, and K. Ono, “Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation,” Appl. Radiat. Isot. 67(1), 155–159 (2009).
[Crossref] [PubMed]

Koughia, C.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

A. Edgar, C. R. Varoy, C. Koughia, G. Okada, G. Belev, and S. Kasap, “High-resolution X-ray imaging with samarium-doped fluoroaluminate and fluorophosphate glass,” J. Non-Cryst. Solids 377, 124–128 (2013).
[Crossref]

G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, and S. Kasap, “Examination of the dynamic range of Sm-doped glasses for high-dose and high-resolution dosimetric applications in microbeam radiation therapy at the Canadian synchrotron,” Opt. Mater. 35(11), 1976–1980 (2013).
[Crossref]

S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy,” J. Appl. Phys. 112(7), 073108 (2012).
[Crossref]

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[Crossref]

G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Edgar, T. Wysokinski, D. Chapman, and S. Kasap, “Valency conversion of samarium ions under high dose synchrotron generated X-ray radiation,” phys Status Solidi C. 8, 2822–2825 (2011).

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 32(1), 266 (2009).
[Crossref]

Kozlova, N. S.

Krol, D. M.

Kruse, C. A.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Kumar, V. V. R. K.

B. H. Babu and V. V. R. K. Kumar, “Fluorescence properties and electron paramagnetic resonance studies of gamma-irradiated Sm3+-doped oxyfluoroborate glasses,” J. Appl. Phys. 112(9), 093516 (2012).
[Crossref]

Kurihara, A.

N. Nariyama, T. Ohigashi, K. Umetani, K. Shinohara, H. Tanaka, A. Maruhashi, G. Kashino, A. Kurihara, T. Kondob, M. Fukumoto, and K. Ono, “Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation,” Appl. Radiat. Isot. 67(1), 155–159 (2009).
[Crossref] [PubMed]

Kusak, A.

P. Regnard, G. Le Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: balance between curing and sparing,” Phys. Med. Biol. 53(4), 861–878 (2008).
[Crossref] [PubMed]

Laissue, J. A.

A. Bouchet, A. Boumendjel, E. Khalil, R. Serduc, E. Bräuer, E. A. Siegbahn, J. A. Laissue, and J. Boutonnat, “Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors,” J. Synchrotron Radiat. 19(4), 478–482 (2012).
[Crossref] [PubMed]

P. Regnard, G. Le Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: balance between curing and sparing,” Phys. Med. Biol. 53(4), 861–878 (2008).
[Crossref] [PubMed]

J. A. Laissue, H. Blattmann, H. P. Wagner, M. A. Grotzer, and D. N. Slatkin, “Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae,” Dev. Med. Child Neurol. 49(8), 577–581 (2007).
[Crossref] [PubMed]

Laterra, J.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Le Duc, G.

P. Regnard, G. Le Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: balance between curing and sparing,” Phys. Med. Biol. 53(4), 861–878 (2008).
[Crossref] [PubMed]

Lee, H. S.

Y. Huang, C. Jiang, K. Jang, H. S. Lee, E. Cho, M. Jayasimhadri, and S.-S. Yi, “Luminescence and microstructure of Sm2+ ions reduced by X-ray irradiation in Li2O–SrO–B2O3 glass,” J. Appl. Phys. 103(11), 113519 (2008).
[Crossref]

K. W. Jang, Y. F. Huang, W. X. Zha, E. J. Cho, H. S. Lee, X. G. Wang, D. Qin, Y. Zhang, C. F. Hang, and H. J. Seo, “Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5,” J. Solid State Chem. 180(12), 3325–3332 (2007).
[Crossref]

Lenihan, D.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Lerch, M. L. F.

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

Levy, P. W.

P. W. Levy, “The kinetics of gamma-ray induced coloring of glass,” J. Am. Ceram. Soc. 43(8), 389–395 (1960).
[Crossref]

Lewis, R. A.

T. Ackerly, J. C. Crosbie, A. Fouras, G. J. Sheard, S. Higgins, and R. A. Lewis, “High resolution optical calorimetry for synchrotron microbeam radiation therapy,” J. Instrum. 6, P03003 (2011).

J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
[Crossref] [PubMed]

Li, L.

Li, Y. D.

Y. D. Li, J. Y. Wang, Y. L. Huang, and H. J. Seo, “Temperature-dependent 5D0→ 7F0 luminescence of Sm2+ ions doped in alkaline earth borophosphate glass,” J. Am. Ceram. Soc. 93(3), 722–726 (2010).
[Crossref]

Y. D. Li, Y. L. Huang, C. F. Jiang, and K. Jang, “The dependence of luminescence on reduction of Sm2+ ions doped in lithium barium borate glasses,” Appl. Phys., A Mater. Sci. Process. 97(3), 663–669 (2009).
[Crossref]

Lin, H.

Liu, S.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Long, K. J.

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical-absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

Maki, D.

D. Maki, T. Ishii, F. Sato, Y. Kato, T. Yamamoto, and T. Iida, “Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters,” Radiat. Prot. Dosimetry 144(1-4), 222–225 (2011).
[Crossref] [PubMed]

Malchukova, E.

E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, “Optical properties and valence state of Sm ions in aluminoborosilicate glass under beta-irradiation,” J. Non-Cryst. Solids 353(24-25), 2397–2402 (2007).
[Crossref]

E. Malchukova, B. Boizot, D. Ghaleb, and G. Petite, “Optical properties of pristine and gamma-irradiated Sm doped borosilicate glasses,” Nucl. Instrum. Meth. A 537(1-2), 411–414 (2005).
[Crossref]

Maruhashi, A.

N. Nariyama, T. Ohigashi, K. Umetani, K. Shinohara, H. Tanaka, A. Maruhashi, G. Kashino, A. Kurihara, T. Kondob, M. Fukumoto, and K. Ono, “Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation,” Appl. Radiat. Isot. 67(1), 155–159 (2009).
[Crossref] [PubMed]

McDonald, J. W.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Meachem, S.

J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
[Crossref] [PubMed]

Messina, F.

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

Mitsuyu, T.

J. R. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
[Crossref]

Miura, K.

K. Miura, J. R. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
[Crossref]

J. R. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
[Crossref]

Monro, T. M.

Monteville, A.

Morrell, B.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, and S. Kasap, “Examination of the dynamic range of Sm-doped glasses for high-dose and high-resolution dosimetric applications in microbeam radiation therapy at the Canadian synchrotron,” Opt. Mater. 35(11), 1976–1980 (2013).
[Crossref]

S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy,” J. Appl. Phys. 112(7), 073108 (2012).
[Crossref]

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[Crossref]

Muzar, E.

S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy,” J. Appl. Phys. 112(7), 073108 (2012).
[Crossref]

Nariyama, N.

N. Nariyama, T. Ohigashi, K. Umetani, K. Shinohara, H. Tanaka, A. Maruhashi, G. Kashino, A. Kurihara, T. Kondob, M. Fukumoto, and K. Ono, “Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation,” Appl. Radiat. Isot. 67(1), 155–159 (2009).
[Crossref] [PubMed]

Nawrocky, M. M.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Nogami, M.

M. Nogami, G. Kawamura, G. J. Park, H. P. You, and T. Hayakawa, “Effect of Al3+ and Ti4+ ions on the laser reduction of Sm3+ ion in glass,” J. Lumin. 114(3-4), 178–186 (2005).
[Crossref]

M. Nogami and K. Suzuki, “Formation of Sm2+ ions and spectral hole burning in X-ray irradiated glasses,” J. Phys. Chem. B 106(21), 5395–5399 (2002).
[Crossref]

Noh, H. M.

Ohigashi, T.

N. Nariyama, T. Ohigashi, K. Umetani, K. Shinohara, H. Tanaka, A. Maruhashi, G. Kashino, A. Kurihara, T. Kondob, M. Fukumoto, and K. Ono, “Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation,” Appl. Radiat. Isot. 67(1), 155–159 (2009).
[Crossref] [PubMed]

Okada, G.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, and S. Kasap, “Examination of the dynamic range of Sm-doped glasses for high-dose and high-resolution dosimetric applications in microbeam radiation therapy at the Canadian synchrotron,” Opt. Mater. 35(11), 1976–1980 (2013).
[Crossref]

A. Edgar, C. R. Varoy, C. Koughia, G. Okada, G. Belev, and S. Kasap, “High-resolution X-ray imaging with samarium-doped fluoroaluminate and fluorophosphate glass,” J. Non-Cryst. Solids 377, 124–128 (2013).
[Crossref]

S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy,” J. Appl. Phys. 112(7), 073108 (2012).
[Crossref]

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[Crossref]

G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Edgar, T. Wysokinski, D. Chapman, and S. Kasap, “Valency conversion of samarium ions under high dose synchrotron generated X-ray radiation,” phys Status Solidi C. 8, 2822–2825 (2011).

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 32(1), 266 (2009).
[Crossref]

G. Okada, J. Ueda, S. Tanabe, G. Belev, T. Wysokinski, D. Chapman, D. Tonchev, and S. Kasap, “Samarium-doped oxyfluoride glass-ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the Canadian synchrotron,” J. Am. Ceram. Soc. http://dx.doi.org/10.1111/jace.12938(2014), doi:.
[Crossref]

Ono, K.

N. Nariyama, T. Ohigashi, K. Umetani, K. Shinohara, H. Tanaka, A. Maruhashi, G. Kashino, A. Kurihara, T. Kondob, M. Fukumoto, and K. Ono, “Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation,” Appl. Radiat. Isot. 67(1), 155–159 (2009).
[Crossref] [PubMed]

Origlio, G.

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

Osellame, R.

Ouerdane, Y.

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

Pappas, G.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Park, G. J.

M. Nogami, G. Kawamura, G. J. Park, H. P. You, and T. Hayakawa, “Effect of Al3+ and Ti4+ ions on the laser reduction of Sm3+ ion in glass,” J. Lumin. 114(3-4), 178–186 (2005).
[Crossref]

Park, S.

S. Park, K. W. Jang, S. Kim, I. Kim, and H. Seo, “X-ray-induced reduction of Sm3+-doped SrB6O10 and its room temperature optical hole burning,” J. Phys.- Condens. Mat. 18(4), 1267–1274 (2006).
[Crossref]

Paul, M. C.

Perevertaylo, V.

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

Petasecca, M.

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

Petite, G.

E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, “Optical properties and valence state of Sm ions in aluminoborosilicate glass under beta-irradiation,” J. Non-Cryst. Solids 353(24-25), 2397–2402 (2007).
[Crossref]

E. Malchukova, B. Boizot, D. Ghaleb, and G. Petite, “Optical properties of pristine and gamma-irradiated Sm doped borosilicate glasses,” Nucl. Instrum. Meth. A 537(1-2), 411–414 (2005).
[Crossref]

Porumb, C.

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

Pun, E. Y. B.

Qi, S.

Qin, D.

K. W. Jang, Y. F. Huang, W. X. Zha, E. J. Cho, H. S. Lee, X. G. Wang, D. Qin, Y. Zhang, C. F. Hang, and H. J. Seo, “Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5,” J. Solid State Chem. 180(12), 3325–3332 (2007).
[Crossref]

Qiu, J.

Qiu, J. R.

L. Y. Yang, N. Da, D. P. Chen, Q. Z. Zhao, X. W. Jiang, C. S. Zhu, and J. R. Qiu, “Valence state change and refractive index change induced by femtosecond laser irradiation in Sm3+ doped fluoroaluminate glass,” J. Non-Cryst. Solids 354(12-13), 1353–1356 (2008).
[Crossref]

K. Miura, J. R. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
[Crossref]

J. R. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
[Crossref]

J. R. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses,” Appl. Phys. Lett. 71(6), 759–761 (1997).
[Crossref]

Qu, Y.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Regnard, P.

P. Regnard, G. Le Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: balance between curing and sparing,” Phys. Med. Biol. 53(4), 861–878 (2008).
[Crossref] [PubMed]

Reichman, W. J.

Reis, S. T.

Requardt, H.

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

Restall, C. M.

J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
[Crossref] [PubMed]

Robin, T.

Rogers, P. A. W.

K. Rothkamm, J. C. Crosbie, F. Daley, S. Bourne, P. R. Barber, B. Vojnovic, L. Cann, and P. A. W. Rogers, “In situ biological dose mapping estimates the radiation burden delivered to ‘spared’ tissue between synchrotron X-Ray microbeam radiotherapy tracks,” PLoS ONE 7(1), e29853 (2012).
[Crossref] [PubMed]

J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
[Crossref] [PubMed]

Rosenfeld, A. B.

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

Rothkamm, K.

K. Rothkamm, J. C. Crosbie, F. Daley, S. Bourne, P. R. Barber, B. Vojnovic, L. Cann, and P. A. W. Rogers, “In situ biological dose mapping estimates the radiation burden delivered to ‘spared’ tissue between synchrotron X-Ray microbeam radiotherapy tracks,” PLoS ONE 7(1), e29853 (2012).
[Crossref] [PubMed]

J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
[Crossref] [PubMed]

Ruwanpura, S.

J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
[Crossref] [PubMed]

Ryan, M.

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 32(1), 266 (2009).
[Crossref]

Rydberg, S.

Sakaguchi, S.

K. Miura, J. R. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
[Crossref]

Sammynaiken, R.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

Sandborg, M.

D. N. Slatkin, P. Spanne, F. A. Dilmanian, and M. Sandborg, “Microbeam radiation therapy,” Med. Phys. 19(6), 1395–1400 (1992).
[Crossref] [PubMed]

Sato, F.

D. Maki, T. Ishii, F. Sato, Y. Kato, T. Yamamoto, and T. Iida, “Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters,” Radiat. Prot. Dosimetry 144(1-4), 222–225 (2011).
[Crossref] [PubMed]

Seo, H.

S. Park, K. W. Jang, S. Kim, I. Kim, and H. Seo, “X-ray-induced reduction of Sm3+-doped SrB6O10 and its room temperature optical hole burning,” J. Phys.- Condens. Mat. 18(4), 1267–1274 (2006).
[Crossref]

Seo, H. J.

S. Qi, Y. Huang, T. Tsuboi, W. Huang, and H. J. Seo, “Versatile luminescence of Eu2+,3+-activated fluorosilicate apatites M2Y3[SiO4]3F (M = Sr, Ba) suitable for white light emitting diodes,” Opt. Mater. Express 4(2), 396–402 (2014).
[Crossref]

Y. D. Li, J. Y. Wang, Y. L. Huang, and H. J. Seo, “Temperature-dependent 5D0→ 7F0 luminescence of Sm2+ ions doped in alkaline earth borophosphate glass,” J. Am. Ceram. Soc. 93(3), 722–726 (2010).
[Crossref]

K. W. Jang, Y. F. Huang, W. X. Zha, E. J. Cho, H. S. Lee, X. G. Wang, D. Qin, Y. Zhang, C. F. Hang, and H. J. Seo, “Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5,” J. Solid State Chem. 180(12), 3325–3332 (2007).
[Crossref]

Serduc, R.

A. Bouchet, A. Boumendjel, E. Khalil, R. Serduc, E. Bräuer, E. A. Siegbahn, J. A. Laissue, and J. Boutonnat, “Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors,” J. Synchrotron Radiat. 19(4), 478–482 (2012).
[Crossref] [PubMed]

Sheard, G. J.

T. Ackerly, J. C. Crosbie, A. Fouras, G. J. Sheard, S. Higgins, and R. A. Lewis, “High resolution optical calorimetry for synchrotron microbeam radiation therapy,” J. Instrum. 6, P03003 (2011).

Shen, L. F.

Shimizugawa, Y.

J. R. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses,” Appl. Phys. Lett. 71(6), 759–761 (1997).
[Crossref]

Shinohara, K.

N. Nariyama, T. Ohigashi, K. Umetani, K. Shinohara, H. Tanaka, A. Maruhashi, G. Kashino, A. Kurihara, T. Kondob, M. Fukumoto, and K. Ono, “Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation,” Appl. Radiat. Isot. 67(1), 155–159 (2009).
[Crossref] [PubMed]

Siegbahn, E. A.

A. Bouchet, A. Boumendjel, E. Khalil, R. Serduc, E. Bräuer, E. A. Siegbahn, J. A. Laissue, and J. Boutonnat, “Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors,” J. Synchrotron Radiat. 19(4), 478–482 (2012).
[Crossref] [PubMed]

P. Regnard, G. Le Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: balance between curing and sparing,” Phys. Med. Biol. 53(4), 861–878 (2008).
[Crossref] [PubMed]

Slatkin, D. N.

J. A. Laissue, H. Blattmann, H. P. Wagner, M. A. Grotzer, and D. N. Slatkin, “Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae,” Dev. Med. Child Neurol. 49(8), 577–581 (2007).
[Crossref] [PubMed]

D. N. Slatkin, P. Spanne, F. A. Dilmanian, and M. Sandborg, “Microbeam radiation therapy,” Med. Phys. 19(6), 1395–1400 (1992).
[Crossref] [PubMed]

Spanne, P.

D. N. Slatkin, P. Spanne, F. A. Dilmanian, and M. Sandborg, “Microbeam radiation therapy,” Med. Phys. 19(6), 1395–1400 (1992).
[Crossref] [PubMed]

Spooner, N. A.

Stanton, C.

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

Stroud, J. S.

J. S. Stroud, “Color centers in a cerium-containing silicate glass,” J. Chem. Phys. 37(4), 836 (1962).
[Crossref]

Suzuki, K.

M. Nogami and K. Suzuki, “Formation of Sm2+ ions and spectral hole burning in X-ray irradiated glasses,” J. Phys. Chem. B 106(21), 5395–5399 (2002).
[Crossref]

Suzuki, T.

J. R. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
[Crossref]

Svalbe, I.

J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
[Crossref] [PubMed]

Sykora, G. J.

J. A. Bartz, G. J. Sykora, E. Brauer-Krisch, and M. S. Akselrod, “Imaging and dosimetry of synchrotron microbeam with aluminum oxide fluorescent detectors,” Radiat. Meas. 46(12), 1936–1939 (2011).
[Crossref]

Sze, C. I.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Taccheo, S.

Tanabe, S.

G. Okada, J. Ueda, S. Tanabe, G. Belev, T. Wysokinski, D. Chapman, D. Tonchev, and S. Kasap, “Samarium-doped oxyfluoride glass-ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the Canadian synchrotron,” J. Am. Ceram. Soc. http://dx.doi.org/10.1111/jace.12938(2014), doi:.
[Crossref]

Tanaka, H.

N. Nariyama, T. Ohigashi, K. Umetani, K. Shinohara, H. Tanaka, A. Maruhashi, G. Kashino, A. Kurihara, T. Kondob, M. Fukumoto, and K. Ono, “Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation,” Appl. Radiat. Isot. 67(1), 155–159 (2009).
[Crossref] [PubMed]

Thierry, B.

A. T. Abdul Rahman, D. A. Bradley, S. J. Doran, B. Thierry, E. Bräuer-Krisch, and A. Bravin, “The thermoluminescence response of Ge-doped silica fibres for synchrotron microbeam radiation therapy dosimetry,” Nucl. Instrum. Meth. A 619(1-3), 167–170 (2010).
[Crossref]

Tonchev, D.

G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Edgar, T. Wysokinski, D. Chapman, and S. Kasap, “Valency conversion of samarium ions under high dose synchrotron generated X-ray radiation,” phys Status Solidi C. 8, 2822–2825 (2011).

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 32(1), 266 (2009).
[Crossref]

G. Okada, J. Ueda, S. Tanabe, G. Belev, T. Wysokinski, D. Chapman, D. Tonchev, and S. Kasap, “Samarium-doped oxyfluoride glass-ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the Canadian synchrotron,” J. Am. Ceram. Soc. http://dx.doi.org/10.1111/jace.12938(2014), doi:.
[Crossref]

Tregoat, D.

Troprès, I.

P. Regnard, G. Le Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: balance between curing and sparing,” Phys. Med. Biol. 53(4), 861–878 (2008).
[Crossref] [PubMed]

Troy, N.

Troy, N. W.

Tsuboi, T.

Ueda, J.

G. Okada, J. Ueda, S. Tanabe, G. Belev, T. Wysokinski, D. Chapman, D. Tonchev, and S. Kasap, “Samarium-doped oxyfluoride glass-ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the Canadian synchrotron,” J. Am. Ceram. Soc. http://dx.doi.org/10.1111/jace.12938(2014), doi:.
[Crossref]

Umetani, K.

N. Nariyama, T. Ohigashi, K. Umetani, K. Shinohara, H. Tanaka, A. Maruhashi, G. Kashino, A. Kurihara, T. Kondob, M. Fukumoto, and K. Ono, “Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation,” Appl. Radiat. Isot. 67(1), 155–159 (2009).
[Crossref] [PubMed]

Vahedi, S.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, and S. Kasap, “Examination of the dynamic range of Sm-doped glasses for high-dose and high-resolution dosimetric applications in microbeam radiation therapy at the Canadian synchrotron,” Opt. Mater. 35(11), 1976–1980 (2013).
[Crossref]

S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy,” J. Appl. Phys. 112(7), 073108 (2012).
[Crossref]

Varoy, C.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, and S. Kasap, “Examination of the dynamic range of Sm-doped glasses for high-dose and high-resolution dosimetric applications in microbeam radiation therapy at the Canadian synchrotron,” Opt. Mater. 35(11), 1976–1980 (2013).
[Crossref]

S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy,” J. Appl. Phys. 112(7), 073108 (2012).
[Crossref]

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[Crossref]

G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Edgar, T. Wysokinski, D. Chapman, and S. Kasap, “Valency conversion of samarium ions under high dose synchrotron generated X-ray radiation,” phys Status Solidi C. 8, 2822–2825 (2011).

Varoy, C. R.

A. Edgar, C. R. Varoy, C. Koughia, G. Okada, G. Belev, and S. Kasap, “High-resolution X-ray imaging with samarium-doped fluoroaluminate and fluorophosphate glass,” J. Non-Cryst. Solids 377, 124–128 (2013).
[Crossref]

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 32(1), 266 (2009).
[Crossref]

Vazquez, R. M.

Vojnovic, B.

K. Rothkamm, J. C. Crosbie, F. Daley, S. Bourne, P. R. Barber, B. Vojnovic, L. Cann, and P. A. W. Rogers, “In situ biological dose mapping estimates the radiation burden delivered to ‘spared’ tissue between synchrotron X-Ray microbeam radiotherapy tracks,” PLoS ONE 7(1), e29853 (2012).
[Crossref] [PubMed]

von Seggern, H.

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 32(1), 266 (2009).
[Crossref]

Wagner, H. P.

J. A. Laissue, H. Blattmann, H. P. Wagner, M. A. Grotzer, and D. N. Slatkin, “Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae,” Dev. Med. Child Neurol. 49(8), 577–581 (2007).
[Crossref] [PubMed]

Wang, F.

Wang, J. Y.

Y. D. Li, J. Y. Wang, Y. L. Huang, and H. J. Seo, “Temperature-dependent 5D0→ 7F0 luminescence of Sm2+ ions doped in alkaline earth borophosphate glass,” J. Am. Ceram. Soc. 93(3), 722–726 (2010).
[Crossref]

Wang, X. G.

K. W. Jang, Y. F. Huang, W. X. Zha, E. J. Cho, H. S. Lee, X. G. Wang, D. Qin, Y. Zhang, C. F. Hang, and H. J. Seo, “Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5,” J. Solid State Chem. 180(12), 3325–3332 (2007).
[Crossref]

Wei, Y.

Williams, B. R. G.

J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
[Crossref] [PubMed]

Witcher, J. J.

Wondraczek, L.

Wysokinski, T.

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, and S. Kasap, “Examination of the dynamic range of Sm-doped glasses for high-dose and high-resolution dosimetric applications in microbeam radiation therapy at the Canadian synchrotron,” Opt. Mater. 35(11), 1976–1980 (2013).
[Crossref]

S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy,” J. Appl. Phys. 112(7), 073108 (2012).
[Crossref]

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[Crossref]

G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Edgar, T. Wysokinski, D. Chapman, and S. Kasap, “Valency conversion of samarium ions under high dose synchrotron generated X-ray radiation,” phys Status Solidi C. 8, 2822–2825 (2011).

G. Okada, J. Ueda, S. Tanabe, G. Belev, T. Wysokinski, D. Chapman, D. Tonchev, and S. Kasap, “Samarium-doped oxyfluoride glass-ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the Canadian synchrotron,” J. Am. Ceram. Soc. http://dx.doi.org/10.1111/jace.12938(2014), doi:.
[Crossref]

Xu, X.

Yagi, N.

J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
[Crossref] [PubMed]

Yamamoto, T.

D. Maki, T. Ishii, F. Sato, Y. Kato, T. Yamamoto, and T. Iida, “Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters,” Radiat. Prot. Dosimetry 144(1-4), 222–225 (2011).
[Crossref] [PubMed]

Yang, J.

Yang, L. Y.

L. Y. Yang, N. Da, D. P. Chen, Q. Z. Zhao, X. W. Jiang, C. S. Zhu, and J. R. Qiu, “Valence state change and refractive index change induced by femtosecond laser irradiation in Sm3+ doped fluoroaluminate glass,” J. Non-Cryst. Solids 354(12-13), 1353–1356 (2008).
[Crossref]

Yang, Y.

Yang, Z.

Yasumoto, C.

K. Fujita, C. Yasumoto, and K. Hirao, “Photochemical reactions of samarium ions in sodium borate glasses irradiated with near-infrared femtosecond laser pulses,” J. Lumin. 98(1-4), 317–323 (2002).
[Crossref]

Yi, S.-S.

Y. Huang, C. Jiang, K. Jang, H. S. Lee, E. Cho, M. Jayasimhadri, and S.-S. Yi, “Luminescence and microstructure of Sm2+ ions reduced by X-ray irradiation in Li2O–SrO–B2O3 glass,” J. Appl. Phys. 103(11), 113519 (2008).
[Crossref]

You, H. P.

M. Nogami, G. Kawamura, G. J. Park, H. P. You, and T. Hayakawa, “Effect of Al3+ and Ti4+ ions on the laser reduction of Sm3+ ion in glass,” J. Lumin. 114(3-4), 178–186 (2005).
[Crossref]

Yuasa, T.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Zha, W. X.

K. W. Jang, Y. F. Huang, W. X. Zha, E. J. Cho, H. S. Lee, X. G. Wang, D. Qin, Y. Zhang, C. F. Hang, and H. J. Seo, “Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5,” J. Solid State Chem. 180(12), 3325–3332 (2007).
[Crossref]

Zhang, Y.

K. W. Jang, Y. F. Huang, W. X. Zha, E. J. Cho, H. S. Lee, X. G. Wang, D. Qin, Y. Zhang, C. F. Hang, and H. J. Seo, “Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5,” J. Solid State Chem. 180(12), 3325–3332 (2007).
[Crossref]

Zhao, Q. Z.

L. Y. Yang, N. Da, D. P. Chen, Q. Z. Zhao, X. W. Jiang, C. S. Zhu, and J. R. Qiu, “Valence state change and refractive index change induced by femtosecond laser irradiation in Sm3+ doped fluoroaluminate glass,” J. Non-Cryst. Solids 354(12-13), 1353–1356 (2008).
[Crossref]

Zhong, N.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Zhong, Z.

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Zhou, D.

Zhu, C. S.

L. Y. Yang, N. Da, D. P. Chen, Q. Z. Zhao, X. W. Jiang, C. S. Zhu, and J. R. Qiu, “Valence state change and refractive index change induced by femtosecond laser irradiation in Sm3+ doped fluoroaluminate glass,” J. Non-Cryst. Solids 354(12-13), 1353–1356 (2008).
[Crossref]

Appl. Phys. Lett. (4)

K. Miura, J. R. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002).
[Crossref]

J. R. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao, “Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses,” Appl. Phys. Lett. 71(6), 759–761 (1997).
[Crossref]

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[Crossref]

J. R. Qiu, K. Miura, T. Suzuki, T. Mitsuyu, and K. Hirao, “Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser,” Appl. Phys. Lett. 74(1), 10–12 (1999).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. D. Li, Y. L. Huang, C. F. Jiang, and K. Jang, “The dependence of luminescence on reduction of Sm2+ ions doped in lithium barium borate glasses,” Appl. Phys., A Mater. Sci. Process. 97(3), 663–669 (2009).
[Crossref]

Appl. Radiat. Isot. (1)

N. Nariyama, T. Ohigashi, K. Umetani, K. Shinohara, H. Tanaka, A. Maruhashi, G. Kashino, A. Kurihara, T. Kondob, M. Fukumoto, and K. Ono, “Spectromicroscopic film dosimetry for high-energy microbeam from synchrotron radiation,” Appl. Radiat. Isot. 67(1), 155–159 (2009).
[Crossref] [PubMed]

Dev. Med. Child Neurol. (1)

J. A. Laissue, H. Blattmann, H. P. Wagner, M. A. Grotzer, and D. N. Slatkin, “Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae,” Dev. Med. Child Neurol. 49(8), 577–581 (2007).
[Crossref] [PubMed]

Glass Phys. Chem. (1)

T. V. Bocharova, “A model of the capture volume of free carriers in fluorophosphate glasses doped with terbium,” Glass Phys. Chem. 31(2), 119–127 (2005).
[Crossref]

Int. J. Radiat. Oncol. Biol. Phys. (1)

J. C. Crosbie, R. L. Anderson, K. Rothkamm, C. M. Restall, L. Cann, S. Ruwanpura, S. Meachem, N. Yagi, I. Svalbe, R. A. Lewis, B. R. G. Williams, and P. A. W. Rogers, “Tumor cell response to synchrotron microbeam radiation therapy differs markedly from cells in normal tissues,” Int. J. Radiat. Oncol. Biol. Phys. 77(3), 886–894 (2010).
[Crossref] [PubMed]

J. Am. Ceram. Soc. (2)

P. W. Levy, “The kinetics of gamma-ray induced coloring of glass,” J. Am. Ceram. Soc. 43(8), 389–395 (1960).
[Crossref]

Y. D. Li, J. Y. Wang, Y. L. Huang, and H. J. Seo, “Temperature-dependent 5D0→ 7F0 luminescence of Sm2+ ions doped in alkaline earth borophosphate glass,” J. Am. Ceram. Soc. 93(3), 722–726 (2010).
[Crossref]

J. Appl. Phys. (6)

B. H. Babu and V. V. R. K. Kumar, “Fluorescence properties and electron paramagnetic resonance studies of gamma-irradiated Sm3+-doped oxyfluoroborate glasses,” J. Appl. Phys. 112(9), 093516 (2012).
[Crossref]

Y. Huang, C. Jiang, K. Jang, H. S. Lee, E. Cho, M. Jayasimhadri, and S.-S. Yi, “Luminescence and microstructure of Sm2+ ions reduced by X-ray irradiation in Li2O–SrO–B2O3 glass,” J. Appl. Phys. 103(11), 113519 (2008).
[Crossref]

B. Morrell, G. Okada, S. Vahedi, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, R. Sammynaiken, and S. O. Kasap, “Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy,” J. Appl. Phys. 115(6), 063107 (2014).
[Crossref]

S. Vahedi, G. Okada, B. Morrell, E. Muzar, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy,” J. Appl. Phys. 112(7), 073108 (2012).
[Crossref]

G. Origlio, F. Messina, S. Girard, M. Cannas, A. Boukenter, and Y. Ouerdane, “Spectroscopic studies of the origin of radiation-induced degradation in phosphorus-doped optical fibers and preforms,” J. Appl. Phys. 108(12), 123103 (2010).
[Crossref]

D. L. Griscom, E. J. Friebele, K. J. Long, and J. W. Fleming, “Fundamental defect centers in glass - electron-spin resonance and optical-absorption studies of irradiated phosphorus-doped silica glass and optical fibers,” J. Appl. Phys. 54(7), 3743–3762 (1983).
[Crossref]

J. Chem. Phys. (1)

J. S. Stroud, “Color centers in a cerium-containing silicate glass,” J. Chem. Phys. 37(4), 836 (1962).
[Crossref]

J. Instrum. (2)

T. Ackerly, J. C. Crosbie, A. Fouras, G. J. Sheard, S. Higgins, and R. A. Lewis, “High resolution optical calorimetry for synchrotron microbeam radiation therapy,” J. Instrum. 6, P03003 (2011).

M. Petasecca, A. Cullen, I. Fuduli, A. Espinoza, C. Porumb, C. Stanton, A. H. Aldosari, E. Brauer-Krisch, H. Requardt, A. Bravin, V. Perevertaylo, A. B. Rosenfeld, and M. L. F. Lerch, “X-Tream: a novel dosimetry system for synchrotron microbeam radiation therapy,” J. Instrum. 7, P07022 (2012).

J. Lumin. (2)

K. Fujita, C. Yasumoto, and K. Hirao, “Photochemical reactions of samarium ions in sodium borate glasses irradiated with near-infrared femtosecond laser pulses,” J. Lumin. 98(1-4), 317–323 (2002).
[Crossref]

M. Nogami, G. Kawamura, G. J. Park, H. P. You, and T. Hayakawa, “Effect of Al3+ and Ti4+ ions on the laser reduction of Sm3+ ion in glass,” J. Lumin. 114(3-4), 178–186 (2005).
[Crossref]

J. Non-Cryst. Solids (4)

D. L. Griscom, “Esr studies of radiation-damage and structure in oxide glasses not containing transition group ions - a contemporary overview with illustrations from alkali borate system,” J. Non-Cryst. Solids 13(2), 251–285 (1974).
[Crossref]

L. Y. Yang, N. Da, D. P. Chen, Q. Z. Zhao, X. W. Jiang, C. S. Zhu, and J. R. Qiu, “Valence state change and refractive index change induced by femtosecond laser irradiation in Sm3+ doped fluoroaluminate glass,” J. Non-Cryst. Solids 354(12-13), 1353–1356 (2008).
[Crossref]

E. Malchukova, B. Boizot, G. Petite, and D. Ghaleb, “Optical properties and valence state of Sm ions in aluminoborosilicate glass under beta-irradiation,” J. Non-Cryst. Solids 353(24-25), 2397–2402 (2007).
[Crossref]

A. Edgar, C. R. Varoy, C. Koughia, G. Okada, G. Belev, and S. Kasap, “High-resolution X-ray imaging with samarium-doped fluoroaluminate and fluorophosphate glass,” J. Non-Cryst. Solids 377, 124–128 (2013).
[Crossref]

J. Phys. Chem. B (1)

M. Nogami and K. Suzuki, “Formation of Sm2+ ions and spectral hole burning in X-ray irradiated glasses,” J. Phys. Chem. B 106(21), 5395–5399 (2002).
[Crossref]

J. Phys.- Condens. Mat. (1)

S. Park, K. W. Jang, S. Kim, I. Kim, and H. Seo, “X-ray-induced reduction of Sm3+-doped SrB6O10 and its room temperature optical hole burning,” J. Phys.- Condens. Mat. 18(4), 1267–1274 (2006).
[Crossref]

J. Solid State Chem. (1)

K. W. Jang, Y. F. Huang, W. X. Zha, E. J. Cho, H. S. Lee, X. G. Wang, D. Qin, Y. Zhang, C. F. Hang, and H. J. Seo, “Irradiation-induced reduction and luminescence properties of Sm2+ doped in BaBPO5,” J. Solid State Chem. 180(12), 3325–3332 (2007).
[Crossref]

J. Synchrotron Radiat. (1)

A. Bouchet, A. Boumendjel, E. Khalil, R. Serduc, E. Bräuer, E. A. Siegbahn, J. A. Laissue, and J. Boutonnat, “Chalcone JAI-51 improves efficacy of synchrotron microbeam radiation therapy of brain tumors,” J. Synchrotron Radiat. 19(4), 478–482 (2012).
[Crossref] [PubMed]

Med. Phys. (1)

D. N. Slatkin, P. Spanne, F. A. Dilmanian, and M. Sandborg, “Microbeam radiation therapy,” Med. Phys. 19(6), 1395–1400 (1992).
[Crossref] [PubMed]

Nucl. Instrum. Meth. A (2)

E. Malchukova, B. Boizot, D. Ghaleb, and G. Petite, “Optical properties of pristine and gamma-irradiated Sm doped borosilicate glasses,” Nucl. Instrum. Meth. A 537(1-2), 411–414 (2005).
[Crossref]

A. T. Abdul Rahman, D. A. Bradley, S. J. Doran, B. Thierry, E. Bräuer-Krisch, and A. Bravin, “The thermoluminescence response of Ge-doped silica fibres for synchrotron microbeam radiation therapy dosimetry,” Nucl. Instrum. Meth. A 619(1-3), 167–170 (2010).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

F. A. Dilmanian, Y. Qu, S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Sze, T. Yuasa, N. Zhong, Z. Zhong, and J. W. McDonald, “X-ray microbeams: tumor therapy and central nervous system research,” Nucl. Instrum. Methods Phys. Res. A 548(1-2), 30–37 (2005).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (4)

P. Ebeling, D. Ehrt, and M. Friedrich, “X-ray induced effects in phosphate glasses,” Opt. Mater. 20(2), 101–111 (2002).
[Crossref]

H. Ebendorff-Heidepriem and D. Ehrt, “Effect of Tb3+ ions on X-ray-induced defect formation in phosphate containing glasses,” Opt. Mater. 18(4), 419–430 (2002).
[Crossref]

A. Edgar, C. R. Varoy, C. Koughia, D. Tonchev, G. Belev, G. Okada, S. O. Kasap, H. von Seggern, and M. Ryan, “Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics,” Opt. Mater. 32(1), 266 (2009).
[Crossref]

G. Okada, S. Vahedi, B. Morrell, C. Koughia, G. Belev, T. Wysokinski, D. Chapman, C. Varoy, A. Edgar, and S. Kasap, “Examination of the dynamic range of Sm-doped glasses for high-dose and high-resolution dosimetric applications in microbeam radiation therapy at the Canadian synchrotron,” Opt. Mater. 35(11), 1976–1980 (2013).
[Crossref]

Opt. Mater. Express (10)

C. A. G. Kalnins, N. A. Spooner, H. Ebendorff-Heidepriem, and T. M. Monro, “Luminescent properties of fluoride phosphate glass for radiation dosimetry,” Opt. Mater. Express 3(7), 960–967 (2013).
[Crossref]

J. J. Witcher, W. J. Reichman, L. B. Fletcher, N. W. Troy, and D. M. Krol, “Thermal annealing of femtosecond laser written structures in silica glass,” Opt. Mater. Express 3(4), 502–510 (2013).
[Crossref]

A. V. Kiryanov, S. Ghosh, M. C. Paul, Y. O. Barmenkov, V. Aboites, and N. S. Kozlova, “Ce-doped and Ce/Au-codoped alumino-phosphosilicate fibers: Spectral attenuation trends at high-energy electron irradiation and posterior low-power optical bleaching,” Opt. Mater. Express 4(3), 434–448 (2014).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses [Invited],” Opt. Mater. Express 1(5), 845–855 (2011).
[Crossref]

H. Gebavi, S. Taccheo, D. Tregoat, A. Monteville, and T. Robin, “Photobleaching of photodarkening in ytterbium doped aluminosilicate fibers with 633 nm irradiation,” Opt. Mater. Express 2(9), 1286–1291 (2012).
[Crossref]

S. Qi, Y. Huang, T. Tsuboi, W. Huang, and H. J. Seo, “Versatile luminescence of Eu2+,3+-activated fluorosilicate apatites M2Y3[SiO4]3F (M = Sr, Ba) suitable for white light emitting diodes,” Opt. Mater. Express 4(2), 396–402 (2014).
[Crossref]

J. Yang, H. Guo, Y. Wei, H. M. Noh, and J. H. Jeong, “Luminescence and energy transfer process in Cu+,Sm3+ co-doped sodium silicate glasses,” Opt. Mater. Express 4(2), 315–320 (2014).
[Crossref]

G. Gao and L. Wondraczek, “Spectral asymmetry and deep red photoluminescence in Eu3+-activated Na3YSi3O9 glass ceramics,” Opt. Mater. Express 4(3), 476–485 (2014).
[Crossref]

F. Wang, L. F. Shen, B. J. Chen, E. Y. B. Pun, and H. Lin, “Broadband fluorescence emission of Eu3+ doped germanotellurite glasses for fiber-based irradiation light sources,” Opt. Mater. Express 3(11), 1931–1943 (2013).
[Crossref]

L. Li, Y. Yang, D. Zhou, Z. Yang, X. Xu, and J. Qiu, “Investigation of the interaction between different types of Ag species and europium ions in Ag+-Na+ ion-exchange glass,” Opt. Mater. Express 3(6), 806–812 (2013).
[Crossref]

phys Status Solidi C. (1)

G. Belev, G. Okada, D. Tonchev, C. Koughia, C. Varoy, A. Edgar, T. Wysokinski, D. Chapman, and S. Kasap, “Valency conversion of samarium ions under high dose synchrotron generated X-ray radiation,” phys Status Solidi C. 8, 2822–2825 (2011).

Phys. Med. Biol. (1)

P. Regnard, G. Le Duc, E. Bräuer-Krisch, I. Troprès, E. A. Siegbahn, A. Kusak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue, and A. Bravin, “Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from a synchrotron: balance between curing and sparing,” Phys. Med. Biol. 53(4), 861–878 (2008).
[Crossref] [PubMed]

PLoS ONE (1)

K. Rothkamm, J. C. Crosbie, F. Daley, S. Bourne, P. R. Barber, B. Vojnovic, L. Cann, and P. A. W. Rogers, “In situ biological dose mapping estimates the radiation burden delivered to ‘spared’ tissue between synchrotron X-Ray microbeam radiotherapy tracks,” PLoS ONE 7(1), e29853 (2012).
[Crossref] [PubMed]

Radiat. Meas. (1)

J. A. Bartz, G. J. Sykora, E. Brauer-Krisch, and M. S. Akselrod, “Imaging and dosimetry of synchrotron microbeam with aluminum oxide fluorescent detectors,” Radiat. Meas. 46(12), 1936–1939 (2011).
[Crossref]

Radiat. Prot. Dosimetry (1)

D. Maki, T. Ishii, F. Sato, Y. Kato, T. Yamamoto, and T. Iida, “Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters,” Radiat. Prot. Dosimetry 144(1-4), 222–225 (2011).
[Crossref] [PubMed]

Other (4)

Siemens “Simulation of X-ray Spectra,” (Siemens AG, 2014). https://w9.siemens.com/cms/oemproducts/home/x-raytoolbox/spektrum/pages/default.aspx .

E. Bräuer-Krisch, A. Rosenfeld, M. Lerch, M. Petasecca, M. Akselrod, J. Sykora, J. Bartz, M. Ptaszkiewicz, P. Olko, A. Berg, M. Wieland, S. Doran, T. Brochard, A. Kamlowski, G. Cellere, A. Paccagnella, E. A. Siegbahn, Y. Prezado, I. Martinez-Rovira, A. Bravin, L. Dusseau, and P. Berkvens, “Potential high resolution dosimeters for MRT,” 6th international conference on medical applications of synchrotron radiation 1266, 89–97 (2010).
[Crossref]

A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University, 1970), Chap. 5.

G. Okada, J. Ueda, S. Tanabe, G. Belev, T. Wysokinski, D. Chapman, D. Tonchev, and S. Kasap, “Samarium-doped oxyfluoride glass-ceramic as a new fast erasable dosimetric detector material for microbeam radiation cancer therapy applications at the Canadian synchrotron,” J. Am. Ceram. Soc. http://dx.doi.org/10.1111/jace.12938(2014), doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The electron spin resonance (ESR) signal of FP glass doped with 0.2% of Sm3+ and X-ray irradiated for 2 hours (total dose of ~6 kGy). The spectra were measured after annealing the irradiated sample at 100 °C and cooling back to room temperature. The experimental data (thick solid lines) are approximated by a sum of five doublets and one singlet (symbols). Two doublets (L1 and L2) and the singlet L3 have Lorentzian lineshapes while the other three doublets (Г1–Г3) are Gaussians. The singlet and the individual components of each doublet are shown by thin solid lines and are marked by superscript (1) or (2). Note the change of scale (compression over the x-axis and stretching over y-axis by a factor of 50) in the wings, (a) and (c), of the graph. The lower scale is shown for a nominal frequency of 9.85 GHz.
Fig. 2
Fig. 2 Variation of ESR spectra of FP glass samples as a result of changing the concentration of Sm3+ (C0) in the range of 0–0.5 at.%. All the samples were X-ray irradiated for 2 hours prior to the ESR measurement. Symbols are approximation of experimental data based on the approach presented in Fig. 1 and Table1. All the signal intensities are normalized to the mass of the samples.
Fig. 3
Fig. 3 Variation of ESR signal components ascribed to POHC and POEC according to Table1 versus Sm doping concentration (C0). All the samples were X-ray irradiated for 2 hours prior to the ESR measurement. ESR signal intensities were normalized to the mass of the samples. I is the intensity of POHC related Lorentzian and POEC related Gaussian lines presented in Table 1. In case of Lorentzians, I is the summed intensity of L1−L3. Note that the first derivative of these lines sum up to simulate the ESR signal (symbols in Fig. 2). I0 is the corresponding intensity in the undoped glass irradiated for the same time (same dose). Lines are the fits using the formulas and the fitting parameters as shown in the figure. (The maximum C0 value along the x-axis is 1 × 1020 cm−3.)
Fig. 4
Fig. 4 The evolution of EPR spectra of the same sample (FP doped with 0.2% of Sm3+) experiencing a step-by-step annealing treatment carried out at increasing temperatures (100°C−300°C) and cooled back to room temperature after each step. The time duration for every annealing step is 30 min. The sample was X-ray irradiated for 2 hours prior to annealing. The experimental ESR data (thick solid lines) are approximated by a sum (symbols) of functions presented in Table 1 and Fig. 1.
Fig. 5
Fig. 5 The variation of ESR signal components (a) and (c) and induced absorbance bands (b) and (d) (symbols) versus annealing temperatures (100°C−300°C) related to the same sample of Fig. 4 (doped with 0.2% of Sm3+ and X-ray irradiated for 2 hours prior to annealing). Symbols in (a) and (c) correspond to the intensity of lines presented in Table1 used for approximation of experimental data of Fig. 4. Symbols in (b) and (d) correspond to the intensity of bands G1−G6 introduced in [30]. (a) and (b) correspond to POHC related bands while (c) and (d) to POEC related bands. All the intensities are normalized to their value at room temperature (20°C) just after irradiation for 2 hours. Lines are guides to eye.
Fig. 6
Fig. 6 (a) ESR signal of undoped and doped (0.2% of Sm3+) FP samples recorded in a very wide range. All the samples were X-ray irradiated for 2 h prior to annealing and ESR measurements. The annealing duration was 30 min. Inset shows the corresponding photoluminescence spectra (shifted vertically to facilitate the comparison). Narrow ESR lines observed in the range g = 1.7−2.6 are the same kind of lines shown in Fig. 4 related to X-ray induced defects. Note the wide range deviation of the ESR signal in samples which show Sm2+ photoluminescence.

Tables (1)

Tables Icon

Table 1 The unique set of Lorentzians and Gaussians (characterized by positions and widths) used for approximating the whole set of ESR spectra obtained in our experiments.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Sm 3+ + e Sm 2+
PO+ e POEC
PO+ h + POHC
Sm 2+ + h + Sm 3+
n POEC = n 0 e V 3 C 3
n POHC = n 0 e V 2 C 2
C 2 ( t ) = k 2 ( t ) C 0 and C 3 ( t )= k 3 ( t ) C 0
n POEC n 0 = e V 3 k 3 C 0
n POHC n 0 = e V 2 k 2 C 0
Sm 2+ Sm 3+ + e
POHC + e  PO

Metrics