Abstract

In the present work, we report a novel luminescent characteristic of the ZnS ceramics. ZnS undoped nanopowders have been synthesized by a wet chemical precipitation method using Na2S as the source of sulfur. Spark plasma sintering (SPS) has been applied to the nanopowders to fabricate dense ZnS ceramics in the pure phase of zinc blende. Photoluminescence (PL) and fluorescence lifetime spectra have been utilized to characterize the luminescent properties of the ZnS ceramics, indicating that these materials exhibit green phosphorescence. In addition, elemental analysis has also been adopted to determine the elemental composition and valency of elements within the ceramic samples. It is concluded that the green phosphorescence results from the presence of elemental sulfur species and Na impurities.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Huang, Y. Yang, S. H. Xue, B. Yang, S. Y. Liu, and J. C. Shen, “Photoluminescence and electroluminescence of ZnS: Cu nanocrystals in polymeric networks,” Appl. Phys. Lett.70(18), 2335–2337 (1997).
    [CrossRef]
  2. G. Roussos and H. J. Schulz, “A new emission of ZnS:Ni2+ arising from the 3T1(P) → 3T1(F) transition,” Solid State Commun.51(9), 663–664 (1984).
    [CrossRef]
  3. W. Chen, J. O. Malm, V. Zwiller, Y. N. Huang, S. M. Liu, R. Wallenberg, J. O. Bovin, and L. Samuelson, “Energy structure and fluorescence of Eu2+ in ZnS: Eu nanoparticles,” Phys. Rev. B61(16), 11021–11024 (2000).
    [CrossRef]
  4. J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS: Mn2+,” Nano Lett.1(8), 429–433 (2001).
    [CrossRef]
  5. R. Sarkar, C. S. Tiwary, P. Kumbhakar, and A. K. Mitra, “Enhanced visible light emission from Co2+ doped ZnS nanoparticles,” Physica B404(21), 3855–3858 (2009).
    [CrossRef]
  6. D. Amaranatha Reddy, G. Murali, R. P. Vijayalakshmi, B. K. Reddy, and B. Sreedhar, “Effect of Cr doping on the structural and optical properties of ZnS nanoparticles,” Cryst. Res. Technol.46(7), 731–736 (2011).
    [CrossRef]
  7. S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn.19(7), 1157–1167 (1964).
    [CrossRef]
  8. Y. Li, S. Zhou, Z. Chen, Y. Yang, N. Chen, and G. P. Du, “Luminescence properties of Br-doped ZnS nanoparticles synthesized by a low temperature solid-state reaction method,” Ceram. Int.39(5), 5521–5525 (2013).
    [CrossRef]
  9. C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater.13(7), 511–516 (2003).
    [CrossRef]
  10. D. A. Davies, J. Silver, A. Vecht, P. J. Marsh, and J. A. Rose, “A novel method for the synthesis of ZnS for use in the preparation of phosphors for CRT devices,” J. Electrochem. Soc.148(10), H143–H148 (2001).
    [CrossRef]
  11. S. Shionoya, W. M. Yen, and T. Hase, Phosphor Handbook (CRC press, 1999).
  12. J. T. Randall and M. H. F. Wilkins, “Phosphorescence and electron traps. ii. the interpretation of long-period phosphorescence,” Proc. R. Soc. A 184(999), 390–407 (1945).
    [CrossRef]
  13. F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater.18(14), 3212–3220 (2006).
    [CrossRef]
  14. M. W. Wang, L. D. Sun, X. F. Fu, C. S. Liao, and C. H. Yan, “Synthesis and optical properties of ZnS: Cu (II) nanoparticles,” Solid State Commun.115(9), 493–496 (2000).
    [CrossRef]
  15. A. A. Bol, J. Ferwerda, J. A. Bergwerff, and A. Meijerink, “Luminescence of nanocrystalline ZnS: Cu2+,” J. Lumin.99(4), 325–334 (2002).
    [CrossRef]
  16. P. Yang, M. Lü, D. Xü, D. Yuan, J. Chang, G. Zhou, and M. Pan, “Strong green luminescence of Ni2+-doped ZnS nanocrystals,” Appl. Phys., A Mater. Sci. Process.74(2), 257–259 (2002).
    [CrossRef]
  17. T. Tsuruoka, C. H. Liang, K. Terabe, and T. Hasegawa, “Origin of green emission from ZnS nanobelts as revealed by scanning near-field optical microscopy,” Appl. Phys. Lett.92(9), 091908 (2008).
    [CrossRef]
  18. C. H. Ye, X. S. Fang, G. H. Li, and L. D. Zhang, “Origin of the green photoluminescence from zinc sulfide nanobelts,” Appl. Phys. Lett.85(15), 3035–3037 (2004).
    [CrossRef]
  19. C. H. Ye, X. S. Fang, M. Wang, and L. D. Zhang, “Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts,” J. Appl. Phys.99(6), 063504 (2006).
    [CrossRef]
  20. H. T. Chen, Y. P. Hu, and X. H. Zeng, “Green photoluminescence mechanism in ZnS nanostructures,” J. Mater. Sci.46(8), 2715–2719 (2011).
    [CrossRef]
  21. X. L. Wang, J. Y. Shi, Z. C. Feng, M. R. Li, and C. Li, “Visible emission characteristics from different defects of ZnS nanocrystals,” Phys. Chem. Chem. Phys.13(10), 4715–4723 (2011).
    [CrossRef] [PubMed]
  22. J. C. Lee and D. H. Park, “Self-defects properties of ZnS with sintering temperature,” Mater. Lett.57(19), 2872–2878 (2003).
    [CrossRef]
  23. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nature Photon.2(12), 721–727 (2008).
    [CrossRef]
  24. H. Hu and W. H. Zhang, “Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles,” Opt. Mater.28(5), 536–550 (2006).
    [CrossRef]
  25. H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials (Wiley-Interscience, 1974).
  26. L. A. Xue and R. Raj, “Effect of hot‐pressing temperature on the optical transmission of zinc sulfide,” Appl. Phys. Lett.58(5), 441–443 (1991).
    [CrossRef]
  27. C. Chlique, O. Merdrignac-Conanec, N. Hakmeh, X. H. Zhang, and J. L. Adam, “Transparent ZnS ceramics by sintering of high purity monodisperse nanopowders,” J. Am. Ceram. Soc.96(10), 3070–3074 (2013).
  28. C. Chlique, G. Delaizir, O. Merdrignac-Conanec, C. Roucau, M. Dollé, P. Rozier, V. Bouquet, and X. H. Zhang, “A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS),” Opt. Mater.33(5), 706–712 (2011).
    [CrossRef]
  29. D. E. Dunstan, A. Hagfeldt, M. Almgren, H. O. Siegbahn, and E. Mukhtar, “Importance of surface reactions in the photochemistry of zinc sulfide colloids,” J. Phys. Chem.94(17), 6797–6804 (1990).
    [CrossRef]
  30. F. A. Kröger and H. J. Vink, “The origin of the fluorescence in self‐activated ZnS, CdS, and ZnO,” J. Chem. Phys.22(2), 250–252 (1954).
    [CrossRef]
  31. A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes,” Appl. Phys. Lett.98(8), 083302 (2011).
    [CrossRef]
  32. N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,” J. Appl. Phys.88(11), 6260–6264 (2000).
    [CrossRef]
  33. K. Osada, “Phosphorescence of sodium-and potassium-acetates,” J. Phys. Soc. Jpn.11(4), 425–429 (1956).
    [CrossRef]
  34. K. Osada, “Phosphorescence of sodium acetate,” J. Chem. Phys.30(5), 1363–1364 (1959).
    [CrossRef]
  35. R. M. A. Von Wandruszka and R. J. Hurtubise, “Room-temperature phosphorescence of compounds adsorbed on sodium acetate,” Anal. Chem.49(14), 2164–2169 (1977).
    [CrossRef]
  36. G. V. Colibaba, D. D. Nedeoglo, and V. V. Ursaki, “Impurity centers in ZnSe: Na crystals,” J. Lumin.131(9), 1966–1970 (2011).
    [CrossRef]

2013 (2)

Y. Li, S. Zhou, Z. Chen, Y. Yang, N. Chen, and G. P. Du, “Luminescence properties of Br-doped ZnS nanoparticles synthesized by a low temperature solid-state reaction method,” Ceram. Int.39(5), 5521–5525 (2013).
[CrossRef]

C. Chlique, O. Merdrignac-Conanec, N. Hakmeh, X. H. Zhang, and J. L. Adam, “Transparent ZnS ceramics by sintering of high purity monodisperse nanopowders,” J. Am. Ceram. Soc.96(10), 3070–3074 (2013).

2011 (6)

C. Chlique, G. Delaizir, O. Merdrignac-Conanec, C. Roucau, M. Dollé, P. Rozier, V. Bouquet, and X. H. Zhang, “A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS),” Opt. Mater.33(5), 706–712 (2011).
[CrossRef]

H. T. Chen, Y. P. Hu, and X. H. Zeng, “Green photoluminescence mechanism in ZnS nanostructures,” J. Mater. Sci.46(8), 2715–2719 (2011).
[CrossRef]

X. L. Wang, J. Y. Shi, Z. C. Feng, M. R. Li, and C. Li, “Visible emission characteristics from different defects of ZnS nanocrystals,” Phys. Chem. Chem. Phys.13(10), 4715–4723 (2011).
[CrossRef] [PubMed]

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes,” Appl. Phys. Lett.98(8), 083302 (2011).
[CrossRef]

G. V. Colibaba, D. D. Nedeoglo, and V. V. Ursaki, “Impurity centers in ZnSe: Na crystals,” J. Lumin.131(9), 1966–1970 (2011).
[CrossRef]

D. Amaranatha Reddy, G. Murali, R. P. Vijayalakshmi, B. K. Reddy, and B. Sreedhar, “Effect of Cr doping on the structural and optical properties of ZnS nanoparticles,” Cryst. Res. Technol.46(7), 731–736 (2011).
[CrossRef]

2009 (1)

R. Sarkar, C. S. Tiwary, P. Kumbhakar, and A. K. Mitra, “Enhanced visible light emission from Co2+ doped ZnS nanoparticles,” Physica B404(21), 3855–3858 (2009).
[CrossRef]

2008 (2)

T. Tsuruoka, C. H. Liang, K. Terabe, and T. Hasegawa, “Origin of green emission from ZnS nanobelts as revealed by scanning near-field optical microscopy,” Appl. Phys. Lett.92(9), 091908 (2008).
[CrossRef]

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nature Photon.2(12), 721–727 (2008).
[CrossRef]

2006 (3)

H. Hu and W. H. Zhang, “Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles,” Opt. Mater.28(5), 536–550 (2006).
[CrossRef]

C. H. Ye, X. S. Fang, M. Wang, and L. D. Zhang, “Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts,” J. Appl. Phys.99(6), 063504 (2006).
[CrossRef]

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater.18(14), 3212–3220 (2006).
[CrossRef]

2004 (1)

C. H. Ye, X. S. Fang, G. H. Li, and L. D. Zhang, “Origin of the green photoluminescence from zinc sulfide nanobelts,” Appl. Phys. Lett.85(15), 3035–3037 (2004).
[CrossRef]

2003 (2)

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

J. C. Lee and D. H. Park, “Self-defects properties of ZnS with sintering temperature,” Mater. Lett.57(19), 2872–2878 (2003).
[CrossRef]

2002 (2)

A. A. Bol, J. Ferwerda, J. A. Bergwerff, and A. Meijerink, “Luminescence of nanocrystalline ZnS: Cu2+,” J. Lumin.99(4), 325–334 (2002).
[CrossRef]

P. Yang, M. Lü, D. Xü, D. Yuan, J. Chang, G. Zhou, and M. Pan, “Strong green luminescence of Ni2+-doped ZnS nanocrystals,” Appl. Phys., A Mater. Sci. Process.74(2), 257–259 (2002).
[CrossRef]

2001 (2)

D. A. Davies, J. Silver, A. Vecht, P. J. Marsh, and J. A. Rose, “A novel method for the synthesis of ZnS for use in the preparation of phosphors for CRT devices,” J. Electrochem. Soc.148(10), H143–H148 (2001).
[CrossRef]

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS: Mn2+,” Nano Lett.1(8), 429–433 (2001).
[CrossRef]

2000 (3)

W. Chen, J. O. Malm, V. Zwiller, Y. N. Huang, S. M. Liu, R. Wallenberg, J. O. Bovin, and L. Samuelson, “Energy structure and fluorescence of Eu2+ in ZnS: Eu nanoparticles,” Phys. Rev. B61(16), 11021–11024 (2000).
[CrossRef]

M. W. Wang, L. D. Sun, X. F. Fu, C. S. Liao, and C. H. Yan, “Synthesis and optical properties of ZnS: Cu (II) nanoparticles,” Solid State Commun.115(9), 493–496 (2000).
[CrossRef]

N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,” J. Appl. Phys.88(11), 6260–6264 (2000).
[CrossRef]

1997 (1)

J. M. Huang, Y. Yang, S. H. Xue, B. Yang, S. Y. Liu, and J. C. Shen, “Photoluminescence and electroluminescence of ZnS: Cu nanocrystals in polymeric networks,” Appl. Phys. Lett.70(18), 2335–2337 (1997).
[CrossRef]

1991 (1)

L. A. Xue and R. Raj, “Effect of hot‐pressing temperature on the optical transmission of zinc sulfide,” Appl. Phys. Lett.58(5), 441–443 (1991).
[CrossRef]

1990 (1)

D. E. Dunstan, A. Hagfeldt, M. Almgren, H. O. Siegbahn, and E. Mukhtar, “Importance of surface reactions in the photochemistry of zinc sulfide colloids,” J. Phys. Chem.94(17), 6797–6804 (1990).
[CrossRef]

1984 (1)

G. Roussos and H. J. Schulz, “A new emission of ZnS:Ni2+ arising from the 3T1(P) → 3T1(F) transition,” Solid State Commun.51(9), 663–664 (1984).
[CrossRef]

1977 (1)

R. M. A. Von Wandruszka and R. J. Hurtubise, “Room-temperature phosphorescence of compounds adsorbed on sodium acetate,” Anal. Chem.49(14), 2164–2169 (1977).
[CrossRef]

1964 (1)

S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn.19(7), 1157–1167 (1964).
[CrossRef]

1959 (1)

K. Osada, “Phosphorescence of sodium acetate,” J. Chem. Phys.30(5), 1363–1364 (1959).
[CrossRef]

1956 (1)

K. Osada, “Phosphorescence of sodium-and potassium-acetates,” J. Phys. Soc. Jpn.11(4), 425–429 (1956).
[CrossRef]

1954 (1)

F. A. Kröger and H. J. Vink, “The origin of the fluorescence in self‐activated ZnS, CdS, and ZnO,” J. Chem. Phys.22(2), 250–252 (1954).
[CrossRef]

Adachi, C.

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes,” Appl. Phys. Lett.98(8), 083302 (2011).
[CrossRef]

Adam, J. L.

C. Chlique, O. Merdrignac-Conanec, N. Hakmeh, X. H. Zhang, and J. L. Adam, “Transparent ZnS ceramics by sintering of high purity monodisperse nanopowders,” J. Am. Ceram. Soc.96(10), 3070–3074 (2013).

Almgren, M.

D. E. Dunstan, A. Hagfeldt, M. Almgren, H. O. Siegbahn, and E. Mukhtar, “Importance of surface reactions in the photochemistry of zinc sulfide colloids,” J. Phys. Chem.94(17), 6797–6804 (1990).
[CrossRef]

Amaranatha Reddy, D.

D. Amaranatha Reddy, G. Murali, R. P. Vijayalakshmi, B. K. Reddy, and B. Sreedhar, “Effect of Cr doping on the structural and optical properties of ZnS nanoparticles,” Cryst. Res. Technol.46(7), 731–736 (2011).
[CrossRef]

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nature Photon.2(12), 721–727 (2008).
[CrossRef]

Bergwerff, J. A.

A. A. Bol, J. Ferwerda, J. A. Bergwerff, and A. Meijerink, “Luminescence of nanocrystalline ZnS: Cu2+,” J. Lumin.99(4), 325–334 (2002).
[CrossRef]

Bol, A. A.

A. A. Bol, J. Ferwerda, J. A. Bergwerff, and A. Meijerink, “Luminescence of nanocrystalline ZnS: Cu2+,” J. Lumin.99(4), 325–334 (2002).
[CrossRef]

Bouquet, V.

C. Chlique, G. Delaizir, O. Merdrignac-Conanec, C. Roucau, M. Dollé, P. Rozier, V. Bouquet, and X. H. Zhang, “A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS),” Opt. Mater.33(5), 706–712 (2011).
[CrossRef]

Bovin, J. O.

W. Chen, J. O. Malm, V. Zwiller, Y. N. Huang, S. M. Liu, R. Wallenberg, J. O. Bovin, and L. Samuelson, “Energy structure and fluorescence of Eu2+ in ZnS: Eu nanoparticles,” Phys. Rev. B61(16), 11021–11024 (2000).
[CrossRef]

Chang, J.

P. Yang, M. Lü, D. Xü, D. Yuan, J. Chang, G. Zhou, and M. Pan, “Strong green luminescence of Ni2+-doped ZnS nanocrystals,” Appl. Phys., A Mater. Sci. Process.74(2), 257–259 (2002).
[CrossRef]

Chen, H. T.

H. T. Chen, Y. P. Hu, and X. H. Zeng, “Green photoluminescence mechanism in ZnS nanostructures,” J. Mater. Sci.46(8), 2715–2719 (2011).
[CrossRef]

Chen, N.

Y. Li, S. Zhou, Z. Chen, Y. Yang, N. Chen, and G. P. Du, “Luminescence properties of Br-doped ZnS nanoparticles synthesized by a low temperature solid-state reaction method,” Ceram. Int.39(5), 5521–5525 (2013).
[CrossRef]

Chen, W.

W. Chen, J. O. Malm, V. Zwiller, Y. N. Huang, S. M. Liu, R. Wallenberg, J. O. Bovin, and L. Samuelson, “Energy structure and fluorescence of Eu2+ in ZnS: Eu nanoparticles,” Phys. Rev. B61(16), 11021–11024 (2000).
[CrossRef]

Chen, Z.

Y. Li, S. Zhou, Z. Chen, Y. Yang, N. Chen, and G. P. Du, “Luminescence properties of Br-doped ZnS nanoparticles synthesized by a low temperature solid-state reaction method,” Ceram. Int.39(5), 5521–5525 (2013).
[CrossRef]

Chlique, C.

C. Chlique, O. Merdrignac-Conanec, N. Hakmeh, X. H. Zhang, and J. L. Adam, “Transparent ZnS ceramics by sintering of high purity monodisperse nanopowders,” J. Am. Ceram. Soc.96(10), 3070–3074 (2013).

C. Chlique, G. Delaizir, O. Merdrignac-Conanec, C. Roucau, M. Dollé, P. Rozier, V. Bouquet, and X. H. Zhang, “A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS),” Opt. Mater.33(5), 706–712 (2011).
[CrossRef]

Clabau, F.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater.18(14), 3212–3220 (2006).
[CrossRef]

Colibaba, G. V.

G. V. Colibaba, D. D. Nedeoglo, and V. V. Ursaki, “Impurity centers in ZnSe: Na crystals,” J. Lumin.131(9), 1966–1970 (2011).
[CrossRef]

Davies, D. A.

D. A. Davies, J. Silver, A. Vecht, P. J. Marsh, and J. A. Rose, “A novel method for the synthesis of ZnS for use in the preparation of phosphors for CRT devices,” J. Electrochem. Soc.148(10), H143–H148 (2001).
[CrossRef]

Delaizir, G.

C. Chlique, G. Delaizir, O. Merdrignac-Conanec, C. Roucau, M. Dollé, P. Rozier, V. Bouquet, and X. H. Zhang, “A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS),” Opt. Mater.33(5), 706–712 (2011).
[CrossRef]

Deniard, P.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater.18(14), 3212–3220 (2006).
[CrossRef]

Dollé, M.

C. Chlique, G. Delaizir, O. Merdrignac-Conanec, C. Roucau, M. Dollé, P. Rozier, V. Bouquet, and X. H. Zhang, “A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS),” Opt. Mater.33(5), 706–712 (2011).
[CrossRef]

Du, G. P.

Y. Li, S. Zhou, Z. Chen, Y. Yang, N. Chen, and G. P. Du, “Luminescence properties of Br-doped ZnS nanoparticles synthesized by a low temperature solid-state reaction method,” Ceram. Int.39(5), 5521–5525 (2013).
[CrossRef]

Dunstan, D. E.

D. E. Dunstan, A. Hagfeldt, M. Almgren, H. O. Siegbahn, and E. Mukhtar, “Importance of surface reactions in the photochemistry of zinc sulfide colloids,” J. Phys. Chem.94(17), 6797–6804 (1990).
[CrossRef]

Endo, A.

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes,” Appl. Phys. Lett.98(8), 083302 (2011).
[CrossRef]

Era, K.

S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn.19(7), 1157–1167 (1964).
[CrossRef]

Fang, X. S.

C. H. Ye, X. S. Fang, M. Wang, and L. D. Zhang, “Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts,” J. Appl. Phys.99(6), 063504 (2006).
[CrossRef]

C. H. Ye, X. S. Fang, G. H. Li, and L. D. Zhang, “Origin of the green photoluminescence from zinc sulfide nanobelts,” Appl. Phys. Lett.85(15), 3035–3037 (2004).
[CrossRef]

Feldmann, C.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Feng, Z. C.

X. L. Wang, J. Y. Shi, Z. C. Feng, M. R. Li, and C. Li, “Visible emission characteristics from different defects of ZnS nanocrystals,” Phys. Chem. Chem. Phys.13(10), 4715–4723 (2011).
[CrossRef] [PubMed]

Ferwerda, J.

A. A. Bol, J. Ferwerda, J. A. Bergwerff, and A. Meijerink, “Luminescence of nanocrystalline ZnS: Cu2+,” J. Lumin.99(4), 325–334 (2002).
[CrossRef]

Fu, X. F.

M. W. Wang, L. D. Sun, X. F. Fu, C. S. Liao, and C. H. Yan, “Synthesis and optical properties of ZnS: Cu (II) nanoparticles,” Solid State Commun.115(9), 493–496 (2000).
[CrossRef]

Fujiwara, H.

S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn.19(7), 1157–1167 (1964).
[CrossRef]

Hagfeldt, A.

D. E. Dunstan, A. Hagfeldt, M. Almgren, H. O. Siegbahn, and E. Mukhtar, “Importance of surface reactions in the photochemistry of zinc sulfide colloids,” J. Phys. Chem.94(17), 6797–6804 (1990).
[CrossRef]

Hakmeh, N.

C. Chlique, O. Merdrignac-Conanec, N. Hakmeh, X. H. Zhang, and J. L. Adam, “Transparent ZnS ceramics by sintering of high purity monodisperse nanopowders,” J. Am. Ceram. Soc.96(10), 3070–3074 (2013).

Hasegawa, T.

T. Tsuruoka, C. H. Liang, K. Terabe, and T. Hasegawa, “Origin of green emission from ZnS nanobelts as revealed by scanning near-field optical microscopy,” Appl. Phys. Lett.92(9), 091908 (2008).
[CrossRef]

Hu, H.

H. Hu and W. H. Zhang, “Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles,” Opt. Mater.28(5), 536–550 (2006).
[CrossRef]

Hu, Y. P.

H. T. Chen, Y. P. Hu, and X. H. Zeng, “Green photoluminescence mechanism in ZnS nanostructures,” J. Mater. Sci.46(8), 2715–2719 (2011).
[CrossRef]

Huang, J. M.

J. M. Huang, Y. Yang, S. H. Xue, B. Yang, S. Y. Liu, and J. C. Shen, “Photoluminescence and electroluminescence of ZnS: Cu nanocrystals in polymeric networks,” Appl. Phys. Lett.70(18), 2335–2337 (1997).
[CrossRef]

Huang, Y. N.

W. Chen, J. O. Malm, V. Zwiller, Y. N. Huang, S. M. Liu, R. Wallenberg, J. O. Bovin, and L. Samuelson, “Energy structure and fluorescence of Eu2+ in ZnS: Eu nanoparticles,” Phys. Rev. B61(16), 11021–11024 (2000).
[CrossRef]

Hurtubise, R. J.

R. M. A. Von Wandruszka and R. J. Hurtubise, “Room-temperature phosphorescence of compounds adsorbed on sodium acetate,” Anal. Chem.49(14), 2164–2169 (1977).
[CrossRef]

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nature Photon.2(12), 721–727 (2008).
[CrossRef]

Jobic, S.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater.18(14), 3212–3220 (2006).
[CrossRef]

Jüstel, T.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Kai, T.

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes,” Appl. Phys. Lett.98(8), 083302 (2011).
[CrossRef]

Kawada, A.

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes,” Appl. Phys. Lett.98(8), 083302 (2011).
[CrossRef]

Kelly, J. J.

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS: Mn2+,” Nano Lett.1(8), 429–433 (2001).
[CrossRef]

Koda, T.

S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn.19(7), 1157–1167 (1964).
[CrossRef]

Kröger, F. A.

F. A. Kröger and H. J. Vink, “The origin of the fluorescence in self‐activated ZnS, CdS, and ZnO,” J. Chem. Phys.22(2), 250–252 (1954).
[CrossRef]

Kshirsagar, A.

N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,” J. Appl. Phys.88(11), 6260–6264 (2000).
[CrossRef]

Kumbhakar, P.

R. Sarkar, C. S. Tiwary, P. Kumbhakar, and A. K. Mitra, “Enhanced visible light emission from Co2+ doped ZnS nanoparticles,” Physica B404(21), 3855–3858 (2009).
[CrossRef]

Kumbhojkar, N.

N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,” J. Appl. Phys.88(11), 6260–6264 (2000).
[CrossRef]

Le Mercier, T.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater.18(14), 3212–3220 (2006).
[CrossRef]

Lee, J. C.

J. C. Lee and D. H. Park, “Self-defects properties of ZnS with sintering temperature,” Mater. Lett.57(19), 2872–2878 (2003).
[CrossRef]

Li, C.

X. L. Wang, J. Y. Shi, Z. C. Feng, M. R. Li, and C. Li, “Visible emission characteristics from different defects of ZnS nanocrystals,” Phys. Chem. Chem. Phys.13(10), 4715–4723 (2011).
[CrossRef] [PubMed]

Li, G. H.

C. H. Ye, X. S. Fang, G. H. Li, and L. D. Zhang, “Origin of the green photoluminescence from zinc sulfide nanobelts,” Appl. Phys. Lett.85(15), 3035–3037 (2004).
[CrossRef]

Li, M. R.

X. L. Wang, J. Y. Shi, Z. C. Feng, M. R. Li, and C. Li, “Visible emission characteristics from different defects of ZnS nanocrystals,” Phys. Chem. Chem. Phys.13(10), 4715–4723 (2011).
[CrossRef] [PubMed]

Li, Y.

Y. Li, S. Zhou, Z. Chen, Y. Yang, N. Chen, and G. P. Du, “Luminescence properties of Br-doped ZnS nanoparticles synthesized by a low temperature solid-state reaction method,” Ceram. Int.39(5), 5521–5525 (2013).
[CrossRef]

Liang, C. H.

T. Tsuruoka, C. H. Liang, K. Terabe, and T. Hasegawa, “Origin of green emission from ZnS nanobelts as revealed by scanning near-field optical microscopy,” Appl. Phys. Lett.92(9), 091908 (2008).
[CrossRef]

Liao, C. S.

M. W. Wang, L. D. Sun, X. F. Fu, C. S. Liao, and C. H. Yan, “Synthesis and optical properties of ZnS: Cu (II) nanoparticles,” Solid State Commun.115(9), 493–496 (2000).
[CrossRef]

Liu, S. M.

W. Chen, J. O. Malm, V. Zwiller, Y. N. Huang, S. M. Liu, R. Wallenberg, J. O. Bovin, and L. Samuelson, “Energy structure and fluorescence of Eu2+ in ZnS: Eu nanoparticles,” Phys. Rev. B61(16), 11021–11024 (2000).
[CrossRef]

Liu, S. Y.

J. M. Huang, Y. Yang, S. H. Xue, B. Yang, S. Y. Liu, and J. C. Shen, “Photoluminescence and electroluminescence of ZnS: Cu nanocrystals in polymeric networks,” Appl. Phys. Lett.70(18), 2335–2337 (1997).
[CrossRef]

Lü, M.

P. Yang, M. Lü, D. Xü, D. Yuan, J. Chang, G. Zhou, and M. Pan, “Strong green luminescence of Ni2+-doped ZnS nanocrystals,” Appl. Phys., A Mater. Sci. Process.74(2), 257–259 (2002).
[CrossRef]

Mahamuni, S.

N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,” J. Appl. Phys.88(11), 6260–6264 (2000).
[CrossRef]

Malm, J. O.

W. Chen, J. O. Malm, V. Zwiller, Y. N. Huang, S. M. Liu, R. Wallenberg, J. O. Bovin, and L. Samuelson, “Energy structure and fluorescence of Eu2+ in ZnS: Eu nanoparticles,” Phys. Rev. B61(16), 11021–11024 (2000).
[CrossRef]

Marsh, P. J.

D. A. Davies, J. Silver, A. Vecht, P. J. Marsh, and J. A. Rose, “A novel method for the synthesis of ZnS for use in the preparation of phosphors for CRT devices,” J. Electrochem. Soc.148(10), H143–H148 (2001).
[CrossRef]

Meijerink, A.

A. A. Bol, J. Ferwerda, J. A. Bergwerff, and A. Meijerink, “Luminescence of nanocrystalline ZnS: Cu2+,” J. Lumin.99(4), 325–334 (2002).
[CrossRef]

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS: Mn2+,” Nano Lett.1(8), 429–433 (2001).
[CrossRef]

Merdrignac-Conanec, O.

C. Chlique, O. Merdrignac-Conanec, N. Hakmeh, X. H. Zhang, and J. L. Adam, “Transparent ZnS ceramics by sintering of high purity monodisperse nanopowders,” J. Am. Ceram. Soc.96(10), 3070–3074 (2013).

C. Chlique, G. Delaizir, O. Merdrignac-Conanec, C. Roucau, M. Dollé, P. Rozier, V. Bouquet, and X. H. Zhang, “A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS),” Opt. Mater.33(5), 706–712 (2011).
[CrossRef]

Mitra, A. K.

R. Sarkar, C. S. Tiwary, P. Kumbhakar, and A. K. Mitra, “Enhanced visible light emission from Co2+ doped ZnS nanoparticles,” Physica B404(21), 3855–3858 (2009).
[CrossRef]

Miyazaki, H.

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes,” Appl. Phys. Lett.98(8), 083302 (2011).
[CrossRef]

Mukhtar, E.

D. E. Dunstan, A. Hagfeldt, M. Almgren, H. O. Siegbahn, and E. Mukhtar, “Importance of surface reactions in the photochemistry of zinc sulfide colloids,” J. Phys. Chem.94(17), 6797–6804 (1990).
[CrossRef]

Murali, G.

D. Amaranatha Reddy, G. Murali, R. P. Vijayalakshmi, B. K. Reddy, and B. Sreedhar, “Effect of Cr doping on the structural and optical properties of ZnS nanoparticles,” Cryst. Res. Technol.46(7), 731–736 (2011).
[CrossRef]

Nedeoglo, D. D.

G. V. Colibaba, D. D. Nedeoglo, and V. V. Ursaki, “Impurity centers in ZnSe: Na crystals,” J. Lumin.131(9), 1966–1970 (2011).
[CrossRef]

Nikesh, V. V.

N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,” J. Appl. Phys.88(11), 6260–6264 (2000).
[CrossRef]

Osada, K.

K. Osada, “Phosphorescence of sodium acetate,” J. Chem. Phys.30(5), 1363–1364 (1959).
[CrossRef]

K. Osada, “Phosphorescence of sodium-and potassium-acetates,” J. Phys. Soc. Jpn.11(4), 425–429 (1956).
[CrossRef]

Pan, M.

P. Yang, M. Lü, D. Xü, D. Yuan, J. Chang, G. Zhou, and M. Pan, “Strong green luminescence of Ni2+-doped ZnS nanocrystals,” Appl. Phys., A Mater. Sci. Process.74(2), 257–259 (2002).
[CrossRef]

Park, D. H.

J. C. Lee and D. H. Park, “Self-defects properties of ZnS with sintering temperature,” Mater. Lett.57(19), 2872–2878 (2003).
[CrossRef]

Raj, R.

L. A. Xue and R. Raj, “Effect of hot‐pressing temperature on the optical transmission of zinc sulfide,” Appl. Phys. Lett.58(5), 441–443 (1991).
[CrossRef]

Reddy, B. K.

D. Amaranatha Reddy, G. Murali, R. P. Vijayalakshmi, B. K. Reddy, and B. Sreedhar, “Effect of Cr doping on the structural and optical properties of ZnS nanoparticles,” Cryst. Res. Technol.46(7), 731–736 (2011).
[CrossRef]

Rocquefelte, X.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater.18(14), 3212–3220 (2006).
[CrossRef]

Ronda, C. R.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Rose, J. A.

D. A. Davies, J. Silver, A. Vecht, P. J. Marsh, and J. A. Rose, “A novel method for the synthesis of ZnS for use in the preparation of phosphors for CRT devices,” J. Electrochem. Soc.148(10), H143–H148 (2001).
[CrossRef]

Roucau, C.

C. Chlique, G. Delaizir, O. Merdrignac-Conanec, C. Roucau, M. Dollé, P. Rozier, V. Bouquet, and X. H. Zhang, “A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS),” Opt. Mater.33(5), 706–712 (2011).
[CrossRef]

Roussos, G.

G. Roussos and H. J. Schulz, “A new emission of ZnS:Ni2+ arising from the 3T1(P) → 3T1(F) transition,” Solid State Commun.51(9), 663–664 (1984).
[CrossRef]

Rozier, P.

C. Chlique, G. Delaizir, O. Merdrignac-Conanec, C. Roucau, M. Dollé, P. Rozier, V. Bouquet, and X. H. Zhang, “A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS),” Opt. Mater.33(5), 706–712 (2011).
[CrossRef]

Samuelson, L.

W. Chen, J. O. Malm, V. Zwiller, Y. N. Huang, S. M. Liu, R. Wallenberg, J. O. Bovin, and L. Samuelson, “Energy structure and fluorescence of Eu2+ in ZnS: Eu nanoparticles,” Phys. Rev. B61(16), 11021–11024 (2000).
[CrossRef]

Sarkar, R.

R. Sarkar, C. S. Tiwary, P. Kumbhakar, and A. K. Mitra, “Enhanced visible light emission from Co2+ doped ZnS nanoparticles,” Physica B404(21), 3855–3858 (2009).
[CrossRef]

Sato, K.

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes,” Appl. Phys. Lett.98(8), 083302 (2011).
[CrossRef]

Schmidt, P. J.

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Schulz, H. J.

G. Roussos and H. J. Schulz, “A new emission of ZnS:Ni2+ arising from the 3T1(P) → 3T1(F) transition,” Solid State Commun.51(9), 663–664 (1984).
[CrossRef]

Shen, J. C.

J. M. Huang, Y. Yang, S. H. Xue, B. Yang, S. Y. Liu, and J. C. Shen, “Photoluminescence and electroluminescence of ZnS: Cu nanocrystals in polymeric networks,” Appl. Phys. Lett.70(18), 2335–2337 (1997).
[CrossRef]

Shi, J. Y.

X. L. Wang, J. Y. Shi, Z. C. Feng, M. R. Li, and C. Li, “Visible emission characteristics from different defects of ZnS nanocrystals,” Phys. Chem. Chem. Phys.13(10), 4715–4723 (2011).
[CrossRef] [PubMed]

Shionoya, S.

S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn.19(7), 1157–1167 (1964).
[CrossRef]

Siegbahn, H. O.

D. E. Dunstan, A. Hagfeldt, M. Almgren, H. O. Siegbahn, and E. Mukhtar, “Importance of surface reactions in the photochemistry of zinc sulfide colloids,” J. Phys. Chem.94(17), 6797–6804 (1990).
[CrossRef]

Silver, J.

D. A. Davies, J. Silver, A. Vecht, P. J. Marsh, and J. A. Rose, “A novel method for the synthesis of ZnS for use in the preparation of phosphors for CRT devices,” J. Electrochem. Soc.148(10), H143–H148 (2001).
[CrossRef]

Sreedhar, B.

D. Amaranatha Reddy, G. Murali, R. P. Vijayalakshmi, B. K. Reddy, and B. Sreedhar, “Effect of Cr doping on the structural and optical properties of ZnS nanoparticles,” Cryst. Res. Technol.46(7), 731–736 (2011).
[CrossRef]

Sun, L. D.

M. W. Wang, L. D. Sun, X. F. Fu, C. S. Liao, and C. H. Yan, “Synthesis and optical properties of ZnS: Cu (II) nanoparticles,” Solid State Commun.115(9), 493–496 (2000).
[CrossRef]

Suyver, J. F.

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS: Mn2+,” Nano Lett.1(8), 429–433 (2001).
[CrossRef]

Terabe, K.

T. Tsuruoka, C. H. Liang, K. Terabe, and T. Hasegawa, “Origin of green emission from ZnS nanobelts as revealed by scanning near-field optical microscopy,” Appl. Phys. Lett.92(9), 091908 (2008).
[CrossRef]

Tiwary, C. S.

R. Sarkar, C. S. Tiwary, P. Kumbhakar, and A. K. Mitra, “Enhanced visible light emission from Co2+ doped ZnS nanoparticles,” Physica B404(21), 3855–3858 (2009).
[CrossRef]

Tsuruoka, T.

T. Tsuruoka, C. H. Liang, K. Terabe, and T. Hasegawa, “Origin of green emission from ZnS nanobelts as revealed by scanning near-field optical microscopy,” Appl. Phys. Lett.92(9), 091908 (2008).
[CrossRef]

Ursaki, V. V.

G. V. Colibaba, D. D. Nedeoglo, and V. V. Ursaki, “Impurity centers in ZnSe: Na crystals,” J. Lumin.131(9), 1966–1970 (2011).
[CrossRef]

Vecht, A.

D. A. Davies, J. Silver, A. Vecht, P. J. Marsh, and J. A. Rose, “A novel method for the synthesis of ZnS for use in the preparation of phosphors for CRT devices,” J. Electrochem. Soc.148(10), H143–H148 (2001).
[CrossRef]

Vijayalakshmi, R. P.

D. Amaranatha Reddy, G. Murali, R. P. Vijayalakshmi, B. K. Reddy, and B. Sreedhar, “Effect of Cr doping on the structural and optical properties of ZnS nanoparticles,” Cryst. Res. Technol.46(7), 731–736 (2011).
[CrossRef]

Vink, H. J.

F. A. Kröger and H. J. Vink, “The origin of the fluorescence in self‐activated ZnS, CdS, and ZnO,” J. Chem. Phys.22(2), 250–252 (1954).
[CrossRef]

Von Wandruszka, R. M. A.

R. M. A. Von Wandruszka and R. J. Hurtubise, “Room-temperature phosphorescence of compounds adsorbed on sodium acetate,” Anal. Chem.49(14), 2164–2169 (1977).
[CrossRef]

Wallenberg, R.

W. Chen, J. O. Malm, V. Zwiller, Y. N. Huang, S. M. Liu, R. Wallenberg, J. O. Bovin, and L. Samuelson, “Energy structure and fluorescence of Eu2+ in ZnS: Eu nanoparticles,” Phys. Rev. B61(16), 11021–11024 (2000).
[CrossRef]

Wang, M.

C. H. Ye, X. S. Fang, M. Wang, and L. D. Zhang, “Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts,” J. Appl. Phys.99(6), 063504 (2006).
[CrossRef]

Wang, M. W.

M. W. Wang, L. D. Sun, X. F. Fu, C. S. Liao, and C. H. Yan, “Synthesis and optical properties of ZnS: Cu (II) nanoparticles,” Solid State Commun.115(9), 493–496 (2000).
[CrossRef]

Wang, X. L.

X. L. Wang, J. Y. Shi, Z. C. Feng, M. R. Li, and C. Li, “Visible emission characteristics from different defects of ZnS nanocrystals,” Phys. Chem. Chem. Phys.13(10), 4715–4723 (2011).
[CrossRef] [PubMed]

Whangbo, M. H.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater.18(14), 3212–3220 (2006).
[CrossRef]

Wuister, S. F.

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS: Mn2+,” Nano Lett.1(8), 429–433 (2001).
[CrossRef]

Xü, D.

P. Yang, M. Lü, D. Xü, D. Yuan, J. Chang, G. Zhou, and M. Pan, “Strong green luminescence of Ni2+-doped ZnS nanocrystals,” Appl. Phys., A Mater. Sci. Process.74(2), 257–259 (2002).
[CrossRef]

Xue, L. A.

L. A. Xue and R. Raj, “Effect of hot‐pressing temperature on the optical transmission of zinc sulfide,” Appl. Phys. Lett.58(5), 441–443 (1991).
[CrossRef]

Xue, S. H.

J. M. Huang, Y. Yang, S. H. Xue, B. Yang, S. Y. Liu, and J. C. Shen, “Photoluminescence and electroluminescence of ZnS: Cu nanocrystals in polymeric networks,” Appl. Phys. Lett.70(18), 2335–2337 (1997).
[CrossRef]

Yan, C. H.

M. W. Wang, L. D. Sun, X. F. Fu, C. S. Liao, and C. H. Yan, “Synthesis and optical properties of ZnS: Cu (II) nanoparticles,” Solid State Commun.115(9), 493–496 (2000).
[CrossRef]

Yang, B.

J. M. Huang, Y. Yang, S. H. Xue, B. Yang, S. Y. Liu, and J. C. Shen, “Photoluminescence and electroluminescence of ZnS: Cu nanocrystals in polymeric networks,” Appl. Phys. Lett.70(18), 2335–2337 (1997).
[CrossRef]

Yang, P.

P. Yang, M. Lü, D. Xü, D. Yuan, J. Chang, G. Zhou, and M. Pan, “Strong green luminescence of Ni2+-doped ZnS nanocrystals,” Appl. Phys., A Mater. Sci. Process.74(2), 257–259 (2002).
[CrossRef]

Yang, Y.

Y. Li, S. Zhou, Z. Chen, Y. Yang, N. Chen, and G. P. Du, “Luminescence properties of Br-doped ZnS nanoparticles synthesized by a low temperature solid-state reaction method,” Ceram. Int.39(5), 5521–5525 (2013).
[CrossRef]

J. M. Huang, Y. Yang, S. H. Xue, B. Yang, S. Y. Liu, and J. C. Shen, “Photoluminescence and electroluminescence of ZnS: Cu nanocrystals in polymeric networks,” Appl. Phys. Lett.70(18), 2335–2337 (1997).
[CrossRef]

Ye, C. H.

C. H. Ye, X. S. Fang, M. Wang, and L. D. Zhang, “Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts,” J. Appl. Phys.99(6), 063504 (2006).
[CrossRef]

C. H. Ye, X. S. Fang, G. H. Li, and L. D. Zhang, “Origin of the green photoluminescence from zinc sulfide nanobelts,” Appl. Phys. Lett.85(15), 3035–3037 (2004).
[CrossRef]

Yoshimura, K.

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes,” Appl. Phys. Lett.98(8), 083302 (2011).
[CrossRef]

Yuan, D.

P. Yang, M. Lü, D. Xü, D. Yuan, J. Chang, G. Zhou, and M. Pan, “Strong green luminescence of Ni2+-doped ZnS nanocrystals,” Appl. Phys., A Mater. Sci. Process.74(2), 257–259 (2002).
[CrossRef]

Zeng, X. H.

H. T. Chen, Y. P. Hu, and X. H. Zeng, “Green photoluminescence mechanism in ZnS nanostructures,” J. Mater. Sci.46(8), 2715–2719 (2011).
[CrossRef]

Zhang, L. D.

C. H. Ye, X. S. Fang, M. Wang, and L. D. Zhang, “Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts,” J. Appl. Phys.99(6), 063504 (2006).
[CrossRef]

C. H. Ye, X. S. Fang, G. H. Li, and L. D. Zhang, “Origin of the green photoluminescence from zinc sulfide nanobelts,” Appl. Phys. Lett.85(15), 3035–3037 (2004).
[CrossRef]

Zhang, W. H.

H. Hu and W. H. Zhang, “Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles,” Opt. Mater.28(5), 536–550 (2006).
[CrossRef]

Zhang, X. H.

C. Chlique, O. Merdrignac-Conanec, N. Hakmeh, X. H. Zhang, and J. L. Adam, “Transparent ZnS ceramics by sintering of high purity monodisperse nanopowders,” J. Am. Ceram. Soc.96(10), 3070–3074 (2013).

C. Chlique, G. Delaizir, O. Merdrignac-Conanec, C. Roucau, M. Dollé, P. Rozier, V. Bouquet, and X. H. Zhang, “A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS),” Opt. Mater.33(5), 706–712 (2011).
[CrossRef]

Zhou, G.

P. Yang, M. Lü, D. Xü, D. Yuan, J. Chang, G. Zhou, and M. Pan, “Strong green luminescence of Ni2+-doped ZnS nanocrystals,” Appl. Phys., A Mater. Sci. Process.74(2), 257–259 (2002).
[CrossRef]

Zhou, S.

Y. Li, S. Zhou, Z. Chen, Y. Yang, N. Chen, and G. P. Du, “Luminescence properties of Br-doped ZnS nanoparticles synthesized by a low temperature solid-state reaction method,” Ceram. Int.39(5), 5521–5525 (2013).
[CrossRef]

Zwiller, V.

W. Chen, J. O. Malm, V. Zwiller, Y. N. Huang, S. M. Liu, R. Wallenberg, J. O. Bovin, and L. Samuelson, “Energy structure and fluorescence of Eu2+ in ZnS: Eu nanoparticles,” Phys. Rev. B61(16), 11021–11024 (2000).
[CrossRef]

Adv. Funct. Mater. (1)

C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt, “Inorganic luminescent materials: 100 years of research and application,” Adv. Funct. Mater.13(7), 511–516 (2003).
[CrossRef]

Anal. Chem. (1)

R. M. A. Von Wandruszka and R. J. Hurtubise, “Room-temperature phosphorescence of compounds adsorbed on sodium acetate,” Anal. Chem.49(14), 2164–2169 (1977).
[CrossRef]

Appl. Phys. Lett. (5)

A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, “Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes,” Appl. Phys. Lett.98(8), 083302 (2011).
[CrossRef]

L. A. Xue and R. Raj, “Effect of hot‐pressing temperature on the optical transmission of zinc sulfide,” Appl. Phys. Lett.58(5), 441–443 (1991).
[CrossRef]

T. Tsuruoka, C. H. Liang, K. Terabe, and T. Hasegawa, “Origin of green emission from ZnS nanobelts as revealed by scanning near-field optical microscopy,” Appl. Phys. Lett.92(9), 091908 (2008).
[CrossRef]

C. H. Ye, X. S. Fang, G. H. Li, and L. D. Zhang, “Origin of the green photoluminescence from zinc sulfide nanobelts,” Appl. Phys. Lett.85(15), 3035–3037 (2004).
[CrossRef]

J. M. Huang, Y. Yang, S. H. Xue, B. Yang, S. Y. Liu, and J. C. Shen, “Photoluminescence and electroluminescence of ZnS: Cu nanocrystals in polymeric networks,” Appl. Phys. Lett.70(18), 2335–2337 (1997).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

P. Yang, M. Lü, D. Xü, D. Yuan, J. Chang, G. Zhou, and M. Pan, “Strong green luminescence of Ni2+-doped ZnS nanocrystals,” Appl. Phys., A Mater. Sci. Process.74(2), 257–259 (2002).
[CrossRef]

Ceram. Int. (1)

Y. Li, S. Zhou, Z. Chen, Y. Yang, N. Chen, and G. P. Du, “Luminescence properties of Br-doped ZnS nanoparticles synthesized by a low temperature solid-state reaction method,” Ceram. Int.39(5), 5521–5525 (2013).
[CrossRef]

Chem. Mater. (1)

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. H. Whangbo, “Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect conglomeration,” Chem. Mater.18(14), 3212–3220 (2006).
[CrossRef]

Cryst. Res. Technol. (1)

D. Amaranatha Reddy, G. Murali, R. P. Vijayalakshmi, B. K. Reddy, and B. Sreedhar, “Effect of Cr doping on the structural and optical properties of ZnS nanoparticles,” Cryst. Res. Technol.46(7), 731–736 (2011).
[CrossRef]

J. Am. Ceram. Soc. (1)

C. Chlique, O. Merdrignac-Conanec, N. Hakmeh, X. H. Zhang, and J. L. Adam, “Transparent ZnS ceramics by sintering of high purity monodisperse nanopowders,” J. Am. Ceram. Soc.96(10), 3070–3074 (2013).

J. Appl. Phys. (2)

N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,” J. Appl. Phys.88(11), 6260–6264 (2000).
[CrossRef]

C. H. Ye, X. S. Fang, M. Wang, and L. D. Zhang, “Temperature-dependent photoluminescence from elemental sulfur species on ZnS nanobelts,” J. Appl. Phys.99(6), 063504 (2006).
[CrossRef]

J. Chem. Phys. (2)

F. A. Kröger and H. J. Vink, “The origin of the fluorescence in self‐activated ZnS, CdS, and ZnO,” J. Chem. Phys.22(2), 250–252 (1954).
[CrossRef]

K. Osada, “Phosphorescence of sodium acetate,” J. Chem. Phys.30(5), 1363–1364 (1959).
[CrossRef]

J. Electrochem. Soc. (1)

D. A. Davies, J. Silver, A. Vecht, P. J. Marsh, and J. A. Rose, “A novel method for the synthesis of ZnS for use in the preparation of phosphors for CRT devices,” J. Electrochem. Soc.148(10), H143–H148 (2001).
[CrossRef]

J. Lumin. (2)

A. A. Bol, J. Ferwerda, J. A. Bergwerff, and A. Meijerink, “Luminescence of nanocrystalline ZnS: Cu2+,” J. Lumin.99(4), 325–334 (2002).
[CrossRef]

G. V. Colibaba, D. D. Nedeoglo, and V. V. Ursaki, “Impurity centers in ZnSe: Na crystals,” J. Lumin.131(9), 1966–1970 (2011).
[CrossRef]

J. Mater. Sci. (1)

H. T. Chen, Y. P. Hu, and X. H. Zeng, “Green photoluminescence mechanism in ZnS nanostructures,” J. Mater. Sci.46(8), 2715–2719 (2011).
[CrossRef]

J. Phys. Chem. (1)

D. E. Dunstan, A. Hagfeldt, M. Almgren, H. O. Siegbahn, and E. Mukhtar, “Importance of surface reactions in the photochemistry of zinc sulfide colloids,” J. Phys. Chem.94(17), 6797–6804 (1990).
[CrossRef]

J. Phys. Soc. Jpn. (2)

K. Osada, “Phosphorescence of sodium-and potassium-acetates,” J. Phys. Soc. Jpn.11(4), 425–429 (1956).
[CrossRef]

S. Shionoya, T. Koda, K. Era, and H. Fujiwara, “Nature of luminescence transitions in ZnS crystals,” J. Phys. Soc. Jpn.19(7), 1157–1167 (1964).
[CrossRef]

Mater. Lett. (1)

J. C. Lee and D. H. Park, “Self-defects properties of ZnS with sintering temperature,” Mater. Lett.57(19), 2872–2878 (2003).
[CrossRef]

Nano Lett. (1)

J. F. Suyver, S. F. Wuister, J. J. Kelly, and A. Meijerink, “Synthesis and photoluminescence of nanocrystalline ZnS: Mn2+,” Nano Lett.1(8), 429–433 (2001).
[CrossRef]

Nature Photon. (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nature Photon.2(12), 721–727 (2008).
[CrossRef]

Opt. Mater. (2)

H. Hu and W. H. Zhang, “Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles,” Opt. Mater.28(5), 536–550 (2006).
[CrossRef]

C. Chlique, G. Delaizir, O. Merdrignac-Conanec, C. Roucau, M. Dollé, P. Rozier, V. Bouquet, and X. H. Zhang, “A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS),” Opt. Mater.33(5), 706–712 (2011).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

X. L. Wang, J. Y. Shi, Z. C. Feng, M. R. Li, and C. Li, “Visible emission characteristics from different defects of ZnS nanocrystals,” Phys. Chem. Chem. Phys.13(10), 4715–4723 (2011).
[CrossRef] [PubMed]

Phys. Rev. B (1)

W. Chen, J. O. Malm, V. Zwiller, Y. N. Huang, S. M. Liu, R. Wallenberg, J. O. Bovin, and L. Samuelson, “Energy structure and fluorescence of Eu2+ in ZnS: Eu nanoparticles,” Phys. Rev. B61(16), 11021–11024 (2000).
[CrossRef]

Physica B (1)

R. Sarkar, C. S. Tiwary, P. Kumbhakar, and A. K. Mitra, “Enhanced visible light emission from Co2+ doped ZnS nanoparticles,” Physica B404(21), 3855–3858 (2009).
[CrossRef]

Solid State Commun. (2)

G. Roussos and H. J. Schulz, “A new emission of ZnS:Ni2+ arising from the 3T1(P) → 3T1(F) transition,” Solid State Commun.51(9), 663–664 (1984).
[CrossRef]

M. W. Wang, L. D. Sun, X. F. Fu, C. S. Liao, and C. H. Yan, “Synthesis and optical properties of ZnS: Cu (II) nanoparticles,” Solid State Commun.115(9), 493–496 (2000).
[CrossRef]

Other (3)

S. Shionoya, W. M. Yen, and T. Hase, Phosphor Handbook (CRC press, 1999).

J. T. Randall and M. H. F. Wilkins, “Phosphorescence and electron traps. ii. the interpretation of long-period phosphorescence,” Proc. R. Soc. A 184(999), 390–407 (1945).
[CrossRef]

H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials (Wiley-Interscience, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

XRD patterns of the synthesized ZnS powders and ZnS sintered ceramics.

Fig. 2
Fig. 2

SEM images of (a) synthesized ZnS powders, and (b) ZnS sintered ceramics.

Fig. 3
Fig. 3

TEM images of (a) ZnS ceramics sintered by SPS, and (b) by HP.

Fig. 4
Fig. 4

Qualitative elemental WDS analysis for the sintered ZnS ceramics((a) corresponds to the whole spectrum, (b) to zinc, and (c) to sulfur).

Fig. 5
Fig. 5

Valences of (a) S and (b) Zn for the ZnS ceramics investigated by XPS.

Fig. 6
Fig. 6

Photos of the ZnS ceramics in the darkness with (a) UV light off, and (b) UV light on.

Fig. 7
Fig. 7

PL spectra of the ZnS ceramics measured at 300 K in air, with an excitation wavelength of 365 nm (before UV light illumination and after 30 min UV light illumination).

Fig. 8
Fig. 8

Transient PL curve of the ZnS ceramics measured at 300 K in air, with an excitation wavelength of 365 nm.

Fig. 9
Fig. 9

Streak images and PL spectra of the ZnS ceramics for different time ranges ((a) 10 μs, (b) 500 μs, (c) 10 ms.)

Fig. 10
Fig. 10

PL spectra of the ZnS ceramics with different observation times (10 µs, 500µs, and 10 ms) with an excitation wavelength of 365 nm.

Tables (2)

Tables Icon

Table 1 Quantitative elemental WDS analysis of the sintered ZnS ceramics (for S and Zn).

Tables Icon

Table 2 Fluorescence lifetime of the ZnS ceramics.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L = 0.9 λ / B cos θ ,
D R ( % ) = ( τ 2 A 2 + τ 3 A 3 ) / ( τ 1 A 1 + τ 2 A 2 + τ 3 A 3 ) × 100 %

Metrics