Abstract

Fiber optic temperature sensors were fabricated by depositing vanadium oxide thin films on the tips of optical fibers, and by incorporating vanadium oxide materials into the core of optical fibers. It was found that the properties of the initially amorphous vanadium oxide can be controllably converted to those of crystalline VOx compounds via the plasma arc of a fiber fusion splicer. These crystalline VOx compounds can then be over-coated with SiO2, and subsequently fused with another fiber to form an in-line fiber optic sensor. It was found that a well defined optical absorption edge was formed when the vanadium oxide (VOx) thin films were annealed using the plasma arc of a fusion splicer, suggesting the formation of crystalline VOx. Moreover, it was observed that the spectral position of this absorption edge varied with temperature in a reproducible way. The optical fiber devices described in this paper could also be employed for optical switching applications. Based on the spectral position of the band edge and the Raman spectra of the VOx films, deposited on the fiber optic tips, it was found that these annealed VOx films contained a mixture of different phases of vanadium oxide (VOx), in particular V2O5 and VO2. Furthermore, similar in-line optical fiber switches, based only on the insulator to metal phase transitions of VO2, can be fabricated by following the techniques described in this paper.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
    [CrossRef]
  2. G. C. M. Meijer, A. J. M. Boomkamp, and R. J. Duguesnoy, “An accurate biomedical temperature transducer with on-chip microcomputer interfacing,” IEEE J. Solid-State Circuits23(6), 1405–1410 (1988).
    [CrossRef]
  3. Y. Zhao and Y. Liao, “Compensation technology for a novel reflex optical fiber temperature sensor used under offshore oil well,” Opt. Commun.215(1–3), 11–16 (2003).
    [CrossRef]
  4. F. R. Riedijk and J. H. Huijsing, “An integrated absolute temperature sensor with sigma-delta A/D conversion,” Sens. Actuators A Phys.24, 249–256 (1996).
  5. R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
    [CrossRef]
  6. Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brandle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A Phys.103(3), 364–376 (2003).
    [CrossRef]
  7. A. D. Kersey and T. A. Berkoff, “Fiberoptic Bragg-grating differential-temperature sensor,” IEEE Photon. Technol. Lett.4(10), 1183–1185 (1992).
    [CrossRef]
  8. C. E. Lee, R. A. Atkins, and H. F. Taylor, “Performance of a fiber-optic temperature sensor from -200 to 1050 ° C,” Opt. Lett.13(11), 1038–1040 (1988).
    [CrossRef] [PubMed]
  9. C. E. Lee and H. F. Taylor, “Interferometric optical fibre sensors using internal mirrors,” Electron. Lett.24(4), 193–194 (1988).
    [CrossRef]
  10. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol.19(10), 1495–1501 (2001).
    [CrossRef]
  11. Z. Y. Huang, Y. Z. Zhu, and X. P. Chen, “Intrinsic fabry-perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett.17(11), 2403–2405 (2005).
    [CrossRef]
  12. Z. Zhang, K. T. V. Grattan, and A. W. Palmer, “A novel signal-processing scheme for a fluorescence based fiber optic temperature sensor,” Rev. Sci. Instrum.62(7), 1735–1742 (1991).
    [CrossRef]
  13. K. T. V. Grattan, A. W. Palmer, and Z. Zhang, “Development of a high-temperature fiber-optic thermometer probe using fluorescent decay,” Rev. Sci. Instrum.62(5), 1210–1213 (1991).
    [CrossRef]
  14. Y. Zhao, M. Rong, and Y. Liao, “Fiber-optic temperature sensor used for oil well based on semiconductor optical absorption,” IEEE Sens. J.3(4), 400–403 (2003).
    [CrossRef]
  15. Kyuma, T. Shuichi Tai, Sawada, and M. Nunoshita, “Fiber-optic instrument for temperature measurement,” IEEE J. Quantum Electron.18(4), 676–679 (1982).
    [CrossRef]
  16. C. E. Lee, R. A. Atkins, W. N. Gibler, and H. F. Taylor, “Fiber optic application for thermal switching in vanadium dioxide films,” Appl. Opt.28(21), 4511–4512 (1989).
    [CrossRef] [PubMed]
  17. A. Dhawan and J. F. Muth, “Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix,” Nanotechnology17(10), 2504–2511 (2006).
    [CrossRef] [PubMed]
  18. A. Dhawan and J. F. Muth, “In-line fiber optic structures for environmental sensing applications,” Opt. Lett.31(10), 1391–1393 (2006).
    [CrossRef] [PubMed]
  19. Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34(1), 149–154 (1967).
    [CrossRef]
  20. J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, 1971).
  21. S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci.252(15), 5512–5515 (2006).
    [CrossRef]
  22. P. Jin and S. Tanemura, “V1−xMoxO2 thermochromic films deposited by reactive magnetron sputtering,” Thin Solid Films281-282(1-2), 239–242 (1996).
    [CrossRef]
  23. H. Katzke, P. Toledano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B68(2), 024109 (2003).
    [CrossRef]
  24. X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci.177(1-2), 8–14 (2001).
    [CrossRef]
  25. Y. P. Zhang, C. J. O’Connor, A. Clearfield, and R. C. Haushalter, “An organically templated layered vanadium oxide: Hydrothermal synthesis, single-crystal structure, and magnetic properties of (H3N(CH2)(3)NH3)[V4O10],” Chem. Mater.8(3), 595–597 (1996).
    [CrossRef]
  26. D. P. Partlow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable vanadium-oxide films by a sol-gel process,” J. Appl. Phys.70(1), 443–452 (1991).
    [CrossRef]
  27. R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” Appl. Phys. Lett.92(7), 4031 (2002).
  28. D. H. Kim and H. S. Kwok, “Pulsed-laser deposition of VO2 thin-films,” Appl. Phys. Lett.65(25), 3188 (1994).
    [CrossRef]
  29. M. H. Lee and M. G. Kim, “RTA and stoichiometry effect on the thermochromism of VO2 thin films,” Thin Solid Films286(1), 219–222 (1996).
    [CrossRef]
  30. X. Chen and J. Dai, “Optical switch with low-phase transition temperature based on thin nanocrystalline VOx film,” Optik-International Journal for Light and Electron Optics121(16), 1529–1533 (2010).
    [CrossRef]
  31. E. Cavanna, J. P. Segaud, and J. Livage, “Optical switching of Au-doped VO2 sol-gel films,” Mater. Res. Bull.34(2), 167–177 (1999).
    [CrossRef]
  32. P. Singh and D. Kaur, “Influence of film thickness on texture and electrical and optical properties of room temperature deposited nanocrystalline V2O5 thin films,” J. Appl. Phys.103(4), 043507 (2008).
    [CrossRef]
  33. S. H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion.165(1), 111–116 (2003).
    [CrossRef]
  34. W. J. Shen, K. W. Sun, and C. S. Lee, “Electrical characterization and Raman spectroscopy of individual vanadium pentoxide nanowire,” J. Nanopart. Res.13(10), 4929–4936 (2011).
    [CrossRef]
  35. N. Das, H. Eckert, H. Hu, I. E. Wachs, J. F. Walzer, and F. J. Feher, “Bonding states of surface vanadium (V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy,” J. Phys. Chem.97(31), 8240–8243 (1993).
    [CrossRef]
  36. G. T. Went, S. T. Oyama, and A. T. Bell, “Laser Raman spectroscopy of supported vanadium oxide catalysts,” J. Phys. Chem.94(10), 4240–4246 (1990).
    [CrossRef]
  37. C. Piccirillo, R. Binions, and I. P. Parkin, “Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol‐assisted CVD,” Chem. Vap. Deposition.13(4), 145–151 (2007).
    [CrossRef]
  38. Q. Chen and P. Lu, “Fiber Bragg gratings and their applications as temperature and humidity sensors,” Atomic, Molecular, and Optical Physics, L. T. Chen ed. (Nova Science Publishers, 2008), pp. 235–260.
  39. C.-H. Lee, J. Lee, M.-K. Kim, and K. T. Kim, “Characteristics of a fiber Bragg grating temperature sensor using the thermal strain of an external tube,” J. Korean Phys. Soc.59(5), 3188–3191 (2011).

2011 (2)

W. J. Shen, K. W. Sun, and C. S. Lee, “Electrical characterization and Raman spectroscopy of individual vanadium pentoxide nanowire,” J. Nanopart. Res.13(10), 4929–4936 (2011).
[CrossRef]

C.-H. Lee, J. Lee, M.-K. Kim, and K. T. Kim, “Characteristics of a fiber Bragg grating temperature sensor using the thermal strain of an external tube,” J. Korean Phys. Soc.59(5), 3188–3191 (2011).

2010 (1)

X. Chen and J. Dai, “Optical switch with low-phase transition temperature based on thin nanocrystalline VOx film,” Optik-International Journal for Light and Electron Optics121(16), 1529–1533 (2010).
[CrossRef]

2008 (1)

P. Singh and D. Kaur, “Influence of film thickness on texture and electrical and optical properties of room temperature deposited nanocrystalline V2O5 thin films,” J. Appl. Phys.103(4), 043507 (2008).
[CrossRef]

2007 (1)

C. Piccirillo, R. Binions, and I. P. Parkin, “Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol‐assisted CVD,” Chem. Vap. Deposition.13(4), 145–151 (2007).
[CrossRef]

2006 (3)

A. Dhawan and J. F. Muth, “Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix,” Nanotechnology17(10), 2504–2511 (2006).
[CrossRef] [PubMed]

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci.252(15), 5512–5515 (2006).
[CrossRef]

A. Dhawan and J. F. Muth, “In-line fiber optic structures for environmental sensing applications,” Opt. Lett.31(10), 1391–1393 (2006).
[CrossRef] [PubMed]

2005 (1)

Z. Y. Huang, Y. Z. Zhu, and X. P. Chen, “Intrinsic fabry-perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett.17(11), 2403–2405 (2005).
[CrossRef]

2003 (5)

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brandle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A Phys.103(3), 364–376 (2003).
[CrossRef]

Y. Zhao and Y. Liao, “Compensation technology for a novel reflex optical fiber temperature sensor used under offshore oil well,” Opt. Commun.215(1–3), 11–16 (2003).
[CrossRef]

Y. Zhao, M. Rong, and Y. Liao, “Fiber-optic temperature sensor used for oil well based on semiconductor optical absorption,” IEEE Sens. J.3(4), 400–403 (2003).
[CrossRef]

S. H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion.165(1), 111–116 (2003).
[CrossRef]

H. Katzke, P. Toledano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B68(2), 024109 (2003).
[CrossRef]

2002 (1)

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” Appl. Phys. Lett.92(7), 4031 (2002).

2001 (2)

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci.177(1-2), 8–14 (2001).
[CrossRef]

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol.19(10), 1495–1501 (2001).
[CrossRef]

1999 (1)

E. Cavanna, J. P. Segaud, and J. Livage, “Optical switching of Au-doped VO2 sol-gel films,” Mater. Res. Bull.34(2), 167–177 (1999).
[CrossRef]

1998 (2)

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

1996 (4)

F. R. Riedijk and J. H. Huijsing, “An integrated absolute temperature sensor with sigma-delta A/D conversion,” Sens. Actuators A Phys.24, 249–256 (1996).

P. Jin and S. Tanemura, “V1−xMoxO2 thermochromic films deposited by reactive magnetron sputtering,” Thin Solid Films281-282(1-2), 239–242 (1996).
[CrossRef]

Y. P. Zhang, C. J. O’Connor, A. Clearfield, and R. C. Haushalter, “An organically templated layered vanadium oxide: Hydrothermal synthesis, single-crystal structure, and magnetic properties of (H3N(CH2)(3)NH3)[V4O10],” Chem. Mater.8(3), 595–597 (1996).
[CrossRef]

M. H. Lee and M. G. Kim, “RTA and stoichiometry effect on the thermochromism of VO2 thin films,” Thin Solid Films286(1), 219–222 (1996).
[CrossRef]

1994 (1)

D. H. Kim and H. S. Kwok, “Pulsed-laser deposition of VO2 thin-films,” Appl. Phys. Lett.65(25), 3188 (1994).
[CrossRef]

1993 (1)

N. Das, H. Eckert, H. Hu, I. E. Wachs, J. F. Walzer, and F. J. Feher, “Bonding states of surface vanadium (V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy,” J. Phys. Chem.97(31), 8240–8243 (1993).
[CrossRef]

1992 (1)

A. D. Kersey and T. A. Berkoff, “Fiberoptic Bragg-grating differential-temperature sensor,” IEEE Photon. Technol. Lett.4(10), 1183–1185 (1992).
[CrossRef]

1991 (3)

Z. Zhang, K. T. V. Grattan, and A. W. Palmer, “A novel signal-processing scheme for a fluorescence based fiber optic temperature sensor,” Rev. Sci. Instrum.62(7), 1735–1742 (1991).
[CrossRef]

K. T. V. Grattan, A. W. Palmer, and Z. Zhang, “Development of a high-temperature fiber-optic thermometer probe using fluorescent decay,” Rev. Sci. Instrum.62(5), 1210–1213 (1991).
[CrossRef]

D. P. Partlow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable vanadium-oxide films by a sol-gel process,” J. Appl. Phys.70(1), 443–452 (1991).
[CrossRef]

1990 (1)

G. T. Went, S. T. Oyama, and A. T. Bell, “Laser Raman spectroscopy of supported vanadium oxide catalysts,” J. Phys. Chem.94(10), 4240–4246 (1990).
[CrossRef]

1989 (1)

1988 (3)

C. E. Lee, R. A. Atkins, and H. F. Taylor, “Performance of a fiber-optic temperature sensor from -200 to 1050 ° C,” Opt. Lett.13(11), 1038–1040 (1988).
[CrossRef] [PubMed]

G. C. M. Meijer, A. J. M. Boomkamp, and R. J. Duguesnoy, “An accurate biomedical temperature transducer with on-chip microcomputer interfacing,” IEEE J. Solid-State Circuits23(6), 1405–1410 (1988).
[CrossRef]

C. E. Lee and H. F. Taylor, “Interferometric optical fibre sensors using internal mirrors,” Electron. Lett.24(4), 193–194 (1988).
[CrossRef]

1982 (1)

Kyuma, T. Shuichi Tai, Sawada, and M. Nunoshita, “Fiber-optic instrument for temperature measurement,” IEEE J. Quantum Electron.18(4), 676–679 (1982).
[CrossRef]

1967 (1)

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34(1), 149–154 (1967).
[CrossRef]

Atkins, R. A.

Bell, A. T.

G. T. Went, S. T. Oyama, and A. T. Bell, “Laser Raman spectroscopy of supported vanadium oxide catalysts,” J. Phys. Chem.94(10), 4240–4246 (1990).
[CrossRef]

Berkoff, T. A.

A. D. Kersey and T. A. Berkoff, “Fiberoptic Bragg-grating differential-temperature sensor,” IEEE Photon. Technol. Lett.4(10), 1183–1185 (1992).
[CrossRef]

Bianchi, R. A.

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

Binions, R.

C. Piccirillo, R. Binions, and I. P. Parkin, “Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol‐assisted CVD,” Chem. Vap. Deposition.13(4), 145–151 (2007).
[CrossRef]

Boatner, L. A.

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” Appl. Phys. Lett.92(7), 4031 (2002).

Bodor, P.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brandle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A Phys.103(3), 364–376 (2003).
[CrossRef]

Bohnert, K.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brandle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A Phys.103(3), 364–376 (2003).
[CrossRef]

Boomkamp, A. J. M.

G. C. M. Meijer, A. J. M. Boomkamp, and R. J. Duguesnoy, “An accurate biomedical temperature transducer with on-chip microcomputer interfacing,” IEEE J. Solid-State Circuits23(6), 1405–1410 (1988).
[CrossRef]

Brandle, H.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brandle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A Phys.103(3), 364–376 (2003).
[CrossRef]

Cavanna, E.

E. Cavanna, J. P. Segaud, and J. Livage, “Optical switching of Au-doped VO2 sol-gel films,” Mater. Res. Bull.34(2), 167–177 (1999).
[CrossRef]

Chen, X.

X. Chen and J. Dai, “Optical switch with low-phase transition temperature based on thin nanocrystalline VOx film,” Optik-International Journal for Light and Electron Optics121(16), 1529–1533 (2010).
[CrossRef]

Chen, X. P.

Z. Y. Huang, Y. Z. Zhu, and X. P. Chen, “Intrinsic fabry-perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett.17(11), 2403–2405 (2005).
[CrossRef]

Cheong, H. M.

S. H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion.165(1), 111–116 (2003).
[CrossRef]

Clearfield, A.

Y. P. Zhang, C. J. O’Connor, A. Clearfield, and R. C. Haushalter, “An organically templated layered vanadium oxide: Hydrothermal synthesis, single-crystal structure, and magnetic properties of (H3N(CH2)(3)NH3)[V4O10],” Chem. Mater.8(3), 595–597 (1996).
[CrossRef]

Courtois, B.

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

Dai, J.

X. Chen and J. Dai, “Optical switch with low-phase transition temperature based on thin nanocrystalline VOx film,” Optik-International Journal for Light and Electron Optics121(16), 1529–1533 (2010).
[CrossRef]

Das, N.

N. Das, H. Eckert, H. Hu, I. E. Wachs, J. F. Walzer, and F. J. Feher, “Bonding states of surface vanadium (V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy,” J. Phys. Chem.97(31), 8240–8243 (1993).
[CrossRef]

Deb, S. K.

S. H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion.165(1), 111–116 (2003).
[CrossRef]

Denes, L. J.

D. P. Partlow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable vanadium-oxide films by a sol-gel process,” J. Appl. Phys.70(1), 443–452 (1991).
[CrossRef]

Depmeier, W.

H. Katzke, P. Toledano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B68(2), 024109 (2003).
[CrossRef]

Dhawan, A.

A. Dhawan and J. F. Muth, “Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix,” Nanotechnology17(10), 2504–2511 (2006).
[CrossRef] [PubMed]

A. Dhawan and J. F. Muth, “In-line fiber optic structures for environmental sensing applications,” Opt. Lett.31(10), 1391–1393 (2006).
[CrossRef] [PubMed]

Duguesnoy, R. J.

G. C. M. Meijer, A. J. M. Boomkamp, and R. J. Duguesnoy, “An accurate biomedical temperature transducer with on-chip microcomputer interfacing,” IEEE J. Solid-State Circuits23(6), 1405–1410 (1988).
[CrossRef]

Eckert, H.

N. Das, H. Eckert, H. Hu, I. E. Wachs, J. F. Walzer, and F. J. Feher, “Bonding states of surface vanadium (V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy,” J. Phys. Chem.97(31), 8240–8243 (1993).
[CrossRef]

Feher, F. J.

N. Das, H. Eckert, H. Hu, I. E. Wachs, J. F. Walzer, and F. J. Feher, “Bonding states of surface vanadium (V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy,” J. Phys. Chem.97(31), 8240–8243 (1993).
[CrossRef]

Fei, Y. J.

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci.177(1-2), 8–14 (2001).
[CrossRef]

Feldman, L. C.

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” Appl. Phys. Lett.92(7), 4031 (2002).

Feng, K. A.

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci.177(1-2), 8–14 (2001).
[CrossRef]

Fernandez, F.

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci.252(15), 5512–5515 (2006).
[CrossRef]

Frank, A.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brandle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A Phys.103(3), 364–376 (2003).
[CrossRef]

Gibler, W. N.

Grattan, K. T. V.

Z. Zhang, K. T. V. Grattan, and A. W. Palmer, “A novel signal-processing scheme for a fluorescence based fiber optic temperature sensor,” Rev. Sci. Instrum.62(7), 1735–1742 (1991).
[CrossRef]

K. T. V. Grattan, A. W. Palmer, and Z. Zhang, “Development of a high-temperature fiber-optic thermometer probe using fluorescent decay,” Rev. Sci. Instrum.62(5), 1210–1213 (1991).
[CrossRef]

Gurkovich, S. R.

D. P. Partlow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable vanadium-oxide films by a sol-gel process,” J. Appl. Phys.70(1), 443–452 (1991).
[CrossRef]

Haglund, R. F.

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” Appl. Phys. Lett.92(7), 4031 (2002).

Haushalter, R. C.

Y. P. Zhang, C. J. O’Connor, A. Clearfield, and R. C. Haushalter, “An organically templated layered vanadium oxide: Hydrothermal synthesis, single-crystal structure, and magnetic properties of (H3N(CH2)(3)NH3)[V4O10],” Chem. Mater.8(3), 595–597 (1996).
[CrossRef]

Haynes, T. E.

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” Appl. Phys. Lett.92(7), 4031 (2002).

Hu, H.

N. Das, H. Eckert, H. Hu, I. E. Wachs, J. F. Walzer, and F. J. Feher, “Bonding states of surface vanadium (V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy,” J. Phys. Chem.97(31), 8240–8243 (1993).
[CrossRef]

Huang, Z. Y.

Z. Y. Huang, Y. Z. Zhu, and X. P. Chen, “Intrinsic fabry-perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett.17(11), 2403–2405 (2005).
[CrossRef]

Huijsing, J. H.

F. R. Riedijk and J. H. Huijsing, “An integrated absolute temperature sensor with sigma-delta A/D conversion,” Sens. Actuators A Phys.24, 249–256 (1996).

Jimenez, J.

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci.252(15), 5512–5515 (2006).
[CrossRef]

Jin, P.

P. Jin and S. Tanemura, “V1−xMoxO2 thermochromic films deposited by reactive magnetron sputtering,” Thin Solid Films281-282(1-2), 239–242 (1996).
[CrossRef]

Karam, J. M.

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

Katzke, H.

H. Katzke, P. Toledano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B68(2), 024109 (2003).
[CrossRef]

Kaur, D.

P. Singh and D. Kaur, “Influence of film thickness on texture and electrical and optical properties of room temperature deposited nanocrystalline V2O5 thin films,” J. Appl. Phys.103(4), 043507 (2008).
[CrossRef]

Kersey, A. D.

A. D. Kersey and T. A. Berkoff, “Fiberoptic Bragg-grating differential-temperature sensor,” IEEE Photon. Technol. Lett.4(10), 1183–1185 (1992).
[CrossRef]

Kim, D. H.

D. H. Kim and H. S. Kwok, “Pulsed-laser deposition of VO2 thin-films,” Appl. Phys. Lett.65(25), 3188 (1994).
[CrossRef]

Kim, K. T.

C.-H. Lee, J. Lee, M.-K. Kim, and K. T. Kim, “Characteristics of a fiber Bragg grating temperature sensor using the thermal strain of an external tube,” J. Korean Phys. Soc.59(5), 3188–3191 (2011).

Kim, M. G.

M. H. Lee and M. G. Kim, “RTA and stoichiometry effect on the thermochromism of VO2 thin films,” Thin Solid Films286(1), 219–222 (1996).
[CrossRef]

Kim, M.-K.

C.-H. Lee, J. Lee, M.-K. Kim, and K. T. Kim, “Characteristics of a fiber Bragg grating temperature sensor using the thermal strain of an external tube,” J. Korean Phys. Soc.59(5), 3188–3191 (2011).

Kwok, H. S.

D. H. Kim and H. S. Kwok, “Pulsed-laser deposition of VO2 thin-films,” Appl. Phys. Lett.65(25), 3188 (1994).
[CrossRef]

Kyuma,

Kyuma, T. Shuichi Tai, Sawada, and M. Nunoshita, “Fiber-optic instrument for temperature measurement,” IEEE J. Quantum Electron.18(4), 676–679 (1982).
[CrossRef]

Lee, C. E.

Lee, C. S.

W. J. Shen, K. W. Sun, and C. S. Lee, “Electrical characterization and Raman spectroscopy of individual vanadium pentoxide nanowire,” J. Nanopart. Res.13(10), 4929–4936 (2011).
[CrossRef]

Lee, C.-H.

C.-H. Lee, J. Lee, M.-K. Kim, and K. T. Kim, “Characteristics of a fiber Bragg grating temperature sensor using the thermal strain of an external tube,” J. Korean Phys. Soc.59(5), 3188–3191 (2011).

Lee, J.

C.-H. Lee, J. Lee, M.-K. Kim, and K. T. Kim, “Characteristics of a fiber Bragg grating temperature sensor using the thermal strain of an external tube,” J. Korean Phys. Soc.59(5), 3188–3191 (2011).

Lee, M. H.

M. H. Lee and M. G. Kim, “RTA and stoichiometry effect on the thermochromism of VO2 thin films,” Thin Solid Films286(1), 219–222 (1996).
[CrossRef]

Lee, S. H.

S. H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion.165(1), 111–116 (2003).
[CrossRef]

Li, H. D.

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci.177(1-2), 8–14 (2001).
[CrossRef]

Liao, Y.

Y. Zhao, M. Rong, and Y. Liao, “Fiber-optic temperature sensor used for oil well based on semiconductor optical absorption,” IEEE Sens. J.3(4), 400–403 (2003).
[CrossRef]

Y. Zhao and Y. Liao, “Compensation technology for a novel reflex optical fiber temperature sensor used under offshore oil well,” Opt. Commun.215(1–3), 11–16 (2003).
[CrossRef]

Liu, H.

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci.252(15), 5512–5515 (2006).
[CrossRef]

Liu, P.

S. H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion.165(1), 111–116 (2003).
[CrossRef]

Livage, J.

E. Cavanna, J. P. Segaud, and J. Livage, “Optical switching of Au-doped VO2 sol-gel films,” Mater. Res. Bull.34(2), 167–177 (1999).
[CrossRef]

Lopez, R.

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” Appl. Phys. Lett.92(7), 4031 (2002).

Lysenko, S.

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci.252(15), 5512–5515 (2006).
[CrossRef]

Mascarenhas, A.

S. H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion.165(1), 111–116 (2003).
[CrossRef]

Mauron, P.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brandle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A Phys.103(3), 364–376 (2003).
[CrossRef]

May, R. G.

Meijer, G. C. M.

G. C. M. Meijer, A. J. M. Boomkamp, and R. J. Duguesnoy, “An accurate biomedical temperature transducer with on-chip microcomputer interfacing,” IEEE J. Solid-State Circuits23(6), 1405–1410 (1988).
[CrossRef]

Muth, J. F.

A. Dhawan and J. F. Muth, “In-line fiber optic structures for environmental sensing applications,” Opt. Lett.31(10), 1391–1393 (2006).
[CrossRef] [PubMed]

A. Dhawan and J. F. Muth, “Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix,” Nanotechnology17(10), 2504–2511 (2006).
[CrossRef] [PubMed]

Nellen, Ph. M.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brandle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A Phys.103(3), 364–376 (2003).
[CrossRef]

Nie, Y. X.

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci.177(1-2), 8–14 (2001).
[CrossRef]

Nunoshita, M.

Kyuma, T. Shuichi Tai, Sawada, and M. Nunoshita, “Fiber-optic instrument for temperature measurement,” IEEE J. Quantum Electron.18(4), 676–679 (1982).
[CrossRef]

O’Connor, C. J.

Y. P. Zhang, C. J. O’Connor, A. Clearfield, and R. C. Haushalter, “An organically templated layered vanadium oxide: Hydrothermal synthesis, single-crystal structure, and magnetic properties of (H3N(CH2)(3)NH3)[V4O10],” Chem. Mater.8(3), 595–597 (1996).
[CrossRef]

Oyama, S. T.

G. T. Went, S. T. Oyama, and A. T. Bell, “Laser Raman spectroscopy of supported vanadium oxide catalysts,” J. Phys. Chem.94(10), 4240–4246 (1990).
[CrossRef]

Palmer, A. W.

K. T. V. Grattan, A. W. Palmer, and Z. Zhang, “Development of a high-temperature fiber-optic thermometer probe using fluorescent decay,” Rev. Sci. Instrum.62(5), 1210–1213 (1991).
[CrossRef]

Z. Zhang, K. T. V. Grattan, and A. W. Palmer, “A novel signal-processing scheme for a fluorescence based fiber optic temperature sensor,” Rev. Sci. Instrum.62(7), 1735–1742 (1991).
[CrossRef]

Parkin, I. P.

C. Piccirillo, R. Binions, and I. P. Parkin, “Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol‐assisted CVD,” Chem. Vap. Deposition.13(4), 145–151 (2007).
[CrossRef]

Partlow, D. P.

D. P. Partlow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable vanadium-oxide films by a sol-gel process,” J. Appl. Phys.70(1), 443–452 (1991).
[CrossRef]

Pequignot, P.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brandle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A Phys.103(3), 364–376 (2003).
[CrossRef]

Piccirillo, C.

C. Piccirillo, R. Binions, and I. P. Parkin, “Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol‐assisted CVD,” Chem. Vap. Deposition.13(4), 145–151 (2007).
[CrossRef]

Pressecq, F.

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

Radford, K. C.

D. P. Partlow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable vanadium-oxide films by a sol-gel process,” J. Appl. Phys.70(1), 443–452 (1991).
[CrossRef]

Riedijk, F. R.

F. R. Riedijk and J. H. Huijsing, “An integrated absolute temperature sensor with sigma-delta A/D conversion,” Sens. Actuators A Phys.24, 249–256 (1996).

Rong, M.

Y. Zhao, M. Rong, and Y. Liao, “Fiber-optic temperature sensor used for oil well based on semiconductor optical absorption,” IEEE Sens. J.3(4), 400–403 (2003).
[CrossRef]

Rua, A. J.

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci.252(15), 5512–5515 (2006).
[CrossRef]

Sawada,

Kyuma, T. Shuichi Tai, Sawada, and M. Nunoshita, “Fiber-optic instrument for temperature measurement,” IEEE J. Quantum Electron.18(4), 676–679 (1982).
[CrossRef]

Segaud, J. P.

E. Cavanna, J. P. Segaud, and J. Livage, “Optical switching of Au-doped VO2 sol-gel films,” Mater. Res. Bull.34(2), 167–177 (1999).
[CrossRef]

Sennhauser, U.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brandle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A Phys.103(3), 364–376 (2003).
[CrossRef]

Seong, M. J.

S. H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion.165(1), 111–116 (2003).
[CrossRef]

Shen, W. J.

W. J. Shen, K. W. Sun, and C. S. Lee, “Electrical characterization and Raman spectroscopy of individual vanadium pentoxide nanowire,” J. Nanopart. Res.13(10), 4929–4936 (2011).
[CrossRef]

Shuichi Tai, T.

Kyuma, T. Shuichi Tai, Sawada, and M. Nunoshita, “Fiber-optic instrument for temperature measurement,” IEEE J. Quantum Electron.18(4), 676–679 (1982).
[CrossRef]

Sifflet, S.

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

Singh, P.

P. Singh and D. Kaur, “Influence of film thickness on texture and electrical and optical properties of room temperature deposited nanocrystalline V2O5 thin films,” J. Appl. Phys.103(4), 043507 (2008).
[CrossRef]

Sun, K. W.

W. J. Shen, K. W. Sun, and C. S. Lee, “Electrical characterization and Raman spectroscopy of individual vanadium pentoxide nanowire,” J. Nanopart. Res.13(10), 4929–4936 (2011).
[CrossRef]

Tanemura, S.

P. Jin and S. Tanemura, “V1−xMoxO2 thermochromic films deposited by reactive magnetron sputtering,” Thin Solid Films281-282(1-2), 239–242 (1996).
[CrossRef]

Taylor, H. F.

Toledano, P.

H. Katzke, P. Toledano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B68(2), 024109 (2003).
[CrossRef]

Tracy, C. E.

S. H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion.165(1), 111–116 (2003).
[CrossRef]

Varshni, Y.

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34(1), 149–154 (1967).
[CrossRef]

Vikhnin, V.

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci.252(15), 5512–5515 (2006).
[CrossRef]

Vinci Dos Santos, F.

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

Wachs, I. E.

N. Das, H. Eckert, H. Hu, I. E. Wachs, J. F. Walzer, and F. J. Feher, “Bonding states of surface vanadium (V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy,” J. Phys. Chem.97(31), 8240–8243 (1993).
[CrossRef]

Walzer, J. F.

N. Das, H. Eckert, H. Hu, I. E. Wachs, J. F. Walzer, and F. J. Feher, “Bonding states of surface vanadium (V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy,” J. Phys. Chem.97(31), 8240–8243 (1993).
[CrossRef]

Wang, A.

Wang, J.

Wang, X.

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci.177(1-2), 8–14 (2001).
[CrossRef]

Wang, X. J.

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci.177(1-2), 8–14 (2001).
[CrossRef]

Wang, Z.

Went, G. T.

G. T. Went, S. T. Oyama, and A. T. Bell, “Laser Raman spectroscopy of supported vanadium oxide catalysts,” J. Phys. Chem.94(10), 4240–4246 (1990).
[CrossRef]

Xiao, H.

Xiong, Y. Y.

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci.177(1-2), 8–14 (2001).
[CrossRef]

Zhang, Y. P.

Y. P. Zhang, C. J. O’Connor, A. Clearfield, and R. C. Haushalter, “An organically templated layered vanadium oxide: Hydrothermal synthesis, single-crystal structure, and magnetic properties of (H3N(CH2)(3)NH3)[V4O10],” Chem. Mater.8(3), 595–597 (1996).
[CrossRef]

Zhang, Z.

Z. Zhang, K. T. V. Grattan, and A. W. Palmer, “A novel signal-processing scheme for a fluorescence based fiber optic temperature sensor,” Rev. Sci. Instrum.62(7), 1735–1742 (1991).
[CrossRef]

K. T. V. Grattan, A. W. Palmer, and Z. Zhang, “Development of a high-temperature fiber-optic thermometer probe using fluorescent decay,” Rev. Sci. Instrum.62(5), 1210–1213 (1991).
[CrossRef]

Zhao, W.

Zhao, Y.

Y. Zhao, M. Rong, and Y. Liao, “Fiber-optic temperature sensor used for oil well based on semiconductor optical absorption,” IEEE Sens. J.3(4), 400–403 (2003).
[CrossRef]

Y. Zhao and Y. Liao, “Compensation technology for a novel reflex optical fiber temperature sensor used under offshore oil well,” Opt. Commun.215(1–3), 11–16 (2003).
[CrossRef]

Zhu, Y. Z.

Z. Y. Huang, Y. Z. Zhu, and X. P. Chen, “Intrinsic fabry-perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett.17(11), 2403–2405 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman, and R. F. Haglund., “Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix,” Appl. Phys. Lett.92(7), 4031 (2002).

D. H. Kim and H. S. Kwok, “Pulsed-laser deposition of VO2 thin-films,” Appl. Phys. Lett.65(25), 3188 (1994).
[CrossRef]

Appl. Surf. Sci. (2)

X. J. Wang, H. D. Li, Y. J. Fei, X. Wang, Y. Y. Xiong, Y. X. Nie, and K. A. Feng, “XRD and Raman study of vanadium oxide thin films deposited on fused silica substrates by RF magnetron sputtering,” Appl. Surf. Sci.177(1-2), 8–14 (2001).
[CrossRef]

S. Lysenko, A. J. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, and H. Liu, “Light-induced ultrafast phase transitions in VO2 thin film,” Appl. Surf. Sci.252(15), 5512–5515 (2006).
[CrossRef]

Chem. Mater. (1)

Y. P. Zhang, C. J. O’Connor, A. Clearfield, and R. C. Haushalter, “An organically templated layered vanadium oxide: Hydrothermal synthesis, single-crystal structure, and magnetic properties of (H3N(CH2)(3)NH3)[V4O10],” Chem. Mater.8(3), 595–597 (1996).
[CrossRef]

Chem. Vap. Deposition. (1)

C. Piccirillo, R. Binions, and I. P. Parkin, “Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol‐assisted CVD,” Chem. Vap. Deposition.13(4), 145–151 (2007).
[CrossRef]

Electron. Lett. (1)

C. E. Lee and H. F. Taylor, “Interferometric optical fibre sensors using internal mirrors,” Electron. Lett.24(4), 193–194 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

Kyuma, T. Shuichi Tai, Sawada, and M. Nunoshita, “Fiber-optic instrument for temperature measurement,” IEEE J. Quantum Electron.18(4), 676–679 (1982).
[CrossRef]

IEEE J. Solid-State Circuits (1)

G. C. M. Meijer, A. J. M. Boomkamp, and R. J. Duguesnoy, “An accurate biomedical temperature transducer with on-chip microcomputer interfacing,” IEEE J. Solid-State Circuits23(6), 1405–1410 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. D. Kersey and T. A. Berkoff, “Fiberoptic Bragg-grating differential-temperature sensor,” IEEE Photon. Technol. Lett.4(10), 1183–1185 (1992).
[CrossRef]

Z. Y. Huang, Y. Z. Zhu, and X. P. Chen, “Intrinsic fabry-perot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett.17(11), 2403–2405 (2005).
[CrossRef]

IEEE Sens. J. (1)

Y. Zhao, M. Rong, and Y. Liao, “Fiber-optic temperature sensor used for oil well based on semiconductor optical absorption,” IEEE Sens. J.3(4), 400–403 (2003).
[CrossRef]

J. Appl. Phys. (2)

D. P. Partlow, S. R. Gurkovich, K. C. Radford, and L. J. Denes, “Switchable vanadium-oxide films by a sol-gel process,” J. Appl. Phys.70(1), 443–452 (1991).
[CrossRef]

P. Singh and D. Kaur, “Influence of film thickness on texture and electrical and optical properties of room temperature deposited nanocrystalline V2O5 thin films,” J. Appl. Phys.103(4), 043507 (2008).
[CrossRef]

J. Korean Phys. Soc. (1)

C.-H. Lee, J. Lee, M.-K. Kim, and K. T. Kim, “Characteristics of a fiber Bragg grating temperature sensor using the thermal strain of an external tube,” J. Korean Phys. Soc.59(5), 3188–3191 (2011).

J. Lightwave Technol. (1)

J. Nanopart. Res. (1)

W. J. Shen, K. W. Sun, and C. S. Lee, “Electrical characterization and Raman spectroscopy of individual vanadium pentoxide nanowire,” J. Nanopart. Res.13(10), 4929–4936 (2011).
[CrossRef]

J. Phys. Chem. (2)

N. Das, H. Eckert, H. Hu, I. E. Wachs, J. F. Walzer, and F. J. Feher, “Bonding states of surface vanadium (V) oxide phases on silica: structural characterization by vanadium-51 NMR and Raman spectroscopy,” J. Phys. Chem.97(31), 8240–8243 (1993).
[CrossRef]

G. T. Went, S. T. Oyama, and A. T. Bell, “Laser Raman spectroscopy of supported vanadium oxide catalysts,” J. Phys. Chem.94(10), 4240–4246 (1990).
[CrossRef]

Mater. Res. Bull. (1)

E. Cavanna, J. P. Segaud, and J. Livage, “Optical switching of Au-doped VO2 sol-gel films,” Mater. Res. Bull.34(2), 167–177 (1999).
[CrossRef]

Microelectron. J. (2)

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

R. A. Bianchi, F. Vinci Dos Santos, J. M. Karam, B. Courtois, F. Pressecq, and S. Sifflet, “CMOS-compatible smart temperature sensors,” Microelectron. J.29(9), 627–636 (1998).
[CrossRef]

Nanotechnology (1)

A. Dhawan and J. F. Muth, “Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix,” Nanotechnology17(10), 2504–2511 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Zhao and Y. Liao, “Compensation technology for a novel reflex optical fiber temperature sensor used under offshore oil well,” Opt. Commun.215(1–3), 11–16 (2003).
[CrossRef]

Opt. Lett. (2)

Optik-International Journal for Light and Electron Optics (1)

X. Chen and J. Dai, “Optical switch with low-phase transition temperature based on thin nanocrystalline VOx film,” Optik-International Journal for Light and Electron Optics121(16), 1529–1533 (2010).
[CrossRef]

Phys. Rev. B (1)

H. Katzke, P. Toledano, and W. Depmeier, “Theory of morphotropic transformations in vanadium oxides,” Phys. Rev. B68(2), 024109 (2003).
[CrossRef]

Physica (1)

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica34(1), 149–154 (1967).
[CrossRef]

Rev. Sci. Instrum. (2)

Z. Zhang, K. T. V. Grattan, and A. W. Palmer, “A novel signal-processing scheme for a fluorescence based fiber optic temperature sensor,” Rev. Sci. Instrum.62(7), 1735–1742 (1991).
[CrossRef]

K. T. V. Grattan, A. W. Palmer, and Z. Zhang, “Development of a high-temperature fiber-optic thermometer probe using fluorescent decay,” Rev. Sci. Instrum.62(5), 1210–1213 (1991).
[CrossRef]

Sens. Actuators A Phys. (2)

F. R. Riedijk and J. H. Huijsing, “An integrated absolute temperature sensor with sigma-delta A/D conversion,” Sens. Actuators A Phys.24, 249–256 (1996).

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brandle, “Reliability of fiber Bragg grating based sensors for downhole applications,” Sens. Actuators A Phys.103(3), 364–376 (2003).
[CrossRef]

Solid State Ion. (1)

S. H. Lee, H. M. Cheong, M. J. Seong, P. Liu, C. E. Tracy, A. Mascarenhas, and S. K. Deb, “Raman spectroscopic studies of amorphous vanadium oxide thin films,” Solid State Ion.165(1), 111–116 (2003).
[CrossRef]

Thin Solid Films (2)

M. H. Lee and M. G. Kim, “RTA and stoichiometry effect on the thermochromism of VO2 thin films,” Thin Solid Films286(1), 219–222 (1996).
[CrossRef]

P. Jin and S. Tanemura, “V1−xMoxO2 thermochromic films deposited by reactive magnetron sputtering,” Thin Solid Films281-282(1-2), 239–242 (1996).
[CrossRef]

Other (2)

J. I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, 1971).

Q. Chen and P. Lu, “Fiber Bragg gratings and their applications as temperature and humidity sensors,” Atomic, Molecular, and Optical Physics, L. T. Chen ed. (Nova Science Publishers, 2008), pp. 235–260.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Pulsed laser deposition to deposit vanadium oxide on the tip of an optical fiber, (b) Pulsed electron beam deposition (PED) of fused silica on top of an annealed vanadium oxide film so as to protect the film before fusion to another fiber, and (c) Schematic showing the PED process for depositing fused silica on the VOx film over the optical fiber tip.

Fig. 2
Fig. 2

(a) Application of plasma arcs to the vanadium oxide film deposited on the tip of an optical fiber, and (b) Effect of application of plasma arcs to the vanadium oxide film deposited on the tip of an optical fiber; An increase in the absorption edge was observed upon application of subsequent plasma arcs indicating the increase in crystallinity of the film.

Fig. 3
Fig. 3

(a) Schematic showing the formation of a tip based fiber sensor with vanadium oxide deposited on the tip of the fiber by using pulsed laser deposition, (b) A fiber with vanadium oxide on its tip after annealing of the film by the application of controlled plasma arcs, and (c) Schematic of the setup employed for evaluation of temperature dependence of the spectrum of the optical fiber containing the vanadium oxide film on the tip of the optical fiber.

Fig. 4
Fig. 4

(a) Schematic showing the formation of an inline fiber sensor with vanadium oxide incorporated inside the optical fiber matrix, (b) A fiber with an annealed vanadium oxide film incorporated inside an optical fiber matrix to form a continuous in-line fiber optic temperature sensor, and (c) Schematic of the setup employed for evaluation of temperature dependence of the spectrum of the optical fiber containing the vanadium oxide film inside the fiber matrix.

Fig. 5
Fig. 5

(a) Effect of temperature on Spectrum of an optical fiber containing an annealed Vanadium oxide film on the fiber tip, and (b) Effect of temperature on the optical transmission of an optical fiber, containing an annealed vanadium oxide film on its tip, evaluated at 561 nm wavelength of input radiation. The spectrum in (a) was normalized to the intensity of the room temperature spectrum at ~700 nm wavelength. The relatively weak hysteresis loop that is observed is consistent with VOx thin films [3032].

Fig. 6
Fig. 6

Effect of temperature on the normalized spectrum of the optical fiber, containing vanadium oxide film on the tip of the optical fiber, indicating a shift in the band edge upon increase in temperature around the optical fiber. The band edge comes back to nearly the original position upon cooling back to room temperature. The spectrum was normalized to the intensity of the room temperature spectrum at ~700 nm wavelength.

Fig. 7
Fig. 7

Effect of temperature on the spectrum of the optical fiber containing a vanadium oxide film inside the optical fiber matrix, indicating a shift in band edge upon increase in temperature around the optical fiber.

Fig. 8
Fig. 8

Raman Spectra for the VOx thin film deposited on the tip of the silica fiber. The peaks at 489 cm−1 and 701 cm−1 correspond to a crystalline phase of V2O5.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E g = E g,0 α T 2 β+T

Metrics