Abstract

Optical ridge waveguides were fabricated in 4H-SiC single crystal by combination of 15 MeV C5+ ion irradiation and femtosecond laser ablation. The near-field modal intensity distributions exhibit the well-confined light propagation in the waveguides. A propagation loss as low as 5.1 dB/cm has been achieved at 632.8 nm for the ridge waveguide. The investigation of confocal micro-Raman spectra suggests partial transition of 4H-SiC to 6H-SiC in the irradiated region.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Trew, J.-B. Yan, and P. M. Mock, “The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications,” Proc. IEEE79(5), 598–620 (1991).
    [CrossRef]
  2. M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” IEEE Trans. Electron. Dev.40(3), 645–655 (1993).
    [CrossRef]
  3. Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express3(12), 122201 (2010).
    [CrossRef]
  4. K. Ito, S. Tsukimoto, and M. Murakami, “Effects of Al ion implantation to 4H-SiC on the specific contact resistance of TiAl-based contact materials,” Sci. Technol. Adv. Mater.7(6), 496–501 (2006).
    [CrossRef]
  5. S. Doǧan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett.82(18), 3107–3109 (2003).
    [CrossRef]
  6. R. S. Wei, S. Song, K. Yang, Y. X. Cui, Y. Peng, X. F. Chen, X. B. Hu, and X. G. Xu, “Thermal conductivity of 4H-SiC single crystals,” J. Appl. Phys.113(5), 053503 (2013).
    [CrossRef]
  7. L. Li, W. Hua, S. Prucnal, S. D. Yao, L. Shao, K. Potzger, and S. Q. Zhou, “Defect induced ferromagnetism in 4H-SiC single crystals,” Nucl. Instrum. Methods Phys. Res. B275, 33–36 (2012).
    [CrossRef]
  8. H. Y. Sun, S. C. Lien, Z. R. Qiu, H. C. Wang, T. Mei, C. W. Liu, and Z. C. Feng, “Temperature dependence of Raman scattering in bulk 4H-SiC with different carrier concentration,” Opt. Express21(22), 26475–26482 (2013).
    [CrossRef] [PubMed]
  9. S. C. Hong, M. J. Zhan, G. Wang, H. W. Xuan, W. Zhang, C. J. Liu, C. H. Xu, Y. Liu, Z. Y. Wei, and X. L. Chen, “4H-SiC: a new nonlinear material for mid infrared lasers,” Laser Photon. Rev.7(5), 831–838 (2013).
    [CrossRef]
  10. F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
    [CrossRef]
  11. G. Pandraud, E. Margallo-Balbas, C.-K. Yang, and P. J. French, “Experimental characterization of roughness induced scattering losses in PECVD SiC waveguides,” J. Lightwave Technol.29(5), 744–749 (2011).
    [CrossRef]
  12. G. Pandraud, P. J. French, and P. M. Sarro, “Experimental study of bent SiC optical waveguides,” Microw. Opt. Technol. Lett.47(3), 219–220 (2005).
    [CrossRef]
  13. S. Sorieul, X. Kerbiriou, J.-M. Costantini, L. Gosmain, G. Calas, and C. Trautmann, “Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation,” J. Phys. Condens. Matter24(12), 125801 (2012).
    [CrossRef] [PubMed]
  14. M. Ishimaru, R. M. Dickerson, and K. E. Sickafus, “High-dose oxygen ion implantation into 6H-SiC,” Appl. Phys. Lett.75(3), 352 (1999).
    [CrossRef]
  15. W. Wesch, A. Heft, R. Menzel, T. Bachmann, G. Peiter, H. Hobert, T. Höche, P. Dannberg, and A. Bräuer, “Ion beam processing of SiC for optical application,” Nucl. Instrum. Methods Phys. Res. B148(1–4), 545–550 (1999).
    [CrossRef]
  16. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev.8(2), 251–275 (2014).
    [CrossRef]
  17. R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys.100(11), 113121 (2006).
    [CrossRef]
  18. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1121 (2002).
    [CrossRef]
  19. C. Zhang, N. N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. M. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express19(13), 12503–12508 (2011).
    [CrossRef] [PubMed]
  20. J. F. Ziegler, computer code, SRIM http://www.srim.org .
  21. http://www.rsoftdesign.com .
  22. D. Yevick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett.17(5), 329–330 (1992).
    [CrossRef] [PubMed]
  23. Y. C. Yao, Y. Tan, N. N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express18(24), 24516–24521 (2010).
    [CrossRef] [PubMed]
  24. H. Y. Sun, F. He, Z. H. Zhou, Y. Cheng, Z. Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses,” Opt. Lett.32(11), 1536–1538 (2007).
    [CrossRef] [PubMed]
  25. A. Vonsovici, G. T. Reed, A. G. R. Evans, and F. Namavar, “Loss measurements for β-SiC-on insulator waveguides for high-speed silicon-based photonic devices,” Proc. SPIE3630, 115–124 (1999).
    [CrossRef]
  26. S. Sorieul, J.-M. Costantini, L. Gosmain, L. Thomé, and J.-J. Grob, “Raman spectroscopy study of heavy-ion-irradiated α-SiC,” J. Phys. Condens. Matter18(22), 5235–5251 (2006).
    [CrossRef]
  27. L. Li, S. Prucnal, S. D. Yao, K. Potzger, W. Anwand, A. Wagner, and S. Q. Zhou, “Rise and fall of defect induced ferromagnetism in SiC single crystals,” Appl. Phys. Lett.98(22), 222508 (2011).
    [CrossRef]

2014 (1)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev.8(2), 251–275 (2014).
[CrossRef]

2013 (3)

S. C. Hong, M. J. Zhan, G. Wang, H. W. Xuan, W. Zhang, C. J. Liu, C. H. Xu, Y. Liu, Z. Y. Wei, and X. L. Chen, “4H-SiC: a new nonlinear material for mid infrared lasers,” Laser Photon. Rev.7(5), 831–838 (2013).
[CrossRef]

R. S. Wei, S. Song, K. Yang, Y. X. Cui, Y. Peng, X. F. Chen, X. B. Hu, and X. G. Xu, “Thermal conductivity of 4H-SiC single crystals,” J. Appl. Phys.113(5), 053503 (2013).
[CrossRef]

H. Y. Sun, S. C. Lien, Z. R. Qiu, H. C. Wang, T. Mei, C. W. Liu, and Z. C. Feng, “Temperature dependence of Raman scattering in bulk 4H-SiC with different carrier concentration,” Opt. Express21(22), 26475–26482 (2013).
[CrossRef] [PubMed]

2012 (3)

L. Li, W. Hua, S. Prucnal, S. D. Yao, L. Shao, K. Potzger, and S. Q. Zhou, “Defect induced ferromagnetism in 4H-SiC single crystals,” Nucl. Instrum. Methods Phys. Res. B275, 33–36 (2012).
[CrossRef]

S. Sorieul, X. Kerbiriou, J.-M. Costantini, L. Gosmain, G. Calas, and C. Trautmann, “Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation,” J. Phys. Condens. Matter24(12), 125801 (2012).
[CrossRef] [PubMed]

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
[CrossRef]

2011 (3)

2010 (2)

Y. C. Yao, Y. Tan, N. N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express18(24), 24516–24521 (2010).
[CrossRef] [PubMed]

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express3(12), 122201 (2010).
[CrossRef]

2007 (1)

2006 (3)

S. Sorieul, J.-M. Costantini, L. Gosmain, L. Thomé, and J.-J. Grob, “Raman spectroscopy study of heavy-ion-irradiated α-SiC,” J. Phys. Condens. Matter18(22), 5235–5251 (2006).
[CrossRef]

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys.100(11), 113121 (2006).
[CrossRef]

K. Ito, S. Tsukimoto, and M. Murakami, “Effects of Al ion implantation to 4H-SiC on the specific contact resistance of TiAl-based contact materials,” Sci. Technol. Adv. Mater.7(6), 496–501 (2006).
[CrossRef]

2005 (1)

G. Pandraud, P. J. French, and P. M. Sarro, “Experimental study of bent SiC optical waveguides,” Microw. Opt. Technol. Lett.47(3), 219–220 (2005).
[CrossRef]

2003 (1)

S. Doǧan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett.82(18), 3107–3109 (2003).
[CrossRef]

2002 (1)

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1121 (2002).
[CrossRef]

1999 (3)

A. Vonsovici, G. T. Reed, A. G. R. Evans, and F. Namavar, “Loss measurements for β-SiC-on insulator waveguides for high-speed silicon-based photonic devices,” Proc. SPIE3630, 115–124 (1999).
[CrossRef]

M. Ishimaru, R. M. Dickerson, and K. E. Sickafus, “High-dose oxygen ion implantation into 6H-SiC,” Appl. Phys. Lett.75(3), 352 (1999).
[CrossRef]

W. Wesch, A. Heft, R. Menzel, T. Bachmann, G. Peiter, H. Hobert, T. Höche, P. Dannberg, and A. Bräuer, “Ion beam processing of SiC for optical application,” Nucl. Instrum. Methods Phys. Res. B148(1–4), 545–550 (1999).
[CrossRef]

1993 (1)

M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” IEEE Trans. Electron. Dev.40(3), 645–655 (1993).
[CrossRef]

1992 (1)

1991 (1)

R. J. Trew, J.-B. Yan, and P. M. Mock, “The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications,” Proc. IEEE79(5), 598–620 (1991).
[CrossRef]

Anwand, W.

L. Li, S. Prucnal, S. D. Yao, K. Potzger, W. Anwand, A. Wagner, and S. Q. Zhou, “Rise and fall of defect induced ferromagnetism in SiC single crystals,” Appl. Phys. Lett.98(22), 222508 (2011).
[CrossRef]

Bachmann, T.

W. Wesch, A. Heft, R. Menzel, T. Bachmann, G. Peiter, H. Hobert, T. Höche, P. Dannberg, and A. Bräuer, “Ion beam processing of SiC for optical application,” Nucl. Instrum. Methods Phys. Res. B148(1–4), 545–550 (1999).
[CrossRef]

Baliga, B. J.

M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” IEEE Trans. Electron. Dev.40(3), 645–655 (1993).
[CrossRef]

Bardyszewski, W.

Bettiol, A. A.

Bhatnagar, M.

M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” IEEE Trans. Electron. Dev.40(3), 645–655 (1993).
[CrossRef]

Bräuer, A.

W. Wesch, A. Heft, R. Menzel, T. Bachmann, G. Peiter, H. Hobert, T. Höche, P. Dannberg, and A. Bräuer, “Ion beam processing of SiC for optical application,” Nucl. Instrum. Methods Phys. Res. B148(1–4), 545–550 (1999).
[CrossRef]

Calas, G.

S. Sorieul, X. Kerbiriou, J.-M. Costantini, L. Gosmain, G. Calas, and C. Trautmann, “Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation,” J. Phys. Condens. Matter24(12), 125801 (2012).
[CrossRef] [PubMed]

Chen, F.

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev.8(2), 251–275 (2014).
[CrossRef]

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
[CrossRef]

C. Zhang, N. N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. M. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express19(13), 12503–12508 (2011).
[CrossRef] [PubMed]

Y. C. Yao, Y. Tan, N. N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express18(24), 24516–24521 (2010).
[CrossRef] [PubMed]

Chen, X. F.

R. S. Wei, S. Song, K. Yang, Y. X. Cui, Y. Peng, X. F. Chen, X. B. Hu, and X. G. Xu, “Thermal conductivity of 4H-SiC single crystals,” J. Appl. Phys.113(5), 053503 (2013).
[CrossRef]

Chen, X. L.

S. C. Hong, M. J. Zhan, G. Wang, H. W. Xuan, W. Zhang, C. J. Liu, C. H. Xu, Y. Liu, Z. Y. Wei, and X. L. Chen, “4H-SiC: a new nonlinear material for mid infrared lasers,” Laser Photon. Rev.7(5), 831–838 (2013).
[CrossRef]

Cheng, Y.

Costantini, J.-M.

S. Sorieul, X. Kerbiriou, J.-M. Costantini, L. Gosmain, G. Calas, and C. Trautmann, “Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation,” J. Phys. Condens. Matter24(12), 125801 (2012).
[CrossRef] [PubMed]

S. Sorieul, J.-M. Costantini, L. Gosmain, L. Thomé, and J.-J. Grob, “Raman spectroscopy study of heavy-ion-irradiated α-SiC,” J. Phys. Condens. Matter18(22), 5235–5251 (2006).
[CrossRef]

Cui, Y. X.

R. S. Wei, S. Song, K. Yang, Y. X. Cui, Y. Peng, X. F. Chen, X. B. Hu, and X. G. Xu, “Thermal conductivity of 4H-SiC single crystals,” J. Appl. Phys.113(5), 053503 (2013).
[CrossRef]

Dannberg, P.

W. Wesch, A. Heft, R. Menzel, T. Bachmann, G. Peiter, H. Hobert, T. Höche, P. Dannberg, and A. Bräuer, “Ion beam processing of SiC for optical application,” Nucl. Instrum. Methods Phys. Res. B148(1–4), 545–550 (1999).
[CrossRef]

Degl’lnnocenti, R.

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys.100(11), 113121 (2006).
[CrossRef]

Dickerson, R. M.

M. Ishimaru, R. M. Dickerson, and K. E. Sickafus, “High-dose oxygen ion implantation into 6H-SiC,” Appl. Phys. Lett.75(3), 352 (1999).
[CrossRef]

Dogan, S.

S. Doǧan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett.82(18), 3107–3109 (2003).
[CrossRef]

Dong, N. N.

Evans, A. G. R.

A. Vonsovici, G. T. Reed, A. G. R. Evans, and F. Namavar, “Loss measurements for β-SiC-on insulator waveguides for high-speed silicon-based photonic devices,” Proc. SPIE3630, 115–124 (1999).
[CrossRef]

Feng, Z. C.

French, P. J.

G. Pandraud, E. Margallo-Balbas, C.-K. Yang, and P. J. French, “Experimental characterization of roughness induced scattering losses in PECVD SiC waveguides,” J. Lightwave Technol.29(5), 744–749 (2011).
[CrossRef]

G. Pandraud, P. J. French, and P. M. Sarro, “Experimental study of bent SiC optical waveguides,” Microw. Opt. Technol. Lett.47(3), 219–220 (2005).
[CrossRef]

Ganguly, B.

S. Doǧan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett.82(18), 3107–3109 (2003).
[CrossRef]

Gosmain, L.

S. Sorieul, X. Kerbiriou, J.-M. Costantini, L. Gosmain, G. Calas, and C. Trautmann, “Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation,” J. Phys. Condens. Matter24(12), 125801 (2012).
[CrossRef] [PubMed]

S. Sorieul, J.-M. Costantini, L. Gosmain, L. Thomé, and J.-J. Grob, “Raman spectroscopy study of heavy-ion-irradiated α-SiC,” J. Phys. Condens. Matter18(22), 5235–5251 (2006).
[CrossRef]

Grob, J.-J.

S. Sorieul, J.-M. Costantini, L. Gosmain, L. Thomé, and J.-J. Grob, “Raman spectroscopy study of heavy-ion-irradiated α-SiC,” J. Phys. Condens. Matter18(22), 5235–5251 (2006).
[CrossRef]

Guarina, A.

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys.100(11), 113121 (2006).
[CrossRef]

Gunter, P.

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys.100(11), 113121 (2006).
[CrossRef]

He, F.

Heft, A.

W. Wesch, A. Heft, R. Menzel, T. Bachmann, G. Peiter, H. Hobert, T. Höche, P. Dannberg, and A. Bräuer, “Ion beam processing of SiC for optical application,” Nucl. Instrum. Methods Phys. Res. B148(1–4), 545–550 (1999).
[CrossRef]

Hobert, H.

W. Wesch, A. Heft, R. Menzel, T. Bachmann, G. Peiter, H. Hobert, T. Höche, P. Dannberg, and A. Bräuer, “Ion beam processing of SiC for optical application,” Nucl. Instrum. Methods Phys. Res. B148(1–4), 545–550 (1999).
[CrossRef]

Höche, T.

W. Wesch, A. Heft, R. Menzel, T. Bachmann, G. Peiter, H. Hobert, T. Höche, P. Dannberg, and A. Bräuer, “Ion beam processing of SiC for optical application,” Nucl. Instrum. Methods Phys. Res. B148(1–4), 545–550 (1999).
[CrossRef]

Hong, S. C.

S. C. Hong, M. J. Zhan, G. Wang, H. W. Xuan, W. Zhang, C. J. Liu, C. H. Xu, Y. Liu, Z. Y. Wei, and X. L. Chen, “4H-SiC: a new nonlinear material for mid infrared lasers,” Laser Photon. Rev.7(5), 831–838 (2013).
[CrossRef]

Hu, X. B.

R. S. Wei, S. Song, K. Yang, Y. X. Cui, Y. Peng, X. F. Chen, X. B. Hu, and X. G. Xu, “Thermal conductivity of 4H-SiC single crystals,” J. Appl. Phys.113(5), 053503 (2013).
[CrossRef]

Hua, W.

L. Li, W. Hua, S. Prucnal, S. D. Yao, L. Shao, K. Potzger, and S. Q. Zhou, “Defect induced ferromagnetism in 4H-SiC single crystals,” Nucl. Instrum. Methods Phys. Res. B275, 33–36 (2012).
[CrossRef]

Huang, D.

S. Doǧan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett.82(18), 3107–3109 (2003).
[CrossRef]

Ishimaru, M.

M. Ishimaru, R. M. Dickerson, and K. E. Sickafus, “High-dose oxygen ion implantation into 6H-SiC,” Appl. Phys. Lett.75(3), 352 (1999).
[CrossRef]

Ito, K.

K. Ito, S. Tsukimoto, and M. Murakami, “Effects of Al ion implantation to 4H-SiC on the specific contact resistance of TiAl-based contact materials,” Sci. Technol. Adv. Mater.7(6), 496–501 (2006).
[CrossRef]

Kamei, T.

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express3(12), 122201 (2010).
[CrossRef]

Kawashima, H.

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express3(12), 122201 (2010).
[CrossRef]

Kerbiriou, X.

S. Sorieul, X. Kerbiriou, J.-M. Costantini, L. Gosmain, G. Calas, and C. Trautmann, “Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation,” J. Phys. Condens. Matter24(12), 125801 (2012).
[CrossRef] [PubMed]

Kintaka, K.

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express3(12), 122201 (2010).
[CrossRef]

Li, L.

L. Li, W. Hua, S. Prucnal, S. D. Yao, L. Shao, K. Potzger, and S. Q. Zhou, “Defect induced ferromagnetism in 4H-SiC single crystals,” Nucl. Instrum. Methods Phys. Res. B275, 33–36 (2012).
[CrossRef]

L. Li, S. Prucnal, S. D. Yao, K. Potzger, W. Anwand, A. Wagner, and S. Q. Zhou, “Rise and fall of defect induced ferromagnetism in SiC single crystals,” Appl. Phys. Lett.98(22), 222508 (2011).
[CrossRef]

Lien, S. C.

Liu, C. J.

S. C. Hong, M. J. Zhan, G. Wang, H. W. Xuan, W. Zhang, C. J. Liu, C. H. Xu, Y. Liu, Z. Y. Wei, and X. L. Chen, “4H-SiC: a new nonlinear material for mid infrared lasers,” Laser Photon. Rev.7(5), 831–838 (2013).
[CrossRef]

Liu, C. W.

Liu, Y.

S. C. Hong, M. J. Zhan, G. Wang, H. W. Xuan, W. Zhang, C. J. Liu, C. H. Xu, Y. Liu, Z. Y. Wei, and X. L. Chen, “4H-SiC: a new nonlinear material for mid infrared lasers,” Laser Photon. Rev.7(5), 831–838 (2013).
[CrossRef]

Lu, Q. M.

Marangoni, M.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1121 (2002).
[CrossRef]

Margallo-Balbas, E.

Mei, T.

Menzel, R.

W. Wesch, A. Heft, R. Menzel, T. Bachmann, G. Peiter, H. Hobert, T. Höche, P. Dannberg, and A. Bräuer, “Ion beam processing of SiC for optical application,” Nucl. Instrum. Methods Phys. Res. B148(1–4), 545–550 (1999).
[CrossRef]

Midorikawa, K.

Mock, P. M.

R. J. Trew, J.-B. Yan, and P. M. Mock, “The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications,” Proc. IEEE79(5), 598–620 (1991).
[CrossRef]

Mori, M.

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express3(12), 122201 (2010).
[CrossRef]

Morkoc, H.

S. Doǧan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett.82(18), 3107–3109 (2003).
[CrossRef]

Murakami, M.

K. Ito, S. Tsukimoto, and M. Murakami, “Effects of Al ion implantation to 4H-SiC on the specific contact resistance of TiAl-based contact materials,” Sci. Technol. Adv. Mater.7(6), 496–501 (2006).
[CrossRef]

Myers, R. E.

S. Doǧan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett.82(18), 3107–3109 (2003).
[CrossRef]

Nakanishi, K.

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express3(12), 122201 (2010).
[CrossRef]

Namavar, F.

A. Vonsovici, G. T. Reed, A. G. R. Evans, and F. Namavar, “Loss measurements for β-SiC-on insulator waveguides for high-speed silicon-based photonic devices,” Proc. SPIE3630, 115–124 (1999).
[CrossRef]

Osellame, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1121 (2002).
[CrossRef]

Pandraud, G.

G. Pandraud, E. Margallo-Balbas, C.-K. Yang, and P. J. French, “Experimental characterization of roughness induced scattering losses in PECVD SiC waveguides,” J. Lightwave Technol.29(5), 744–749 (2011).
[CrossRef]

G. Pandraud, P. J. French, and P. M. Sarro, “Experimental study of bent SiC optical waveguides,” Microw. Opt. Technol. Lett.47(3), 219–220 (2005).
[CrossRef]

Parish, J.

S. Doǧan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett.82(18), 3107–3109 (2003).
[CrossRef]

Peiter, G.

W. Wesch, A. Heft, R. Menzel, T. Bachmann, G. Peiter, H. Hobert, T. Höche, P. Dannberg, and A. Bräuer, “Ion beam processing of SiC for optical application,” Nucl. Instrum. Methods Phys. Res. B148(1–4), 545–550 (1999).
[CrossRef]

Peng, Y.

R. S. Wei, S. Song, K. Yang, Y. X. Cui, Y. Peng, X. F. Chen, X. B. Hu, and X. G. Xu, “Thermal conductivity of 4H-SiC single crystals,” J. Appl. Phys.113(5), 053503 (2013).
[CrossRef]

Poberaj, G.

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys.100(11), 113121 (2006).
[CrossRef]

Potzger, K.

L. Li, W. Hua, S. Prucnal, S. D. Yao, L. Shao, K. Potzger, and S. Q. Zhou, “Defect induced ferromagnetism in 4H-SiC single crystals,” Nucl. Instrum. Methods Phys. Res. B275, 33–36 (2012).
[CrossRef]

L. Li, S. Prucnal, S. D. Yao, K. Potzger, W. Anwand, A. Wagner, and S. Q. Zhou, “Rise and fall of defect induced ferromagnetism in SiC single crystals,” Appl. Phys. Lett.98(22), 222508 (2011).
[CrossRef]

Prucnal, S.

L. Li, W. Hua, S. Prucnal, S. D. Yao, L. Shao, K. Potzger, and S. Q. Zhou, “Defect induced ferromagnetism in 4H-SiC single crystals,” Nucl. Instrum. Methods Phys. Res. B275, 33–36 (2012).
[CrossRef]

L. Li, S. Prucnal, S. D. Yao, K. Potzger, W. Anwand, A. Wagner, and S. Q. Zhou, “Rise and fall of defect induced ferromagnetism in SiC single crystals,” Appl. Phys. Lett.98(22), 222508 (2011).
[CrossRef]

Qiu, Z. R.

Ramponi, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1121 (2002).
[CrossRef]

Reed, G. T.

A. Vonsovici, G. T. Reed, A. G. R. Evans, and F. Namavar, “Loss measurements for β-SiC-on insulator waveguides for high-speed silicon-based photonic devices,” Proc. SPIE3630, 115–124 (1999).
[CrossRef]

Reidt, S.

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys.100(11), 113121 (2006).
[CrossRef]

Rezzonico, D.

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys.100(11), 113121 (2006).
[CrossRef]

Roberts, C. B.

S. Doǧan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett.82(18), 3107–3109 (2003).
[CrossRef]

Saddow, S. E.

S. Doǧan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett.82(18), 3107–3109 (2003).
[CrossRef]

Sakakibara, Y.

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express3(12), 122201 (2010).
[CrossRef]

Sarro, P. M.

G. Pandraud, P. J. French, and P. M. Sarro, “Experimental study of bent SiC optical waveguides,” Microw. Opt. Technol. Lett.47(3), 219–220 (2005).
[CrossRef]

Shao, L.

L. Li, W. Hua, S. Prucnal, S. D. Yao, L. Shao, K. Potzger, and S. Q. Zhou, “Defect induced ferromagnetism in 4H-SiC single crystals,” Nucl. Instrum. Methods Phys. Res. B275, 33–36 (2012).
[CrossRef]

Shoji, Y.

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express3(12), 122201 (2010).
[CrossRef]

Sickafus, K. E.

M. Ishimaru, R. M. Dickerson, and K. E. Sickafus, “High-dose oxygen ion implantation into 6H-SiC,” Appl. Phys. Lett.75(3), 352 (1999).
[CrossRef]

Smith, M.

S. Doǧan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett.82(18), 3107–3109 (2003).
[CrossRef]

Song, S.

R. S. Wei, S. Song, K. Yang, Y. X. Cui, Y. Peng, X. F. Chen, X. B. Hu, and X. G. Xu, “Thermal conductivity of 4H-SiC single crystals,” J. Appl. Phys.113(5), 053503 (2013).
[CrossRef]

Sorieul, S.

S. Sorieul, X. Kerbiriou, J.-M. Costantini, L. Gosmain, G. Calas, and C. Trautmann, “Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation,” J. Phys. Condens. Matter24(12), 125801 (2012).
[CrossRef] [PubMed]

S. Sorieul, J.-M. Costantini, L. Gosmain, L. Thomé, and J.-J. Grob, “Raman spectroscopy study of heavy-ion-irradiated α-SiC,” J. Phys. Condens. Matter18(22), 5235–5251 (2006).
[CrossRef]

Sugioka, K.

Sun, H. Y.

Tan, Y.

Teke, A.

S. Doǧan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett.82(18), 3107–3109 (2003).
[CrossRef]

Thomé, L.

S. Sorieul, J.-M. Costantini, L. Gosmain, L. Thomé, and J.-J. Grob, “Raman spectroscopy study of heavy-ion-irradiated α-SiC,” J. Phys. Condens. Matter18(22), 5235–5251 (2006).
[CrossRef]

Trautmann, C.

S. Sorieul, X. Kerbiriou, J.-M. Costantini, L. Gosmain, G. Calas, and C. Trautmann, “Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation,” J. Phys. Condens. Matter24(12), 125801 (2012).
[CrossRef] [PubMed]

Trew, R. J.

R. J. Trew, J.-B. Yan, and P. M. Mock, “The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications,” Proc. IEEE79(5), 598–620 (1991).
[CrossRef]

Tsukimoto, S.

K. Ito, S. Tsukimoto, and M. Murakami, “Effects of Al ion implantation to 4H-SiC on the specific contact resistance of TiAl-based contact materials,” Sci. Technol. Adv. Mater.7(6), 496–501 (2006).
[CrossRef]

Vázquez de Aldana, J. R.

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev.8(2), 251–275 (2014).
[CrossRef]

C. Zhang, N. N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. M. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express19(13), 12503–12508 (2011).
[CrossRef] [PubMed]

Vonsovici, A.

A. Vonsovici, G. T. Reed, A. G. R. Evans, and F. Namavar, “Loss measurements for β-SiC-on insulator waveguides for high-speed silicon-based photonic devices,” Proc. SPIE3630, 115–124 (1999).
[CrossRef]

Wagner, A.

L. Li, S. Prucnal, S. D. Yao, K. Potzger, W. Anwand, A. Wagner, and S. Q. Zhou, “Rise and fall of defect induced ferromagnetism in SiC single crystals,” Appl. Phys. Lett.98(22), 222508 (2011).
[CrossRef]

Wang, G.

S. C. Hong, M. J. Zhan, G. Wang, H. W. Xuan, W. Zhang, C. J. Liu, C. H. Xu, Y. Liu, Z. Y. Wei, and X. L. Chen, “4H-SiC: a new nonlinear material for mid infrared lasers,” Laser Photon. Rev.7(5), 831–838 (2013).
[CrossRef]

Wang, H. C.

Wei, R. S.

R. S. Wei, S. Song, K. Yang, Y. X. Cui, Y. Peng, X. F. Chen, X. B. Hu, and X. G. Xu, “Thermal conductivity of 4H-SiC single crystals,” J. Appl. Phys.113(5), 053503 (2013).
[CrossRef]

Wei, Z. Y.

S. C. Hong, M. J. Zhan, G. Wang, H. W. Xuan, W. Zhang, C. J. Liu, C. H. Xu, Y. Liu, Z. Y. Wei, and X. L. Chen, “4H-SiC: a new nonlinear material for mid infrared lasers,” Laser Photon. Rev.7(5), 831–838 (2013).
[CrossRef]

Wesch, W.

W. Wesch, A. Heft, R. Menzel, T. Bachmann, G. Peiter, H. Hobert, T. Höche, P. Dannberg, and A. Bräuer, “Ion beam processing of SiC for optical application,” Nucl. Instrum. Methods Phys. Res. B148(1–4), 545–550 (1999).
[CrossRef]

Xu, C. H.

S. C. Hong, M. J. Zhan, G. Wang, H. W. Xuan, W. Zhang, C. J. Liu, C. H. Xu, Y. Liu, Z. Y. Wei, and X. L. Chen, “4H-SiC: a new nonlinear material for mid infrared lasers,” Laser Photon. Rev.7(5), 831–838 (2013).
[CrossRef]

Xu, X. G.

R. S. Wei, S. Song, K. Yang, Y. X. Cui, Y. Peng, X. F. Chen, X. B. Hu, and X. G. Xu, “Thermal conductivity of 4H-SiC single crystals,” J. Appl. Phys.113(5), 053503 (2013).
[CrossRef]

Xu, Z. Z.

Xuan, H. W.

S. C. Hong, M. J. Zhan, G. Wang, H. W. Xuan, W. Zhang, C. J. Liu, C. H. Xu, Y. Liu, Z. Y. Wei, and X. L. Chen, “4H-SiC: a new nonlinear material for mid infrared lasers,” Laser Photon. Rev.7(5), 831–838 (2013).
[CrossRef]

Yan, J.-B.

R. J. Trew, J.-B. Yan, and P. M. Mock, “The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications,” Proc. IEEE79(5), 598–620 (1991).
[CrossRef]

Yang, C.-K.

Yang, J.

Yang, K.

R. S. Wei, S. Song, K. Yang, Y. X. Cui, Y. Peng, X. F. Chen, X. B. Hu, and X. G. Xu, “Thermal conductivity of 4H-SiC single crystals,” J. Appl. Phys.113(5), 053503 (2013).
[CrossRef]

Yao, S. D.

L. Li, W. Hua, S. Prucnal, S. D. Yao, L. Shao, K. Potzger, and S. Q. Zhou, “Defect induced ferromagnetism in 4H-SiC single crystals,” Nucl. Instrum. Methods Phys. Res. B275, 33–36 (2012).
[CrossRef]

L. Li, S. Prucnal, S. D. Yao, K. Potzger, W. Anwand, A. Wagner, and S. Q. Zhou, “Rise and fall of defect induced ferromagnetism in SiC single crystals,” Appl. Phys. Lett.98(22), 222508 (2011).
[CrossRef]

Yao, Y. C.

Yevick, D.

Zhan, M. J.

S. C. Hong, M. J. Zhan, G. Wang, H. W. Xuan, W. Zhang, C. J. Liu, C. H. Xu, Y. Liu, Z. Y. Wei, and X. L. Chen, “4H-SiC: a new nonlinear material for mid infrared lasers,” Laser Photon. Rev.7(5), 831–838 (2013).
[CrossRef]

Zhang, C.

Zhang, W.

S. C. Hong, M. J. Zhan, G. Wang, H. W. Xuan, W. Zhang, C. J. Liu, C. H. Xu, Y. Liu, Z. Y. Wei, and X. L. Chen, “4H-SiC: a new nonlinear material for mid infrared lasers,” Laser Photon. Rev.7(5), 831–838 (2013).
[CrossRef]

Zhou, S. Q.

L. Li, W. Hua, S. Prucnal, S. D. Yao, L. Shao, K. Potzger, and S. Q. Zhou, “Defect induced ferromagnetism in 4H-SiC single crystals,” Nucl. Instrum. Methods Phys. Res. B275, 33–36 (2012).
[CrossRef]

L. Li, S. Prucnal, S. D. Yao, K. Potzger, W. Anwand, A. Wagner, and S. Q. Zhou, “Rise and fall of defect induced ferromagnetism in SiC single crystals,” Appl. Phys. Lett.98(22), 222508 (2011).
[CrossRef]

Zhou, Z. H.

Appl. Phys. Express (1)

Y. Shoji, K. Nakanishi, Y. Sakakibara, K. Kintaka, H. Kawashima, M. Mori, and T. Kamei, “Hydrogenated amorphous silicon carbide optical waveguide for telecommunication wavelength applications,” Appl. Phys. Express3(12), 122201 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

S. Doǧan, A. Teke, D. Huang, H. Morkoc, C. B. Roberts, J. Parish, B. Ganguly, M. Smith, R. E. Myers, and S. E. Saddow, “4H-SiC photoconductive switching devices for use in high-power applications,” Appl. Phys. Lett.82(18), 3107–3109 (2003).
[CrossRef]

M. Ishimaru, R. M. Dickerson, and K. E. Sickafus, “High-dose oxygen ion implantation into 6H-SiC,” Appl. Phys. Lett.75(3), 352 (1999).
[CrossRef]

L. Li, S. Prucnal, S. D. Yao, K. Potzger, W. Anwand, A. Wagner, and S. Q. Zhou, “Rise and fall of defect induced ferromagnetism in SiC single crystals,” Appl. Phys. Lett.98(22), 222508 (2011).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

M. Bhatnagar and B. J. Baliga, “Comparison of 6H-SiC, 3C-SiC, and Si for power devices,” IEEE Trans. Electron. Dev.40(3), 645–655 (1993).
[CrossRef]

J. Appl. Phys. (2)

R. S. Wei, S. Song, K. Yang, Y. X. Cui, Y. Peng, X. F. Chen, X. B. Hu, and X. G. Xu, “Thermal conductivity of 4H-SiC single crystals,” J. Appl. Phys.113(5), 053503 (2013).
[CrossRef]

R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys.100(11), 113121 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. Condens. Matter (2)

S. Sorieul, J.-M. Costantini, L. Gosmain, L. Thomé, and J.-J. Grob, “Raman spectroscopy study of heavy-ion-irradiated α-SiC,” J. Phys. Condens. Matter18(22), 5235–5251 (2006).
[CrossRef]

S. Sorieul, X. Kerbiriou, J.-M. Costantini, L. Gosmain, G. Calas, and C. Trautmann, “Optical spectroscopy study of damage induced in 4H-SiC by swift heavy ion irradiation,” J. Phys. Condens. Matter24(12), 125801 (2012).
[CrossRef] [PubMed]

Laser Photon. Rev. (3)

S. C. Hong, M. J. Zhan, G. Wang, H. W. Xuan, W. Zhang, C. J. Liu, C. H. Xu, Y. Liu, Z. Y. Wei, and X. L. Chen, “4H-SiC: a new nonlinear material for mid infrared lasers,” Laser Photon. Rev.7(5), 831–838 (2013).
[CrossRef]

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
[CrossRef]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photon. Rev.8(2), 251–275 (2014).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

G. Pandraud, P. J. French, and P. M. Sarro, “Experimental study of bent SiC optical waveguides,” Microw. Opt. Technol. Lett.47(3), 219–220 (2005).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (2)

L. Li, W. Hua, S. Prucnal, S. D. Yao, L. Shao, K. Potzger, and S. Q. Zhou, “Defect induced ferromagnetism in 4H-SiC single crystals,” Nucl. Instrum. Methods Phys. Res. B275, 33–36 (2012).
[CrossRef]

W. Wesch, A. Heft, R. Menzel, T. Bachmann, G. Peiter, H. Hobert, T. Höche, P. Dannberg, and A. Bräuer, “Ion beam processing of SiC for optical application,” Nucl. Instrum. Methods Phys. Res. B148(1–4), 545–550 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Proc. IEEE (1)

R. J. Trew, J.-B. Yan, and P. M. Mock, “The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications,” Proc. IEEE79(5), 598–620 (1991).
[CrossRef]

Proc. SPIE (1)

A. Vonsovici, G. T. Reed, A. G. R. Evans, and F. Namavar, “Loss measurements for β-SiC-on insulator waveguides for high-speed silicon-based photonic devices,” Proc. SPIE3630, 115–124 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1121 (2002).
[CrossRef]

Sci. Technol. Adv. Mater. (1)

K. Ito, S. Tsukimoto, and M. Murakami, “Effects of Al ion implantation to 4H-SiC on the specific contact resistance of TiAl-based contact materials,” Sci. Technol. Adv. Mater.7(6), 496–501 (2006).
[CrossRef]

Other (2)

J. F. Ziegler, computer code, SRIM http://www.srim.org .

http://www.rsoftdesign.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Optical microscope image of the cross section of the 4H-SiC planar waveguide, the (b) top view, and (c) cross section of the ridge waveguide produced by fs laser ablation, (d) electronic (dashed line) and nuclear (solid line) stopping powers as a function of the depth from the sample surface of the 4H-SiC waveguide.

Fig. 2
Fig. 2

Measured modal profiles of the 4H-SiC planar waveguide for TE (a) and TM (b) polarizations at 632.8 nm. Reconstructed refractive index profile (c) and calculated modal profile (d) for TE polarization.

Fig. 3
Fig. 3

Measured modal profiles related to TE00 of ridge waveguides Nos. 1-4 (a, b, c, and d) at 632.8 nm. Reconstructed refractive index profile (e) and calculated modal profile (f) of waveguide No. 1 along TE polarization.

Fig. 4
Fig. 4

Confocal micro-Raman spectra obtained from the waveguide region (red) and the bulk (blue) of the 4H-SiC. The inset shows the magnification of the region marked by dashed line.

Tables (1)

Tables Icon

Table 1 Propagation losses of planar and ridge waveguides at 632.8 nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = sin 2 Θ m 2 n

Metrics