Abstract

This paper investigates the chemical durability of a fluoroindate (IZSBGC) glass (developed by our previous research for low-loss fluoroindate fiber production) compared to the widely studied fluorozirconate (ZBLAN) system via leaching of glass samples in deionized water. The chemical stability of both glass systems is probed using a series of analytical techniques such as FTIR, XPS and SEM to study the sample surfaces (before and after leaching) and hydrated layer products, both of which reflected the nature of the leaching process. Our experimental results suggest that IZSBGC glass presented better chemical stability in water than ZBLAN. The absorption due to both OH- stretching and HOH bending vibrations for both glass types increased with increasing amounts of hydrated layers formed during the leaching. The investigation of hydrated layers using SEM suggests that the NaF content in fluoride glass accelerated the leaching significantly. XPS analyses suggest that (hydr)oxyfluorides and hydroxides formed on both fluorozirconate and fluoroindate glass surfaces after leaching, respectively. The degradation of fiber breaking strain in NaF-free IZSBGC glass is less than that of NaF-containing ZBLAN glass.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reduction of scattering loss in fluoroindate glass fibers

Jiafang Bei, Tanya M. Monro, Alexander Hemming, and Heike Ebendorff-Heidepriem
Opt. Mater. Express 3(9) 1285-1301 (2013)

The Chemical Durability of Optical Glass

H. V. Walters and P. B. Adams
Appl. Opt. 7(5) 845-848 (1968)

Near-IR and mid-IR luminescence and energy transfer in fluoroindate glasses co-doped with Er3+/Tm3+

M. Kochanowicz, J. Zmojda, A. Baranowska, P. Miluski, M. Lesniak, M. Kuwik, J. Pisarska, W. A. Pisarski, J. Dorosz, and D. Dorosz
Opt. Mater. Express 9(12) 4772-4781 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express 3(3), 318–328 (2013).
    [Crossref]
  2. J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Reduction of scattering loss in fluoroindate glass fibers,” Opt. Mater. Express 3(9), 1285–1301 (2013).
    [Crossref]
  3. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, article ID 501956, 23 pages (2010).
  4. M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71(4), 219–224 (1988).
    [Crossref]
  5. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [Crossref]
  6. C. G. Pantano and R. K. Brow, “Hydrolysis reactions at the surface of fluorozirconate glass,” J. Am. Ceram. Soc. 71(7), 577–581 (1988).
    [Crossref]
  7. S. Sakaguchi, Y. Terunuma, Y. Ohishi, and T. Kanamori, “Fluoride fibre drawing with improved tensile strength,” J. Mater. Sci. Lett. 6(9), 1063–1065 (1987).
    [Crossref]
  8. H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibres with improved tensile strength,” Electron. Lett. 22(18), 949–950 (1986).
    [Crossref]
  9. M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE 7316, 73160N (2009).
    [Crossref]
  10. D. G. Chen, C. J. Simmons, and J. H. Simmons, “Corrosion layer formation of ZrF4-based fluoride glasses,” Mater. Sci. Forum 19–20, 315–320 (1987).
    [Crossref]
  11. C. T. Moynihan and S. R. Loehr, “Chemical durability of fluoride glasses,” Mater. Sci. Forum 32–33, 243–253 (1988).
    [Crossref]
  12. C. J. Simmons and J. H. Simmons, “Chemical durability of fluoride glasses: I, reaction of fluorozirconate glasses with water,” J. Am. Ceram. Soc. 69(9), 661–669 (1986).
    [Crossref]
  13. A. J. Bruce, S. R. Loehr, R. Mossadegh, R. H. Doremus, and C. T. Moynihan, “IR spectroscopy studies of attack of liquid water on ZrF4-based glasses,” Mater. Sci. Forum 5–6, 311–322 (1985).
  14. A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Arau’jo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3 + /Yb3 +-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
    [Crossref]
  15. L. E. E. De Araújo, A. S. L. Gomes, C. B. De Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).
  16. Y. Messaddeq, A. Delben, M. Boscolo, M. A. Aegerter, A. Soufiane, and M. Poulain, “New fluoroindate glass compositions,” J. Non-Cryst. Solids 161, 210–212 (1993).
    [Crossref]
  17. http://us.vwr.com/store/catalog/product.jsp?catalog_number=AA40118-04 .
  18. http://en.wikipedia.org/wiki/Zirconium_tetrafluoride .
  19. H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett. 33(23), 2861–2863 (2008).
    [Crossref] [PubMed]
  20. T. Kanamori and S. Sakaguchi, “Preparation of Elevated NA Fluoride Optical Fibers,” Jpn. J. Appl. Phys. 25(2-6), L468–L470 (1986).
    [Crossref]
  21. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for Microstructured Optical Fiberfabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
    [Crossref]
  22. G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral. 96(11-12), 1878–1893 (2011).
    [Crossref]
  23. I. D. Aggarwal and G. Lu, Fluoride Glass Fiber Optics (Academic, 1991).
  24. E. O. Gbogi, K. H. Chung, C. T. Moynihan, and M. G. Drexhage, “Surface and bulk -OH infrared absorption in ZrF4- and HfF4-based glasses,” J. Am. Ceram. Soc. 64(3), 51–53 (1981).
    [Crossref]
  25. N. N. Sagamihara, “Fluoride glass,” U. S. Patent 4 358 543, Nov 9, 1982.
  26. F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3604 (2014).
    [Crossref] [PubMed]
  27. T. Iqbal, M. R. Shahriari, G. Merberg, and G. H. Sigel, “Synthesis, characterization, and potential application of highly chemically durable glasses based on AlF3,” J. Mater. Res. 6(02), 401–406 (1991).
    [Crossref]
  28. J. Lucas, “Fluoride glasses,” J. Mater. Sci. 24(1), 1–13 (1989).
    [Crossref]
  29. http://en.wikipedia.org/wiki/Sodium_fluoride .
  30. C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of Indium−Tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18(2), 450–457 (2002).
    [Crossref]
  31. S. Sakaguchi and S. Mitachi, “Strength and fatigue of fluoride glass optical fibers,” J. Am. Ceram. Soc. 66(9), c151–c152 (1983).
    [Crossref]
  32. T. Shibata, H. Takahashi, M. Kimura, T. Ijichi, K. Takahashi, Y. Sasaki, and S. Yoshida, “Fabrication of high-strength, low-loss fluorozirconate glass optical fibers,” Mater. Sci. Forum 5–6, 379–385 (1985).
    [Crossref]
  33. P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibres,” J. Mater. Sci. 26(19), 5149–5154 (1991).
    [Crossref]
  34. R. Lebullenger, S. Benjaballah, C. Le Deit, and M. Poulain, “Systematic substitutions in ZBLA and ZBLAN glasses,” J. Non-Cryst. Solids 161, 217–221 (1993).
    [Crossref]

2014 (2)

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for Microstructured Optical Fiberfabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
[Crossref]

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3604 (2014).
[Crossref] [PubMed]

2013 (2)

2011 (1)

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral. 96(11-12), 1878–1893 (2011).
[Crossref]

2009 (1)

M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE 7316, 73160N (2009).
[Crossref]

2008 (1)

2002 (1)

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of Indium−Tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18(2), 450–457 (2002).
[Crossref]

2000 (1)

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Arau’jo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3 + /Yb3 +-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

1994 (2)

L. E. E. De Araújo, A. S. L. Gomes, C. B. De Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

1993 (2)

Y. Messaddeq, A. Delben, M. Boscolo, M. A. Aegerter, A. Soufiane, and M. Poulain, “New fluoroindate glass compositions,” J. Non-Cryst. Solids 161, 210–212 (1993).
[Crossref]

R. Lebullenger, S. Benjaballah, C. Le Deit, and M. Poulain, “Systematic substitutions in ZBLA and ZBLAN glasses,” J. Non-Cryst. Solids 161, 217–221 (1993).
[Crossref]

1991 (2)

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibres,” J. Mater. Sci. 26(19), 5149–5154 (1991).
[Crossref]

T. Iqbal, M. R. Shahriari, G. Merberg, and G. H. Sigel, “Synthesis, characterization, and potential application of highly chemically durable glasses based on AlF3,” J. Mater. Res. 6(02), 401–406 (1991).
[Crossref]

1989 (1)

J. Lucas, “Fluoride glasses,” J. Mater. Sci. 24(1), 1–13 (1989).
[Crossref]

1988 (3)

C. T. Moynihan and S. R. Loehr, “Chemical durability of fluoride glasses,” Mater. Sci. Forum 32–33, 243–253 (1988).
[Crossref]

C. G. Pantano and R. K. Brow, “Hydrolysis reactions at the surface of fluorozirconate glass,” J. Am. Ceram. Soc. 71(7), 577–581 (1988).
[Crossref]

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71(4), 219–224 (1988).
[Crossref]

1987 (2)

D. G. Chen, C. J. Simmons, and J. H. Simmons, “Corrosion layer formation of ZrF4-based fluoride glasses,” Mater. Sci. Forum 19–20, 315–320 (1987).
[Crossref]

S. Sakaguchi, Y. Terunuma, Y. Ohishi, and T. Kanamori, “Fluoride fibre drawing with improved tensile strength,” J. Mater. Sci. Lett. 6(9), 1063–1065 (1987).
[Crossref]

1986 (3)

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibres with improved tensile strength,” Electron. Lett. 22(18), 949–950 (1986).
[Crossref]

C. J. Simmons and J. H. Simmons, “Chemical durability of fluoride glasses: I, reaction of fluorozirconate glasses with water,” J. Am. Ceram. Soc. 69(9), 661–669 (1986).
[Crossref]

T. Kanamori and S. Sakaguchi, “Preparation of Elevated NA Fluoride Optical Fibers,” Jpn. J. Appl. Phys. 25(2-6), L468–L470 (1986).
[Crossref]

1985 (2)

A. J. Bruce, S. R. Loehr, R. Mossadegh, R. H. Doremus, and C. T. Moynihan, “IR spectroscopy studies of attack of liquid water on ZrF4-based glasses,” Mater. Sci. Forum 5–6, 311–322 (1985).

T. Shibata, H. Takahashi, M. Kimura, T. Ijichi, K. Takahashi, Y. Sasaki, and S. Yoshida, “Fabrication of high-strength, low-loss fluorozirconate glass optical fibers,” Mater. Sci. Forum 5–6, 379–385 (1985).
[Crossref]

1983 (1)

S. Sakaguchi and S. Mitachi, “Strength and fatigue of fluoride glass optical fibers,” J. Am. Ceram. Soc. 66(9), c151–c152 (1983).
[Crossref]

1981 (1)

E. O. Gbogi, K. H. Chung, C. T. Moynihan, and M. G. Drexhage, “Surface and bulk -OH infrared absorption in ZrF4- and HfF4-based glasses,” J. Am. Ceram. Soc. 64(3), 51–53 (1981).
[Crossref]

Aegerter, M. A.

L. E. E. De Araújo, A. S. L. Gomes, C. B. De Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).

Y. Messaddeq, A. Delben, M. Boscolo, M. A. Aegerter, A. Soufiane, and M. Poulain, “New fluoroindate glass compositions,” J. Non-Cryst. Solids 161, 210–212 (1993).
[Crossref]

Aggarwal, I. D.

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibres,” J. Mater. Sci. 26(19), 5149–5154 (1991).
[Crossref]

Alloway, D.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of Indium−Tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18(2), 450–457 (2002).
[Crossref]

Armstrong, N. R.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of Indium−Tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18(2), 450–457 (2002).
[Crossref]

Bei, J.

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express 3(3), 318–328 (2013).
[Crossref]

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Reduction of scattering loss in fluoroindate glass fibers,” Opt. Mater. Express 3(9), 1285–1301 (2013).
[Crossref]

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral. 96(11-12), 1878–1893 (2011).
[Crossref]

Benjaballah, S.

R. Lebullenger, S. Benjaballah, C. Le Deit, and M. Poulain, “Systematic substitutions in ZBLA and ZBLAN glasses,” J. Non-Cryst. Solids 161, 217–221 (1993).
[Crossref]

Boscolo, M.

Y. Messaddeq, A. Delben, M. Boscolo, M. A. Aegerter, A. Soufiane, and M. Poulain, “New fluoroindate glass compositions,” J. Non-Cryst. Solids 161, 210–212 (1993).
[Crossref]

Brow, R. K.

C. G. Pantano and R. K. Brow, “Hydrolysis reactions at the surface of fluorozirconate glass,” J. Am. Ceram. Soc. 71(7), 577–581 (1988).
[Crossref]

Bruce, A. J.

A. J. Bruce, S. R. Loehr, R. Mossadegh, R. H. Doremus, and C. T. Moynihan, “IR spectroscopy studies of attack of liquid water on ZrF4-based glasses,” Mater. Sci. Forum 5–6, 311–322 (1985).

Brugger, J.

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral. 96(11-12), 1878–1893 (2011).
[Crossref]

Carter, C.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of Indium−Tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18(2), 450–457 (2002).
[Crossref]

Chen, D.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3604 (2014).
[Crossref] [PubMed]

Chen, D. G.

D. G. Chen, C. J. Simmons, and J. H. Simmons, “Corrosion layer formation of ZrF4-based fluoride glasses,” Mater. Sci. Forum 19–20, 315–320 (1987).
[Crossref]

Chen, G.

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral. 96(11-12), 1878–1893 (2011).
[Crossref]

Chung, K. H.

E. O. Gbogi, K. H. Chung, C. T. Moynihan, and M. G. Drexhage, “Surface and bulk -OH infrared absorption in ZrF4- and HfF4-based glasses,” J. Am. Ceram. Soc. 64(3), 51–53 (1981).
[Crossref]

de Arau’jo, C. B.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Arau’jo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3 + /Yb3 +-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

de Araujo, M. T.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Arau’jo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3 + /Yb3 +-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

De Araújo, C. B.

L. E. E. De Araújo, A. S. L. Gomes, C. B. De Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).

De Araújo, L. E. E.

L. E. E. De Araújo, A. S. L. Gomes, C. B. De Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).

Delben, A.

Y. Messaddeq, A. Delben, M. Boscolo, M. A. Aegerter, A. Soufiane, and M. Poulain, “New fluoroindate glass compositions,” J. Non-Cryst. Solids 161, 210–212 (1993).
[Crossref]

Donley, C.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of Indium−Tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18(2), 450–457 (2002).
[Crossref]

Doremus, R. H.

A. J. Bruce, S. R. Loehr, R. Mossadegh, R. H. Doremus, and C. T. Moynihan, “IR spectroscopy studies of attack of liquid water on ZrF4-based glasses,” Mater. Sci. Forum 5–6, 311–322 (1985).

Drexhage, M. G.

E. O. Gbogi, K. H. Chung, C. T. Moynihan, and M. G. Drexhage, “Surface and bulk -OH infrared absorption in ZrF4- and HfF4-based glasses,” J. Am. Ceram. Soc. 64(3), 51–53 (1981).
[Crossref]

Dunphy, D.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of Indium−Tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18(2), 450–457 (2002).
[Crossref]

Ebendorff-Heidepriem, H.

Florez, A.

L. E. E. De Araújo, A. S. L. Gomes, C. B. De Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).

Foo, T.-C.

Gbogi, E. O.

E. O. Gbogi, K. H. Chung, C. T. Moynihan, and M. G. Drexhage, “Surface and bulk -OH infrared absorption in ZrF4- and HfF4-based glasses,” J. Am. Ceram. Soc. 64(3), 51–53 (1981).
[Crossref]

Gerndt, C.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibres with improved tensile strength,” Electron. Lett. 22(18), 949–950 (1986).
[Crossref]

Gomes, A. S. L.

L. E. E. De Araújo, A. S. L. Gomes, C. B. De Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).

Gouveia, E. A.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Arau’jo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3 + /Yb3 +-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

Gouveia-Neto, A. S.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Arau’jo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3 + /Yb3 +-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

Hemming, A.

Hu, L.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3604 (2014).
[Crossref] [PubMed]

Huang, F.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3604 (2014).
[Crossref] [PubMed]

Ijichi, T.

T. Shibata, H. Takahashi, M. Kimura, T. Ijichi, K. Takahashi, Y. Sasaki, and S. Yoshida, “Fabrication of high-strength, low-loss fluorozirconate glass optical fibers,” Mater. Sci. Forum 5–6, 379–385 (1985).
[Crossref]

Iqbal, T.

T. Iqbal, M. R. Shahriari, G. Merberg, and G. H. Sigel, “Synthesis, characterization, and potential application of highly chemically durable glasses based on AlF3,” J. Mater. Res. 6(02), 401–406 (1991).
[Crossref]

Kanamori, T.

S. Sakaguchi, Y. Terunuma, Y. Ohishi, and T. Kanamori, “Fluoride fibre drawing with improved tensile strength,” J. Mater. Sci. Lett. 6(9), 1063–1065 (1987).
[Crossref]

T. Kanamori and S. Sakaguchi, “Preparation of Elevated NA Fluoride Optical Fibers,” Jpn. J. Appl. Phys. 25(2-6), L468–L470 (1986).
[Crossref]

Kimura, M.

T. Shibata, H. Takahashi, M. Kimura, T. Ijichi, K. Takahashi, Y. Sasaki, and S. Yoshida, “Fabrication of high-strength, low-loss fluorozirconate glass optical fibers,” Mater. Sci. Forum 5–6, 379–385 (1985).
[Crossref]

Klein, P. H.

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibres,” J. Mater. Sci. 26(19), 5149–5154 (1991).
[Crossref]

Kostecki, R.

Lancaster, D. G.

Le Deit, C.

R. Lebullenger, S. Benjaballah, C. Le Deit, and M. Poulain, “Systematic substitutions in ZBLA and ZBLAN glasses,” J. Non-Cryst. Solids 161, 217–221 (1993).
[Crossref]

Le Toullec, M.

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71(4), 219–224 (1988).
[Crossref]

Lebullenger, R.

R. Lebullenger, S. Benjaballah, C. Le Deit, and M. Poulain, “Systematic substitutions in ZBLA and ZBLAN glasses,” J. Non-Cryst. Solids 161, 217–221 (1993).
[Crossref]

Lee, P.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of Indium−Tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18(2), 450–457 (2002).
[Crossref]

Li, W.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3604 (2014).
[Crossref] [PubMed]

Li, Y.

Liu, X.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3604 (2014).
[Crossref] [PubMed]

Loehr, S. R.

C. T. Moynihan and S. R. Loehr, “Chemical durability of fluoride glasses,” Mater. Sci. Forum 32–33, 243–253 (1988).
[Crossref]

A. J. Bruce, S. R. Loehr, R. Mossadegh, R. H. Doremus, and C. T. Moynihan, “IR spectroscopy studies of attack of liquid water on ZrF4-based glasses,” Mater. Sci. Forum 5–6, 311–322 (1985).

Lucas, J.

J. Lucas, “Fluoride glasses,” J. Mater. Sci. 24(1), 1–13 (1989).
[Crossref]

Ma, Y.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3604 (2014).
[Crossref] [PubMed]

Merberg, G.

T. Iqbal, M. R. Shahriari, G. Merberg, and G. H. Sigel, “Synthesis, characterization, and potential application of highly chemically durable glasses based on AlF3,” J. Mater. Res. 6(02), 401–406 (1991).
[Crossref]

Messaddeq, Y.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Arau’jo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3 + /Yb3 +-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

L. E. E. De Araújo, A. S. L. Gomes, C. B. De Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).

Y. Messaddeq, A. Delben, M. Boscolo, M. A. Aegerter, A. Soufiane, and M. Poulain, “New fluoroindate glass compositions,” J. Non-Cryst. Solids 161, 210–212 (1993).
[Crossref]

Mitachi, S.

S. Sakaguchi and S. Mitachi, “Strength and fatigue of fluoride glass optical fibers,” J. Am. Ceram. Soc. 66(9), c151–c152 (1983).
[Crossref]

Monro, T. M.

Moore, R. C.

Mossadegh, R.

A. J. Bruce, S. R. Loehr, R. Mossadegh, R. H. Doremus, and C. T. Moynihan, “IR spectroscopy studies of attack of liquid water on ZrF4-based glasses,” Mater. Sci. Forum 5–6, 311–322 (1985).

Moynihan, C. T.

C. T. Moynihan and S. R. Loehr, “Chemical durability of fluoride glasses,” Mater. Sci. Forum 32–33, 243–253 (1988).
[Crossref]

A. J. Bruce, S. R. Loehr, R. Mossadegh, R. H. Doremus, and C. T. Moynihan, “IR spectroscopy studies of attack of liquid water on ZrF4-based glasses,” Mater. Sci. Forum 5–6, 311–322 (1985).

E. O. Gbogi, K. H. Chung, C. T. Moynihan, and M. G. Drexhage, “Surface and bulk -OH infrared absorption in ZrF4- and HfF4-based glasses,” J. Am. Ceram. Soc. 64(3), 51–53 (1981).
[Crossref]

Nebesny, K.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of Indium−Tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18(2), 450–457 (2002).
[Crossref]

Ohishi, Y.

S. Sakaguchi, Y. Terunuma, Y. Ohishi, and T. Kanamori, “Fluoride fibre drawing with improved tensile strength,” J. Mater. Sci. Lett. 6(9), 1063–1065 (1987).
[Crossref]

Oliveira, A. S.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Arau’jo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3 + /Yb3 +-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

Paine, D.

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of Indium−Tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18(2), 450–457 (2002).
[Crossref]

Pantano, C. G.

C. G. Pantano and R. K. Brow, “Hydrolysis reactions at the surface of fluorozirconate glass,” J. Am. Ceram. Soc. 71(7), 577–581 (1988).
[Crossref]

Poulain, M.

Y. Messaddeq, A. Delben, M. Boscolo, M. A. Aegerter, A. Soufiane, and M. Poulain, “New fluoroindate glass compositions,” J. Non-Cryst. Solids 161, 210–212 (1993).
[Crossref]

R. Lebullenger, S. Benjaballah, C. Le Deit, and M. Poulain, “Systematic substitutions in ZBLA and ZBLAN glasses,” J. Non-Cryst. Solids 161, 217–221 (1993).
[Crossref]

Pring, A.

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral. 96(11-12), 1878–1893 (2011).
[Crossref]

Pureza, P. C.

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibres,” J. Mater. Sci. 26(19), 5149–5154 (1991).
[Crossref]

Qian, G.

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral. 96(11-12), 1878–1893 (2011).
[Crossref]

Roberts, W. I.

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibres,” J. Mater. Sci. 26(19), 5149–5154 (1991).
[Crossref]

Saad, M.

M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE 7316, 73160N (2009).
[Crossref]

Sakaguchi, S.

S. Sakaguchi, Y. Terunuma, Y. Ohishi, and T. Kanamori, “Fluoride fibre drawing with improved tensile strength,” J. Mater. Sci. Lett. 6(9), 1063–1065 (1987).
[Crossref]

T. Kanamori and S. Sakaguchi, “Preparation of Elevated NA Fluoride Optical Fibers,” Jpn. J. Appl. Phys. 25(2-6), L468–L470 (1986).
[Crossref]

S. Sakaguchi and S. Mitachi, “Strength and fatigue of fluoride glass optical fibers,” J. Am. Ceram. Soc. 66(9), c151–c152 (1983).
[Crossref]

Sasaki, Y.

T. Shibata, H. Takahashi, M. Kimura, T. Ijichi, K. Takahashi, Y. Sasaki, and S. Yoshida, “Fabrication of high-strength, low-loss fluorozirconate glass optical fibers,” Mater. Sci. Forum 5–6, 379–385 (1985).
[Crossref]

Schneider, H. W.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibres with improved tensile strength,” Electron. Lett. 22(18), 949–950 (1986).
[Crossref]

Schoberth, A.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibres with improved tensile strength,” Electron. Lett. 22(18), 949–950 (1986).
[Crossref]

Shahriari, M. R.

T. Iqbal, M. R. Shahriari, G. Merberg, and G. H. Sigel, “Synthesis, characterization, and potential application of highly chemically durable glasses based on AlF3,” J. Mater. Res. 6(02), 401–406 (1991).
[Crossref]

Shibata, T.

T. Shibata, H. Takahashi, M. Kimura, T. Ijichi, K. Takahashi, Y. Sasaki, and S. Yoshida, “Fabrication of high-strength, low-loss fluorozirconate glass optical fibers,” Mater. Sci. Forum 5–6, 379–385 (1985).
[Crossref]

Sigel, G. H.

T. Iqbal, M. R. Shahriari, G. Merberg, and G. H. Sigel, “Synthesis, characterization, and potential application of highly chemically durable glasses based on AlF3,” J. Mater. Res. 6(02), 401–406 (1991).
[Crossref]

Simmons, C. J.

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71(4), 219–224 (1988).
[Crossref]

D. G. Chen, C. J. Simmons, and J. H. Simmons, “Corrosion layer formation of ZrF4-based fluoride glasses,” Mater. Sci. Forum 19–20, 315–320 (1987).
[Crossref]

C. J. Simmons and J. H. Simmons, “Chemical durability of fluoride glasses: I, reaction of fluorozirconate glasses with water,” J. Am. Ceram. Soc. 69(9), 661–669 (1986).
[Crossref]

Simmons, J. H.

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71(4), 219–224 (1988).
[Crossref]

D. G. Chen, C. J. Simmons, and J. H. Simmons, “Corrosion layer formation of ZrF4-based fluoride glasses,” Mater. Sci. Forum 19–20, 315–320 (1987).
[Crossref]

C. J. Simmons and J. H. Simmons, “Chemical durability of fluoride glasses: I, reaction of fluorozirconate glasses with water,” J. Am. Ceram. Soc. 69(9), 661–669 (1986).
[Crossref]

Skinner, W. M.

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral. 96(11-12), 1878–1893 (2011).
[Crossref]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Soufiane, A.

Y. Messaddeq, A. Delben, M. Boscolo, M. A. Aegerter, A. Soufiane, and M. Poulain, “New fluoroindate glass compositions,” J. Non-Cryst. Solids 161, 210–212 (1993).
[Crossref]

Staudt, A.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibres with improved tensile strength,” Electron. Lett. 22(18), 949–950 (1986).
[Crossref]

Takahashi, H.

T. Shibata, H. Takahashi, M. Kimura, T. Ijichi, K. Takahashi, Y. Sasaki, and S. Yoshida, “Fabrication of high-strength, low-loss fluorozirconate glass optical fibers,” Mater. Sci. Forum 5–6, 379–385 (1985).
[Crossref]

Takahashi, K.

T. Shibata, H. Takahashi, M. Kimura, T. Ijichi, K. Takahashi, Y. Sasaki, and S. Yoshida, “Fabrication of high-strength, low-loss fluorozirconate glass optical fibers,” Mater. Sci. Forum 5–6, 379–385 (1985).
[Crossref]

Terunuma, Y.

S. Sakaguchi, Y. Terunuma, Y. Ohishi, and T. Kanamori, “Fluoride fibre drawing with improved tensile strength,” J. Mater. Sci. Lett. 6(9), 1063–1065 (1987).
[Crossref]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Warren-Smith, S. C.

Xia, F.

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral. 96(11-12), 1878–1893 (2011).
[Crossref]

Yoshida, S.

T. Shibata, H. Takahashi, M. Kimura, T. Ijichi, K. Takahashi, Y. Sasaki, and S. Yoshida, “Fabrication of high-strength, low-loss fluorozirconate glass optical fibers,” Mater. Sci. Forum 5–6, 379–385 (1985).
[Crossref]

Zhang, W.

Am. Mineral. (1)

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral. 96(11-12), 1878–1893 (2011).
[Crossref]

Electron. Lett. (1)

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibres with improved tensile strength,” Electron. Lett. 22(18), 949–950 (1986).
[Crossref]

J. Am. Ceram. Soc. (5)

C. G. Pantano and R. K. Brow, “Hydrolysis reactions at the surface of fluorozirconate glass,” J. Am. Ceram. Soc. 71(7), 577–581 (1988).
[Crossref]

M. Le Toullec, C. J. Simmons, and J. H. Simmons, “Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses,” J. Am. Ceram. Soc. 71(4), 219–224 (1988).
[Crossref]

C. J. Simmons and J. H. Simmons, “Chemical durability of fluoride glasses: I, reaction of fluorozirconate glasses with water,” J. Am. Ceram. Soc. 69(9), 661–669 (1986).
[Crossref]

E. O. Gbogi, K. H. Chung, C. T. Moynihan, and M. G. Drexhage, “Surface and bulk -OH infrared absorption in ZrF4- and HfF4-based glasses,” J. Am. Ceram. Soc. 64(3), 51–53 (1981).
[Crossref]

S. Sakaguchi and S. Mitachi, “Strength and fatigue of fluoride glass optical fibers,” J. Am. Ceram. Soc. 66(9), c151–c152 (1983).
[Crossref]

J. Appl. Phys. (1)

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Arau’jo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3 + /Yb3 +-codoped fluoroindate glasses excited at 1.064 µm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

J. Mater. Res. (1)

T. Iqbal, M. R. Shahriari, G. Merberg, and G. H. Sigel, “Synthesis, characterization, and potential application of highly chemically durable glasses based on AlF3,” J. Mater. Res. 6(02), 401–406 (1991).
[Crossref]

J. Mater. Sci. (2)

J. Lucas, “Fluoride glasses,” J. Mater. Sci. 24(1), 1–13 (1989).
[Crossref]

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibres,” J. Mater. Sci. 26(19), 5149–5154 (1991).
[Crossref]

J. Mater. Sci. Lett. (1)

S. Sakaguchi, Y. Terunuma, Y. Ohishi, and T. Kanamori, “Fluoride fibre drawing with improved tensile strength,” J. Mater. Sci. Lett. 6(9), 1063–1065 (1987).
[Crossref]

J. Non-Cryst. Solids (2)

Y. Messaddeq, A. Delben, M. Boscolo, M. A. Aegerter, A. Soufiane, and M. Poulain, “New fluoroindate glass compositions,” J. Non-Cryst. Solids 161, 210–212 (1993).
[Crossref]

R. Lebullenger, S. Benjaballah, C. Le Deit, and M. Poulain, “Systematic substitutions in ZBLA and ZBLAN glasses,” J. Non-Cryst. Solids 161, 217–221 (1993).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Kanamori and S. Sakaguchi, “Preparation of Elevated NA Fluoride Optical Fibers,” Jpn. J. Appl. Phys. 25(2-6), L468–L470 (1986).
[Crossref]

Langmuir (1)

C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, and N. R. Armstrong, “Characterization of Indium−Tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions,” Langmuir 18(2), 450–457 (2002).
[Crossref]

Mater. Sci. Forum (4)

T. Shibata, H. Takahashi, M. Kimura, T. Ijichi, K. Takahashi, Y. Sasaki, and S. Yoshida, “Fabrication of high-strength, low-loss fluorozirconate glass optical fibers,” Mater. Sci. Forum 5–6, 379–385 (1985).
[Crossref]

A. J. Bruce, S. R. Loehr, R. Mossadegh, R. H. Doremus, and C. T. Moynihan, “IR spectroscopy studies of attack of liquid water on ZrF4-based glasses,” Mater. Sci. Forum 5–6, 311–322 (1985).

D. G. Chen, C. J. Simmons, and J. H. Simmons, “Corrosion layer formation of ZrF4-based fluoride glasses,” Mater. Sci. Forum 19–20, 315–320 (1987).
[Crossref]

C. T. Moynihan and S. R. Loehr, “Chemical durability of fluoride glasses,” Mater. Sci. Forum 32–33, 243–253 (1988).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Opt. Mater. Express (3)

Phys. Rev. B Condens. Matter (1)

L. E. E. De Araújo, A. S. L. Gomes, C. B. De Araújo, Y. Messaddeq, A. Florez, and M. A. Aegerter, “Frequency upconversion of orange light into blue light in Pr3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 50(22), 16219–16223 (1994).

Proc. SPIE (1)

M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE 7316, 73160N (2009).
[Crossref]

Sci. Rep. (1)

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3,” Sci. Rep. 4, 3604 (2014).
[Crossref] [PubMed]

Other (6)

N. N. Sagamihara, “Fluoride glass,” U. S. Patent 4 358 543, Nov 9, 1982.

I. D. Aggarwal and G. Lu, Fluoride Glass Fiber Optics (Academic, 1991).

http://en.wikipedia.org/wiki/Sodium_fluoride .

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, article ID 501956, 23 pages (2010).

http://us.vwr.com/store/catalog/product.jsp?catalog_number=AA40118-04 .

http://en.wikipedia.org/wiki/Zirconium_tetrafluoride .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Breaking strain measurement approach.
Fig. 2
Fig. 2 Absorption coefficient of (a) IZSBGC and (b) ZBLAN after leaching in deionized water at 25 ± 2°C. Change of absorption coefficients for both glass types at (c) 2.9 µm and (d) 6.1 µm.
Fig. 3
Fig. 3 pH values of deionized water solutions after different leaching time (error bars are smaller than data symbols).
Fig. 4
Fig. 4 Formation of multiple hydrated layers on ZBLAN glass during corrosion tests in deionized water.
Fig. 5
Fig. 5 Formation of multiple and hydrated layers of IZSBGC glass during corrosion test in deionized water.
Fig. 6
Fig. 6 EDS analysis for line scan (red line in Fig. 5) of the IZSBGC glass after leaching for 6 days in deionized water.
Fig. 7
Fig. 7 Thickness of the hydrated layer of IZSBGC, ZBLA [10] and ZBLAN versus corrosion time in deionized water.
Fig. 8
Fig. 8 High resolution Zr 3d spectra for a fresh fracture surface (bottom) and a hydrated surface (top).
Fig. 9
Fig. 9 High resolution In 3d5/2 spectra for a fresh fracture surface (bottom) and a hydrated surface (top).
Fig. 10
Fig. 10 Fiber breaking strains before and after leaching in deionized water for ZBLAN (left) and IZSBGC (right) fibers.
Fig. 11
Fig. 11 Scanning electron microscopy images of fiber surfaces and cross-sections: (a) ZBLAN fiber before leaching in deionized water; (b) ZBLAN fiber after leaching in deionized water; (c) IZSBGC fiber before leaching in deionized water; (d) IZSBGC fiber after leaching in deionized water.

Tables (2)

Tables Icon

Table 1 Semi-quantitative analysis measured using EDS for multi-layer compositions for ZBLAN glass after 6 days corrosion in deionized water (in at.%)*

Tables Icon

Table 2 Comparison of fiber breaking strains before and after leaching in deionized water for ZBLAN and IZSBGC fibers.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ s = r / 0.42 D ,
M F n ( g l ) M F x ( n x ) + ( a q ) + ( n x ) F ( a q )

Metrics