Abstract

We report an investigation on low dimensional Ge1−xSnx/Ge heterostructures. A series of strained-layer Ge1−xSnx/Ge superlattices with various Sn contents up to a threshold value that affords a direct bandgap is achieved by the technique of low temperature growth using molecular beam epitaxy. The Sn composition, strain status, and crystallographic are systematically characterized by cross-sectional transmission electron microscope and x-ray diffraction. Optical absorption measurements were carried out at room temperature to determine the bandgap energies of the Ge1−xSnx/Ge superlattices. Analyzing the direct transition energies reveals the room-temperature quantum confinement in the Ge1−xSnx/Ge superlattices. Present investigation demonstrates the growth and the quantum confinement of Ge1−xSnx/Ge superlattices, moving an important step forward toward the development of high-performance photonic devices based on Sn-containing group-IV low-dimensional structures.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. He and H. A. Atwater, “Interband transitions in Sn1−xGex alloys,” Phys. Rev. Lett.79, 1937–1940 (1997).
    [CrossRef]
  2. V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B73, 125207 (2006).
    [CrossRef]
  3. R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1−ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98, 061109 (2011).
    [CrossRef]
  4. H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett.100, 102109 (2012).
    [CrossRef]
  5. A. Gassenq, F. Gencarelli, J. V. Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express20, 27297–27303 (2012).
    [CrossRef] [PubMed]
  6. J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett.95, 133506 (2009).
    [CrossRef]
  7. M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4 % Sn,” Appl. Phys. Lett.101, 141110 (2012).
    [CrossRef]
  8. H. H. Tseng, K. Y. Wu, H. Li, V. Mashanov, H. H. Cheng, G. Sun, and R. A. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett.102, 182106 (2013).
    [CrossRef]
  9. G.-E. Chang, S.-W. Chang, and S.-L. Chuang, “Strain-balanced Ge1−zSnz/Si1−x−yGexSny multiple-quantum-well lasers,” IEEE J. Quantum Electron., 46, 1813–1820 (2010).
    [CrossRef]
  10. G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser,” J. Appl. Phys.108, 033107 (2010).
    [CrossRef]
  11. O. Gurdal, M. Hasan, M. R. Sardela, J. E. Greene, H. H. Radamson, J. E. Sundgren, and G. V. Hansson, “Growth of metastable Ge1−xSnx strained layer superlattices on Ge(001)2×1 by temperature-modulated molecular beam epitaxy,” Appl. Phys. Lett.67, 956–958 (1995).
    [CrossRef]
  12. A. Tonkikh, C. Eisenschmidt, V. Talalaev, N. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing,” Appl. Phys. Lett.103, 032106 (2013).
    [CrossRef]
  13. I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. Mashanov, A. Nikiforov, O. Pchelyakov, and X. S. Wu, “Investigation of Ge1−xSnx/Ge with high Sn composition grown at low-temperature,” AIP Advances1, 042118 (2011).
    [CrossRef]
  14. E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films520, 3195– 3200 (2012).
    [CrossRef]
  15. H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett.102, 251907 (2013).
    [CrossRef]
  16. R. Beeler, R. Roucka, A. V. G. Chizmeshya, J. Kouvetakis, and J. Menéndez, “Nonlinear structure-composition relationships in the Ge1−ySny/Si(100) (y< 0.15) system,” Phys. Rev. B84, 035204 (2011).
    [CrossRef]
  17. J. Tauc, Optical Properties of Solids (North Holland, 1969).
  18. G. E. Chang, W. Y. Hsieh, J. Z. Chen, and H. H. Cheng, “Quantum-confined photoluminescence from Ge1−xSnx/Ge superlattices on Ge-buffered Si(001) substrates,” Opt. Lett.38, 3485–3487 (2013).
    [CrossRef] [PubMed]
  19. H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett.98, 101106 (2011).
    [CrossRef]
  20. J. P. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn hetero-junction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett.102, 251117 (2013).
    [CrossRef]
  21. S. L. Chuang, Physics of Photonic Devices (Wiley, New York, 2009), 2nd edition
  22. S.-W. Chang and S.-L. Chuang, “Theory of optical gain of Ge-SixGey Sn1−x−y quantum-well lasers,” IEEE J. Quantum Electron.43, 249–256 (2007).
    [CrossRef]
  23. V. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menendez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films518, 2531–2537 (2010).
    [CrossRef]
  24. P. Moontragoon, R. A. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys.112, 073106 (2012).
    [CrossRef]

2013 (5)

H. H. Tseng, K. Y. Wu, H. Li, V. Mashanov, H. H. Cheng, G. Sun, and R. A. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett.102, 182106 (2013).
[CrossRef]

A. Tonkikh, C. Eisenschmidt, V. Talalaev, N. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing,” Appl. Phys. Lett.103, 032106 (2013).
[CrossRef]

H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett.102, 251907 (2013).
[CrossRef]

J. P. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn hetero-junction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett.102, 251117 (2013).
[CrossRef]

G. E. Chang, W. Y. Hsieh, J. Z. Chen, and H. H. Cheng, “Quantum-confined photoluminescence from Ge1−xSnx/Ge superlattices on Ge-buffered Si(001) substrates,” Opt. Lett.38, 3485–3487 (2013).
[CrossRef] [PubMed]

2012 (5)

P. Moontragoon, R. A. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys.112, 073106 (2012).
[CrossRef]

A. Gassenq, F. Gencarelli, J. V. Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express20, 27297–27303 (2012).
[CrossRef] [PubMed]

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett.100, 102109 (2012).
[CrossRef]

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films520, 3195– 3200 (2012).
[CrossRef]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4 % Sn,” Appl. Phys. Lett.101, 141110 (2012).
[CrossRef]

2011 (4)

I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. Mashanov, A. Nikiforov, O. Pchelyakov, and X. S. Wu, “Investigation of Ge1−xSnx/Ge with high Sn composition grown at low-temperature,” AIP Advances1, 042118 (2011).
[CrossRef]

R. Beeler, R. Roucka, A. V. G. Chizmeshya, J. Kouvetakis, and J. Menéndez, “Nonlinear structure-composition relationships in the Ge1−ySny/Si(100) (y< 0.15) system,” Phys. Rev. B84, 035204 (2011).
[CrossRef]

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett.98, 101106 (2011).
[CrossRef]

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1−ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98, 061109 (2011).
[CrossRef]

2010 (3)

V. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menendez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films518, 2531–2537 (2010).
[CrossRef]

G.-E. Chang, S.-W. Chang, and S.-L. Chuang, “Strain-balanced Ge1−zSnz/Si1−x−yGexSny multiple-quantum-well lasers,” IEEE J. Quantum Electron., 46, 1813–1820 (2010).
[CrossRef]

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser,” J. Appl. Phys.108, 033107 (2010).
[CrossRef]

2009 (1)

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett.95, 133506 (2009).
[CrossRef]

2007 (1)

S.-W. Chang and S.-L. Chuang, “Theory of optical gain of Ge-SixGey Sn1−x−y quantum-well lasers,” IEEE J. Quantum Electron.43, 249–256 (2007).
[CrossRef]

2006 (1)

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B73, 125207 (2006).
[CrossRef]

1997 (1)

G. He and H. A. Atwater, “Interband transitions in Sn1−xGex alloys,” Phys. Rev. Lett.79, 1937–1940 (1997).
[CrossRef]

1995 (1)

O. Gurdal, M. Hasan, M. R. Sardela, J. E. Greene, H. H. Radamson, J. E. Sundgren, and G. V. Hansson, “Growth of metastable Ge1−xSnx strained layer superlattices on Ge(001)2×1 by temperature-modulated molecular beam epitaxy,” Appl. Phys. Lett.67, 956–958 (1995).
[CrossRef]

Adam, T.

J. P. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn hetero-junction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett.102, 251117 (2013).
[CrossRef]

Atwater, H. A.

G. He and H. A. Atwater, “Interband transitions in Sn1−xGex alloys,” Phys. Rev. Lett.79, 1937–1940 (1997).
[CrossRef]

Beeler, R.

R. Beeler, R. Roucka, A. V. G. Chizmeshya, J. Kouvetakis, and J. Menéndez, “Nonlinear structure-composition relationships in the Ge1−ySny/Si(100) (y< 0.15) system,” Phys. Rev. B84, 035204 (2011).
[CrossRef]

Beeler, R. T.

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1−ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98, 061109 (2011).
[CrossRef]

Bhargava, N.

J. P. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn hetero-junction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett.102, 251117 (2013).
[CrossRef]

Birdwell, A. G.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B73, 125207 (2006).
[CrossRef]

Burle, N.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films520, 3195– 3200 (2012).
[CrossRef]

Campenhout, J. V.

Canonico, M.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B73, 125207 (2006).
[CrossRef]

Chan, S.-T.

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett.98, 101106 (2011).
[CrossRef]

Chang, G. E.

Chang, G.-E.

G.-E. Chang, S.-W. Chang, and S.-L. Chuang, “Strain-balanced Ge1−zSnz/Si1−x−yGexSny multiple-quantum-well lasers,” IEEE J. Quantum Electron., 46, 1813–1820 (2010).
[CrossRef]

Chang, S.-W.

G.-E. Chang, S.-W. Chang, and S.-L. Chuang, “Strain-balanced Ge1−zSnz/Si1−x−yGexSny multiple-quantum-well lasers,” IEEE J. Quantum Electron., 46, 1813–1820 (2010).
[CrossRef]

S.-W. Chang and S.-L. Chuang, “Theory of optical gain of Ge-SixGey Sn1−x−y quantum-well lasers,” IEEE J. Quantum Electron.43, 249–256 (2007).
[CrossRef]

Chen, C.-Y.

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett.98, 101106 (2011).
[CrossRef]

Chen, H.

H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett.102, 251907 (2013).
[CrossRef]

Chen, J. Z.

Chen, R.

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett.100, 102109 (2012).
[CrossRef]

Cheng, H. H.

H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett.102, 251907 (2013).
[CrossRef]

G. E. Chang, W. Y. Hsieh, J. Z. Chen, and H. H. Cheng, “Quantum-confined photoluminescence from Ge1−xSnx/Ge superlattices on Ge-buffered Si(001) substrates,” Opt. Lett.38, 3485–3487 (2013).
[CrossRef] [PubMed]

H. H. Tseng, K. Y. Wu, H. Li, V. Mashanov, H. H. Cheng, G. Sun, and R. A. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett.102, 182106 (2013).
[CrossRef]

I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. Mashanov, A. Nikiforov, O. Pchelyakov, and X. S. Wu, “Investigation of Ge1−xSnx/Ge with high Sn composition grown at low-temperature,” AIP Advances1, 042118 (2011).
[CrossRef]

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser,” J. Appl. Phys.108, 033107 (2010).
[CrossRef]

Cheng, T.-H.

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett.98, 101106 (2011).
[CrossRef]

Chizmeshya, A. V. G.

R. Beeler, R. Roucka, A. V. G. Chizmeshya, J. Kouvetakis, and J. Menéndez, “Nonlinear structure-composition relationships in the Ge1−ySny/Si(100) (y< 0.15) system,” Phys. Rev. B84, 035204 (2011).
[CrossRef]

Chuang, S. L.

S. L. Chuang, Physics of Photonic Devices (Wiley, New York, 2009), 2nd edition

Chuang, S.-L.

G.-E. Chang, S.-W. Chang, and S.-L. Chuang, “Strain-balanced Ge1−zSnz/Si1−x−yGexSny multiple-quantum-well lasers,” IEEE J. Quantum Electron., 46, 1813–1820 (2010).
[CrossRef]

S.-W. Chang and S.-L. Chuang, “Theory of optical gain of Ge-SixGey Sn1−x−y quantum-well lasers,” IEEE J. Quantum Electron.43, 249–256 (2007).
[CrossRef]

Cook, C. S.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B73, 125207 (2006).
[CrossRef]

Cui, Y. X.

H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett.102, 251907 (2013).
[CrossRef]

D’Costa, V.

V. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menendez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films518, 2531–2537 (2010).
[CrossRef]

D’Costa, V. R.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B73, 125207 (2006).
[CrossRef]

Eisenschmidt, C.

A. Tonkikh, C. Eisenschmidt, V. Talalaev, N. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing,” Appl. Phys. Lett.103, 032106 (2013).
[CrossRef]

Escoubas, S.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films520, 3195– 3200 (2012).
[CrossRef]

Fang, Y.-Y.

V. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menendez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films518, 2531–2537 (2010).
[CrossRef]

Gassenq, A.

Gencarelli, F.

Gollhofer, M.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4 % Sn,” Appl. Phys. Lett.101, 141110 (2012).
[CrossRef]

Greene, J. E.

O. Gurdal, M. Hasan, M. R. Sardela, J. E. Greene, H. H. Radamson, J. E. Sundgren, and G. V. Hansson, “Growth of metastable Ge1−xSnx strained layer superlattices on Ge(001)2×1 by temperature-modulated molecular beam epitaxy,” Appl. Phys. Lett.67, 956–958 (1995).
[CrossRef]

Gupta, J. P.

J. P. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn hetero-junction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett.102, 251117 (2013).
[CrossRef]

Gurdal, O.

O. Gurdal, M. Hasan, M. R. Sardela, J. E. Greene, H. H. Radamson, J. E. Sundgren, and G. V. Hansson, “Growth of metastable Ge1−xSnx strained layer superlattices on Ge(001)2×1 by temperature-modulated molecular beam epitaxy,” Appl. Phys. Lett.67, 956–958 (1995).
[CrossRef]

Hansson, G. V.

O. Gurdal, M. Hasan, M. R. Sardela, J. E. Greene, H. H. Radamson, J. E. Sundgren, and G. V. Hansson, “Growth of metastable Ge1−xSnx strained layer superlattices on Ge(001)2×1 by temperature-modulated molecular beam epitaxy,” Appl. Phys. Lett.67, 956–958 (1995).
[CrossRef]

Harris, J. S.

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett.100, 102109 (2012).
[CrossRef]

Hasan, M.

O. Gurdal, M. Hasan, M. R. Sardela, J. E. Greene, H. H. Radamson, J. E. Sundgren, and G. V. Hansson, “Growth of metastable Ge1−xSnx strained layer superlattices on Ge(001)2×1 by temperature-modulated molecular beam epitaxy,” Appl. Phys. Lett.67, 956–958 (1995).
[CrossRef]

He, G.

G. He and H. A. Atwater, “Interband transitions in Sn1−xGex alloys,” Phys. Rev. Lett.79, 1937–1940 (1997).
[CrossRef]

Hsieh, W. Y.

Huo, Y.

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett.100, 102109 (2012).
[CrossRef]

Ikonic, Z.

P. Moontragoon, R. A. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys.112, 073106 (2012).
[CrossRef]

Jan, S.-R.

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett.98, 101106 (2011).
[CrossRef]

Kamins, T. I.

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett.100, 102109 (2012).
[CrossRef]

Kaschel, M.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4 % Sn,” Appl. Phys. Lett.101, 141110 (2012).
[CrossRef]

Kasper, E.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4 % Sn,” Appl. Phys. Lett.101, 141110 (2012).
[CrossRef]

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films520, 3195– 3200 (2012).
[CrossRef]

Kim, S.

J. P. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn hetero-junction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett.102, 251117 (2013).
[CrossRef]

Kolodzey, J.

J. P. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn hetero-junction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett.102, 251117 (2013).
[CrossRef]

Kouvetakis, J.

R. Beeler, R. Roucka, A. V. G. Chizmeshya, J. Kouvetakis, and J. Menéndez, “Nonlinear structure-composition relationships in the Ge1−ySny/Si(100) (y< 0.15) system,” Phys. Rev. B84, 035204 (2011).
[CrossRef]

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1−ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98, 061109 (2011).
[CrossRef]

V. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menendez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films518, 2531–2537 (2010).
[CrossRef]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett.95, 133506 (2009).
[CrossRef]

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B73, 125207 (2006).
[CrossRef]

Lan, H.-S.

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett.98, 101106 (2011).
[CrossRef]

Li, H.

H. H. Tseng, K. Y. Wu, H. Li, V. Mashanov, H. H. Cheng, G. Sun, and R. A. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett.102, 182106 (2013).
[CrossRef]

H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett.102, 251907 (2013).
[CrossRef]

Lin, H.

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett.100, 102109 (2012).
[CrossRef]

Littler, C. L.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B73, 125207 (2006).
[CrossRef]

Liu, C. W.

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett.98, 101106 (2011).
[CrossRef]

Loo, R.

Lu, W.

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett.100, 102109 (2012).
[CrossRef]

Mashanov, V.

H. H. Tseng, K. Y. Wu, H. Li, V. Mashanov, H. H. Cheng, G. Sun, and R. A. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett.102, 182106 (2013).
[CrossRef]

I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. Mashanov, A. Nikiforov, O. Pchelyakov, and X. S. Wu, “Investigation of Ge1−xSnx/Ge with high Sn composition grown at low-temperature,” AIP Advances1, 042118 (2011).
[CrossRef]

Mathews, J.

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1−ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98, 061109 (2011).
[CrossRef]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett.95, 133506 (2009).
[CrossRef]

Menendez, J.

V. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menendez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films518, 2531–2537 (2010).
[CrossRef]

Menéndez, J.

R. Beeler, R. Roucka, A. V. G. Chizmeshya, J. Kouvetakis, and J. Menéndez, “Nonlinear structure-composition relationships in the Ge1−ySny/Si(100) (y< 0.15) system,” Phys. Rev. B84, 035204 (2011).
[CrossRef]

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1−ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98, 061109 (2011).
[CrossRef]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett.95, 133506 (2009).
[CrossRef]

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B73, 125207 (2006).
[CrossRef]

Moontragoon, P.

P. Moontragoon, R. A. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys.112, 073106 (2012).
[CrossRef]

Narcy, G.

Nikiforov, A.

I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. Mashanov, A. Nikiforov, O. Pchelyakov, and X. S. Wu, “Investigation of Ge1−xSnx/Ge with high Sn composition grown at low-temperature,” AIP Advances1, 042118 (2011).
[CrossRef]

Oehme, M.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4 % Sn,” Appl. Phys. Lett.101, 141110 (2012).
[CrossRef]

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films520, 3195– 3200 (2012).
[CrossRef]

Pchelyakov, O.

I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. Mashanov, A. Nikiforov, O. Pchelyakov, and X. S. Wu, “Investigation of Ge1−xSnx/Ge with high Sn composition grown at low-temperature,” AIP Advances1, 042118 (2011).
[CrossRef]

Radamson, H. H.

O. Gurdal, M. Hasan, M. R. Sardela, J. E. Greene, H. H. Radamson, J. E. Sundgren, and G. V. Hansson, “Growth of metastable Ge1−xSnx strained layer superlattices on Ge(001)2×1 by temperature-modulated molecular beam epitaxy,” Appl. Phys. Lett.67, 956–958 (1995).
[CrossRef]

Roelkens, G.

Roucka, R.

R. Beeler, R. Roucka, A. V. G. Chizmeshya, J. Kouvetakis, and J. Menéndez, “Nonlinear structure-composition relationships in the Ge1−ySny/Si(100) (y< 0.15) system,” Phys. Rev. B84, 035204 (2011).
[CrossRef]

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1−ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98, 061109 (2011).
[CrossRef]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett.95, 133506 (2009).
[CrossRef]

Sardela, M. R.

O. Gurdal, M. Hasan, M. R. Sardela, J. E. Greene, H. H. Radamson, J. E. Sundgren, and G. V. Hansson, “Growth of metastable Ge1−xSnx strained layer superlattices on Ge(001)2×1 by temperature-modulated molecular beam epitaxy,” Appl. Phys. Lett.67, 956–958 (1995).
[CrossRef]

Schilling, J.

A. Tonkikh, C. Eisenschmidt, V. Talalaev, N. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing,” Appl. Phys. Lett.103, 032106 (2013).
[CrossRef]

Schmid, M.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4 % Sn,” Appl. Phys. Lett.101, 141110 (2012).
[CrossRef]

Schmidt, G.

A. Tonkikh, C. Eisenschmidt, V. Talalaev, N. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing,” Appl. Phys. Lett.103, 032106 (2013).
[CrossRef]

Schulze, J.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films520, 3195– 3200 (2012).
[CrossRef]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4 % Sn,” Appl. Phys. Lett.101, 141110 (2012).
[CrossRef]

Shimura, Y.

Soref, R. A.

H. H. Tseng, K. Y. Wu, H. Li, V. Mashanov, H. H. Cheng, G. Sun, and R. A. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett.102, 182106 (2013).
[CrossRef]

P. Moontragoon, R. A. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys.112, 073106 (2012).
[CrossRef]

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser,” J. Appl. Phys.108, 033107 (2010).
[CrossRef]

Sun, G.

H. H. Tseng, K. Y. Wu, H. Li, V. Mashanov, H. H. Cheng, G. Sun, and R. A. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett.102, 182106 (2013).
[CrossRef]

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser,” J. Appl. Phys.108, 033107 (2010).
[CrossRef]

Sundgren, J. E.

O. Gurdal, M. Hasan, M. R. Sardela, J. E. Greene, H. H. Radamson, J. E. Sundgren, and G. V. Hansson, “Growth of metastable Ge1−xSnx strained layer superlattices on Ge(001)2×1 by temperature-modulated molecular beam epitaxy,” Appl. Phys. Lett.67, 956–958 (1995).
[CrossRef]

Talalaev, V.

A. Tonkikh, C. Eisenschmidt, V. Talalaev, N. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing,” Appl. Phys. Lett.103, 032106 (2013).
[CrossRef]

Tauc, J.

J. Tauc, Optical Properties of Solids (North Holland, 1969).

Tolle, J.

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1−ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98, 061109 (2011).
[CrossRef]

V. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menendez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films518, 2531–2537 (2010).
[CrossRef]

Tonkikh, A.

A. Tonkikh, C. Eisenschmidt, V. Talalaev, N. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing,” Appl. Phys. Lett.103, 032106 (2013).
[CrossRef]

Tseng, H. H.

H. H. Tseng, K. Y. Wu, H. Li, V. Mashanov, H. H. Cheng, G. Sun, and R. A. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett.102, 182106 (2013).
[CrossRef]

Tseng, W. K.

H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett.102, 251907 (2013).
[CrossRef]

Vincent, B.

Werner, J.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films520, 3195– 3200 (2012).
[CrossRef]

Werner, P.

A. Tonkikh, C. Eisenschmidt, V. Talalaev, N. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing,” Appl. Phys. Lett.103, 032106 (2013).
[CrossRef]

Widmann, D.

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4 % Sn,” Appl. Phys. Lett.101, 141110 (2012).
[CrossRef]

Wu, K. Y.

H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett.102, 251907 (2013).
[CrossRef]

H. H. Tseng, K. Y. Wu, H. Li, V. Mashanov, H. H. Cheng, G. Sun, and R. A. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett.102, 182106 (2013).
[CrossRef]

I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. Mashanov, A. Nikiforov, O. Pchelyakov, and X. S. Wu, “Investigation of Ge1−xSnx/Ge with high Sn composition grown at low-temperature,” AIP Advances1, 042118 (2011).
[CrossRef]

Wu, T. H.

I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. Mashanov, A. Nikiforov, O. Pchelyakov, and X. S. Wu, “Investigation of Ge1−xSnx/Ge with high Sn composition grown at low-temperature,” AIP Advances1, 042118 (2011).
[CrossRef]

Wu, X. S.

I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. Mashanov, A. Nikiforov, O. Pchelyakov, and X. S. Wu, “Investigation of Ge1−xSnx/Ge with high Sn composition grown at low-temperature,” AIP Advances1, 042118 (2011).
[CrossRef]

Xie, J.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett.95, 133506 (2009).
[CrossRef]

Yu, I. S.

I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. Mashanov, A. Nikiforov, O. Pchelyakov, and X. S. Wu, “Investigation of Ge1−xSnx/Ge with high Sn composition grown at low-temperature,” AIP Advances1, 042118 (2011).
[CrossRef]

Yu, S.-Q.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett.95, 133506 (2009).
[CrossRef]

Zakharov, N.

A. Tonkikh, C. Eisenschmidt, V. Talalaev, N. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing,” Appl. Phys. Lett.103, 032106 (2013).
[CrossRef]

Zollner, S.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B73, 125207 (2006).
[CrossRef]

AIP Advances (1)

I. S. Yu, T. H. Wu, K. Y. Wu, H. H. Cheng, V. Mashanov, A. Nikiforov, O. Pchelyakov, and X. S. Wu, “Investigation of Ge1−xSnx/Ge with high Sn composition grown at low-temperature,” AIP Advances1, 042118 (2011).
[CrossRef]

Appl. Phys. Lett. (10)

O. Gurdal, M. Hasan, M. R. Sardela, J. E. Greene, H. H. Radamson, J. E. Sundgren, and G. V. Hansson, “Growth of metastable Ge1−xSnx strained layer superlattices on Ge(001)2×1 by temperature-modulated molecular beam epitaxy,” Appl. Phys. Lett.67, 956–958 (1995).
[CrossRef]

A. Tonkikh, C. Eisenschmidt, V. Talalaev, N. Zakharov, J. Schilling, G. Schmidt, and P. Werner, “Pseudomorphic GeSn/Ge(001) quantum wells: Examining indirect band gap bowing,” Appl. Phys. Lett.103, 032106 (2013).
[CrossRef]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett.95, 133506 (2009).
[CrossRef]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4 % Sn,” Appl. Phys. Lett.101, 141110 (2012).
[CrossRef]

H. H. Tseng, K. Y. Wu, H. Li, V. Mashanov, H. H. Cheng, G. Sun, and R. A. Soref, “Mid-infrared electroluminescence from a Ge/Ge0.922Sn0.078/Ge double heterostructure p-i-n diode on a Si substrate,” Appl. Phys. Lett.102, 182106 (2013).
[CrossRef]

H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng, and H. Chen, “Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,” Appl. Phys. Lett.102, 251907 (2013).
[CrossRef]

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1−ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98, 061109 (2011).
[CrossRef]

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1−xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett.100, 102109 (2012).
[CrossRef]

H.-S. Lan, S.-T. Chan, T.-H. Cheng, C.-Y. Chen, S.-R. Jan, and C. W. Liu, “Biaxial tensile strain effects on photoluminescence of different orientated Ge wafers,” Appl. Phys. Lett.98, 101106 (2011).
[CrossRef]

J. P. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, “Infrared electroluminescence from GeSn hetero-junction diodes grown by molecular beam epitaxy,” Appl. Phys. Lett.102, 251117 (2013).
[CrossRef]

IEEE J. Quantum Electron. (2)

G.-E. Chang, S.-W. Chang, and S.-L. Chuang, “Strain-balanced Ge1−zSnz/Si1−x−yGexSny multiple-quantum-well lasers,” IEEE J. Quantum Electron., 46, 1813–1820 (2010).
[CrossRef]

S.-W. Chang and S.-L. Chuang, “Theory of optical gain of Ge-SixGey Sn1−x−y quantum-well lasers,” IEEE J. Quantum Electron.43, 249–256 (2007).
[CrossRef]

J. Appl. Phys. (2)

P. Moontragoon, R. A. Soref, and Z. Ikonic, “The direct and indirect bandgaps of unstrained SixGe1−x−ySny and their photonic device applications,” J. Appl. Phys.112, 073106 (2012).
[CrossRef]

G. Sun, R. A. Soref, and H. H. Cheng, “Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser,” J. Appl. Phys.108, 033107 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (2)

R. Beeler, R. Roucka, A. V. G. Chizmeshya, J. Kouvetakis, and J. Menéndez, “Nonlinear structure-composition relationships in the Ge1−ySny/Si(100) (y< 0.15) system,” Phys. Rev. B84, 035204 (2011).
[CrossRef]

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1−ySny alloys: A comparative Ge1−ySny/Ge1−xSix study,” Phys. Rev. B73, 125207 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

G. He and H. A. Atwater, “Interband transitions in Sn1−xGex alloys,” Phys. Rev. Lett.79, 1937–1940 (1997).
[CrossRef]

Thin Solid Films (2)

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films520, 3195– 3200 (2012).
[CrossRef]

V. D’Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, and J. Menendez, “Ternary GeSiSn alloys: New opportunities for strain and band gap engineering using group-IV semiconductors,” Thin Solid Films518, 2531–2537 (2010).
[CrossRef]

Other (2)

J. Tauc, Optical Properties of Solids (North Holland, 1969).

S. L. Chuang, Physics of Photonic Devices (Wiley, New York, 2009), 2nd edition

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

XTEM image of sample N2, showing smooth and flat interfaces between the Ge and GeSn layers, as well as the good periodic structure. The inset shows the Ge/Si interface of the sample where a high density of misfit dislocations is visible, indicating the Ge VS is strain-relaxed.

Fig. 2
Fig. 2

(a) Room-temperature absorbance spectra of the Ge1−xSn x /Ge SL samples, compared to that of the Ge VS. (b) Tauc plot for the determination of direct bandgap. The dashed lines show fits using the Tauc equation.

Fig. 3
Fig. 3

(a) Direct bandgap energies of unstrained Ge1−xSn x alloys, pseudomorphic Ge1−xSn x alloys on Ge, and pseudomorphic Ge1−xSn x /Ge SLs on Ge. (b) Calculated band edges of the various bands for pseudomorphic Ge1−xSn x alloys on Ge as a function of Sn composition. The energy zero is chosen at the valence band maximum of unstrained Ge. The indirect-to-direct bandgap transition occurs at x=10.9%.

Tables (2)

Tables Icon

Table 1 Summary of the layer thicknesses, out-of-plane lattice constant, Sn composition, and direct bandgap energy of the strained-layer Ge1−xSn x /Ge SLs. The direct bandgap energies extracted from the absorbance measurements match the lowest direct transition energies obtained from the PL measurements reported in Ref. [18].

Tables Icon

Table 2 Γ- and L-valley bandgap parameters for Ge1−xSn x alloys (Refs. [4, 9]).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

a 0 = a + 2 C 12 C 11 a 1 + 2 C 12 C 11 ,
α h ν = A ( h ν E g Γ ) 1 / 2 ,
E g ( Ge 1 x Sn x ) = ( 1 x ) E g ( Ge ) + x E g ( Sn ) b x ( 1 x ) ,
Δ E c Γ = a c ( ε x x + ε y y + ε z z )
Δ E c Γ = a L ( ε x x + ε y y + ε z z )
Δ E HH = P ε Q ε
Δ E LH = P ε + Q ε + 1 2 [ ( Δ + Q ε ) 2 + 8 Q ε 2 ( Δ + Q ε ) ]
P ε = a v ( ε x x + ε y y + ε z z )
Q ε = b v 2 ( ε x x + ε y y 2 ε z z )

Metrics