Abstract

Theoretical calculations have predicted the possibility of omnidirectional absorption on a metallic surface with a closed packed layer of voids/spheres buried just beneath the surface. We have carried out a series of experiments to verify the existence of this theoretically predicted phenomenon. We report the observation of quasi omnidirectional total absorption of light on our fabricated surfaces and the tunability of the absorption wavelength by varying the size of the spheres/pores. The strongly enhanced absorption is observed for angles of incidence up to 65°.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun.19(3), 431–436 (1976).
    [CrossRef]
  2. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004).
    [CrossRef]
  3. N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express16(20), 15431–15438 (2008).
    [CrossRef] [PubMed]
  4. T. Teperik, V. Popov, and F. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B71(8), 085408 (2005).
    [CrossRef]
  5. T. V. Teperik, V. V. Popov, F. J. García de Abajo, M. Abdelsalam, P. N. Bartlett, T. A. Kelf, Y. Sugawara, and J. J. Baumberg, “Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons,” Opt. Express14(5), 1965–1972 (2006).
    [CrossRef] [PubMed]
  6. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
    [CrossRef]
  7. N. Bonod and E. Popov, “Total light absorption in a wide range of incidence by nanostructured metals without plasmons,” Opt. Lett.33(20), 2398–2400 (2008).
    [CrossRef] [PubMed]
  8. M. Heim, S. Reculusa, S. Ravaine, and A. Kuhn, “Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures,” Adv. Funct. Mater.22(3), 538–545 (2012).
    [CrossRef]
  9. S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater.21(4), 691–698 (2011).
    [CrossRef]
  10. A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012).
    [CrossRef]
  11. N. Vogel, S. Goerres, K. Landfester, and C. K. Weiss, “A convenient method to produce close- and non-close-packed monolayers using direct assembly at the air–water interface and subsequent plasma-induced size reduction,” Macromol. Chem. Phys.212(16), 1719–1734 (2011).
    [CrossRef]
  12. A. Taflove, A. Oskooi, and S. G. Johnson, Advances in FDTD Computational Electrodynamics - Photonics and Nanotechnology (Artech House, 2013).
  13. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]

2012 (2)

M. Heim, S. Reculusa, S. Ravaine, and A. Kuhn, “Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures,” Adv. Funct. Mater.22(3), 538–545 (2012).
[CrossRef]

A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012).
[CrossRef]

2011 (2)

N. Vogel, S. Goerres, K. Landfester, and C. K. Weiss, “A convenient method to produce close- and non-close-packed monolayers using direct assembly at the air–water interface and subsequent plasma-induced size reduction,” Macromol. Chem. Phys.212(16), 1719–1734 (2011).
[CrossRef]

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater.21(4), 691–698 (2011).
[CrossRef]

2008 (3)

2006 (1)

2005 (1)

T. Teperik, V. Popov, and F. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B71(8), 085408 (2005).
[CrossRef]

2004 (1)

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004).
[CrossRef]

1998 (1)

1976 (1)

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun.19(3), 431–436 (1976).
[CrossRef]

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

T. V. Teperik, V. V. Popov, F. J. García de Abajo, M. Abdelsalam, P. N. Bartlett, T. A. Kelf, Y. Sugawara, and J. J. Baumberg, “Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons,” Opt. Express14(5), 1965–1972 (2006).
[CrossRef] [PubMed]

Bartlett, P. N.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

T. V. Teperik, V. V. Popov, F. J. García de Abajo, M. Abdelsalam, P. N. Bartlett, T. A. Kelf, Y. Sugawara, and J. J. Baumberg, “Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons,” Opt. Express14(5), 1965–1972 (2006).
[CrossRef] [PubMed]

Baumberg, J. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

T. V. Teperik, V. V. Popov, F. J. García de Abajo, M. Abdelsalam, P. N. Bartlett, T. A. Kelf, Y. Sugawara, and J. J. Baumberg, “Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons,” Opt. Express14(5), 1965–1972 (2006).
[CrossRef] [PubMed]

Bonod, N.

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

Bourgeat-Lami, E.

A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012).
[CrossRef]

Chaduc, I.

A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012).
[CrossRef]

Collin, S.

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004).
[CrossRef]

Desert, A.

A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012).
[CrossRef]

Djurisic, A. B.

Duguet, E.

A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012).
[CrossRef]

Elazar, J. M.

Enoch, S.

Fouilloux, S.

A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012).
[CrossRef]

Gao, F.

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater.21(4), 691–698 (2011).
[CrossRef]

García de Abajo, F.

T. Teperik, V. Popov, and F. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B71(8), 085408 (2005).
[CrossRef]

García de Abajo, F. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

T. V. Teperik, V. V. Popov, F. J. García de Abajo, M. Abdelsalam, P. N. Bartlett, T. A. Kelf, Y. Sugawara, and J. J. Baumberg, “Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons,” Opt. Express14(5), 1965–1972 (2006).
[CrossRef] [PubMed]

Goerres, S.

N. Vogel, S. Goerres, K. Landfester, and C. K. Weiss, “A convenient method to produce close- and non-close-packed monolayers using direct assembly at the air–water interface and subsequent plasma-induced size reduction,” Macromol. Chem. Phys.212(16), 1719–1734 (2011).
[CrossRef]

Heim, M.

M. Heim, S. Reculusa, S. Ravaine, and A. Kuhn, “Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures,” Adv. Funct. Mater.22(3), 538–545 (2012).
[CrossRef]

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater.21(4), 691–698 (2011).
[CrossRef]

Hutley, M. C.

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun.19(3), 431–436 (1976).
[CrossRef]

Kelf, T. A.

Kuhn, A.

M. Heim, S. Reculusa, S. Ravaine, and A. Kuhn, “Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures,” Adv. Funct. Mater.22(3), 538–545 (2012).
[CrossRef]

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater.21(4), 691–698 (2011).
[CrossRef]

Lambert, O.

A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012).
[CrossRef]

Landfester, K.

N. Vogel, S. Goerres, K. Landfester, and C. K. Weiss, “A convenient method to produce close- and non-close-packed monolayers using direct assembly at the air–water interface and subsequent plasma-induced size reduction,” Macromol. Chem. Phys.212(16), 1719–1734 (2011).
[CrossRef]

Lansalot, M.

A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012).
[CrossRef]

Majewski, M. L.

Mano, N.

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater.21(4), 691–698 (2011).
[CrossRef]

Maystre, D.

N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express16(20), 15431–15438 (2008).
[CrossRef] [PubMed]

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun.19(3), 431–436 (1976).
[CrossRef]

Pardo, F.

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004).
[CrossRef]

Pelouard, J.-L.

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004).
[CrossRef]

Popov, E.

Popov, V.

T. Teperik, V. Popov, and F. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B71(8), 085408 (2005).
[CrossRef]

Popov, V. V.

Rakic, A. D.

Ravaine, S.

M. Heim, S. Reculusa, S. Ravaine, and A. Kuhn, “Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures,” Adv. Funct. Mater.22(3), 538–545 (2012).
[CrossRef]

A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012).
[CrossRef]

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater.21(4), 691–698 (2011).
[CrossRef]

Reculusa, S.

M. Heim, S. Reculusa, S. Ravaine, and A. Kuhn, “Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures,” Adv. Funct. Mater.22(3), 538–545 (2012).
[CrossRef]

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater.21(4), 691–698 (2011).
[CrossRef]

Spalla, O.

A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012).
[CrossRef]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

T. V. Teperik, V. V. Popov, F. J. García de Abajo, M. Abdelsalam, P. N. Bartlett, T. A. Kelf, Y. Sugawara, and J. J. Baumberg, “Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons,” Opt. Express14(5), 1965–1972 (2006).
[CrossRef] [PubMed]

Taveau, J.-C.

A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012).
[CrossRef]

Tayeb, G.

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004).
[CrossRef]

Teperik, T.

T. Teperik, V. Popov, and F. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B71(8), 085408 (2005).
[CrossRef]

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

T. V. Teperik, V. V. Popov, F. J. García de Abajo, M. Abdelsalam, P. N. Bartlett, T. A. Kelf, Y. Sugawara, and J. J. Baumberg, “Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons,” Opt. Express14(5), 1965–1972 (2006).
[CrossRef] [PubMed]

Thill, A.

A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012).
[CrossRef]

Vogel, N.

N. Vogel, S. Goerres, K. Landfester, and C. K. Weiss, “A convenient method to produce close- and non-close-packed monolayers using direct assembly at the air–water interface and subsequent plasma-induced size reduction,” Macromol. Chem. Phys.212(16), 1719–1734 (2011).
[CrossRef]

Weiss, C. K.

N. Vogel, S. Goerres, K. Landfester, and C. K. Weiss, “A convenient method to produce close- and non-close-packed monolayers using direct assembly at the air–water interface and subsequent plasma-induced size reduction,” Macromol. Chem. Phys.212(16), 1719–1734 (2011).
[CrossRef]

Adv. Funct. Mater. (2)

M. Heim, S. Reculusa, S. Ravaine, and A. Kuhn, “Engineering of complex macroporous materials through controlled electrodeposition in colloidal superstructures,” Adv. Funct. Mater.22(3), 538–545 (2012).
[CrossRef]

S. Reculusa, M. Heim, F. Gao, N. Mano, S. Ravaine, and A. Kuhn, “Design of catalytically active cylindrical and macroporous gold microelectrodes,” Adv. Funct. Mater.21(4), 691–698 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Efficient light absorption in metal–semiconductor–metal nanostructures,” Appl. Phys. Lett.85(2), 194–196 (2004).
[CrossRef]

Macromol. Chem. Phys. (1)

N. Vogel, S. Goerres, K. Landfester, and C. K. Weiss, “A convenient method to produce close- and non-close-packed monolayers using direct assembly at the air–water interface and subsequent plasma-induced size reduction,” Macromol. Chem. Phys.212(16), 1719–1734 (2011).
[CrossRef]

Nat. Photonics (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008).
[CrossRef]

Opt. Commun. (1)

M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun.19(3), 431–436 (1976).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

T. Teperik, V. Popov, and F. García de Abajo, “Void plasmons and total absorption of light in nanoporous metallic films,” Phys. Rev. B71(8), 085408 (2005).
[CrossRef]

Polym. Chem. (1)

A. Desert, I. Chaduc, S. Fouilloux, J.-C. Taveau, O. Lambert, M. Lansalot, E. Bourgeat-Lami, A. Thill, O. Spalla, S. Ravaine, and E. Duguet, “High-yield preparation of polystyrene/silica clusters of controlled morphology,” Polym. Chem.3(5), 1130–1132 (2012).
[CrossRef]

Other (1)

A. Taflove, A. Oskooi, and S. G. Johnson, Advances in FDTD Computational Electrodynamics - Photonics and Nanotechnology (Artech House, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SEM side views of the gold deposits with various thicknesses grown through a monolayer of 260 nm (left), 430 nm (middle) or 595 nm (right) polystyrene (PS) beads. Scale bar: 300 nm.

Fig. 2
Fig. 2

Sketch of the nanostructured gold surfaces, consisting of a monolayer of close-packed PS beads or voids of diameter D infiltrated with gold to a thickness t.

Fig. 3
Fig. 3

Measured (solid lines) and calculated (dashed lines) absorption spectra of gold films of different thicknesses grown through a monolayer of 260 nm (top), 430 nm (middle) or 595 nm (bottom) PS beads under normal incidence.

Fig. 4
Fig. 4

SEM top views of the porous gold films with various thicknesses after the dissolution of the 260 nm (left), 430 nm (middle) or 595 nm (right) PS beads. Scale bar: 300 nm.

Fig. 5
Fig. 5

Experimental absorption spectra under normal incidence (left column) and incidence-angle dependence of absorption for p-polarized (center column) and s-polarized (right column) incident light of porous gold films with various thicknesses after the dissolution of the 260 nm (top), 430 nm (middle) or 595 nm (bottom) PS beads.

Fig. 6
Fig. 6

Incidence-angle dependence of absorption of gold films of different thicknesses containing a monolayer PS beads for p- (top) and s-polarized (bottom) incident light. D = 260 nm (left), 460 nm (middle) and 595 nm (right).

Metrics