Abstract

Determination of magnetic anisotropy on perpendicular and longitudinal fields in most magneto-optical materials is usually essential in magnetic measurements. However, 3D information is still insufficient and may be misled due to only two spin vectors. The vacuum magneto-optical Faraday effect measurement (the transmission mode of magneto-optics technique) in an ultrahigh vacuum system, a new concept for the reconstruction of 3D magnetic anisotropy is introduced. The Faraday rotation in the ultrathin (magnetic film)/(optical crystal) system exhibits a polar plane oscillation as a function of incidence angle. The crystal birefringence is responsible for causing the oscillation. The Faraday rotation, which consists of crystal optics and magneto-optics, originates from the crystal and the ultrathin film, respectively. Alternatively, we clarify a debate that the easy axis of the Co/ZnO(0001) film is only located at the plane. Through the observation of the angle-dependent coercivity, the magnetic easy axis in the proposed multilayer structure including double anisotropy is proposed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Š. Višňovský, Optics in Magnetic Multilayers and Nanostructures (CRC/Taylor & Francis, 2006).
  2. W.-K. Tse and A. H. MacDonald, “Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators,” Phys. Rev. Lett.105(5), 057401 (2010).
    [CrossRef] [PubMed]
  3. W.-K. Tse and A. H. MacDonald, “Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized Hall systems,” Phys. Rev. B84(20), 205327 (2011).
    [CrossRef]
  4. J. Li, Z. Y. Wang, A. Tan, P. A. Glans, E. Arenholz, C. Hwang, J. Shi, and Z. Q. Qiu, “Magnetic dead layer at the interface between a Co film and the topological insulator Bi_{2}Se_{3},” Phys. Rev. B86(5), 054430 (2012).
    [CrossRef]
  5. Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the Spin Hall effect in semiconductors,” Science306(5703), 1910–1913 (2004).
    [CrossRef] [PubMed]
  6. S. Matsuzaka, Y. Ohno, and H. Ohno, “Scanning Kerr microscopy of the spin hall effect in n-doped GaAs with various doping concentration,” Journal of Superconductivity and Novel Magnetism23(1), 37–39 (2010).
    [CrossRef]
  7. B. A. Glushko and V. O. Chaltykyan, “Magnetic properties of a diamagnetic gas in a resonance radiation field,” Soviet Journal of Quantum Electronics12(11), 1388–1390 (1982).
    [CrossRef]
  8. G. Siva Ramaiah and Y. Pan, “Thermodynamic and magnetic properties of surface Fe3+ species on quartz: effects of gamma-ray irradiation and implications for aerosol–radiation interactions,” Phys. Chem. Miner.39(6), 515–523 (2012).
    [CrossRef]
  9. M. Faraday, Faraday's Diary, Begin from note #7504 (13 Sep 1845), 2nd ed. (HR Direct, 2008), Vol. IV.
  10. S. Kyle, C. Turhan, D. B. Joshua, V. Ilya, and A. A. Chabanov, “Enhanced transmission and giant Faraday effect in magnetic metal–dielectric photonic structures,” J. Phys. D Appl. Phys.46(16), 165002 (2013).
    [CrossRef]
  11. A. B. Khanikaev, A. B. Baryshev, P. B. Lim, H. Uchida, M. Inoue, A. G. Zhdanov, A. A. Fedyanin, A. I. Maydykovskiy, and O. A. Aktsipetrov, “Nonlinear Verdet law in magnetophotonic crystals: Interrelation between Faraday and Borrmann effects,” Phys. Rev. B78(19), 193102 (2008).
    [CrossRef]
  12. G. X. Du, S. Saito, and M. Takahashi, “Tailoring the Faraday effect by birefringence of two dimensional plasmonic nanorod array,” Appl. Phys. Lett.99(19), 191107 (2011).
    [CrossRef]
  13. N. B. Baranova, Y. V. Bogdanov, and B. Y. Zel’Dovich, “Electrical analog of the Faraday effect and other new optical effects in liquids,” Opt. Commun.22(2), 243–247 (1977).
    [CrossRef]
  14. T. S. Pennanen, S. Ikäläinen, P. Lantto, and J. Vaara, “Nuclear spin optical rotation and Faraday effect in gaseous and liquid water,” J. Chem. Phys.136(18), 184502 (2012).
    [CrossRef] [PubMed]
  15. R. Brunetton and J. Monin, “Highly efficient low field magneto-optic modulator,” J. Opt.17(4), 191–196 (1986).
    [CrossRef]
  16. B. Segard and J. M. Carpentier, “Millimetre polarisation spectrometer for paramagnetic gas molecules,” J. Phys. E Sci. Instrum.14(4), 442–447 (1981).
    [CrossRef]
  17. J. P. Woerdman, F. J. Blok, M. Kristensen, and C. A. Schrama, “Multiperturber effects in the Faraday spectrum of Rb atoms immersed in a high-density Xe gas,” Phys. Rev. A53(2), 1183–1186 (1996).
    [CrossRef] [PubMed]
  18. M. Kristensen, F. J. Blok, M. A. van Eijkelenborg, G. Nienhuis, and J. P. Woerdman, “Onset of a collisional modification of the Faraday effect in a high-density atomic gas,” Phys. Rev. A51(2), 1085–1096 (1995).
  19. M. O. Takada, Hiroshi, Sugiyama, and Naoshi, “Faraday Rotation Effect of Intracluster Magnetic Field on Cosmic Microwave Background Polarization,” arXiv:astro-ph/0112412 (2001).
  20. A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature435(7042), 655–657 (2005).
    [CrossRef] [PubMed]
  21. A. Kirilyuk, A. V. Kimel, and T. Rasing, “Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys,” Rep. Prog. Phys.76(2), 026501 (2013).
    [CrossRef] [PubMed]
  22. B. S. Chun, H.-H. Nahm, M. Abid, H.-C. Wu, Y.-S. Kim, I. C. Chu, and C. Hwang, “Positive exchange bias in thin film multilayers produced with nano-oxide layer,” Appl. Phys. Lett.102(25), 252406 (2013).
    [CrossRef]
  23. S. H. Chung, A. Hoffmann, and M. Grimsditch, “Interplay between exchange bias and uniaxial anisotropy in a ferromagnetic/antiferromagnetic exchange-coupled system,” Phys. Rev. B71(21), 214430 (2005).
    [CrossRef]
  24. Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol.8(6), 438–444 (2013).
    [CrossRef] [PubMed]
  25. E. Młyńczak, P. Luches, S. Valeri, and J. Korecki, “NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure,” J. Appl. Phys.113(23), 234315 (2013).
    [CrossRef]
  26. Y. A. Lisovskii, E. G. Knizhnik, V. L. Stolyarov, and L. K. Fionova, “The structure and magnetic properties of Co-Cr thin films for perpendicular recording,” Mater. Chem. Phys.44(3), 239–244 (1996).
    [CrossRef]
  27. W. M. Li, W. K. Lim, J. Z. Shi, and J. Ding, “The effect of capped layer thickness on switching behavior in perpendicular CoCrPt based coupled granular/continuous media,” J. Magn. Magn. Mater.340, 50–56 (2013).
    [CrossRef]
  28. D. Chiba, M. Kawaguchi, S. Fukami, N. Ishiwata, K. Shimamura, K. Kobayashi, and T. Ono, “Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization,” Nat Commun3, 888 (2012).
    [CrossRef] [PubMed]
  29. T. H. E. Lahtinen, K. J. A. Franke, and S. van Dijken, “Electric-field control of magnetic domain wall motion and local magnetization reversal,” Sci Rep2, 258 (2012).
    [CrossRef] [PubMed]
  30. X. Chen, X. Qian, K. Meng, J. Zhao, and Y. Ji, “The measurement of magneto-optical Kerr effect of ultrathin films in a pulsed magnetic field,” Measurement46(1), 52–56 (2013).
    [CrossRef]
  31. S. Pathak and M. Sharma, “Magneto-optical Kerr effect measurements on highly ordered nanomagnet arrays,” J. Appl. Phys.111(7), 07E331 (2012).
    [CrossRef]
  32. M. Ghanaatshoar and M. Moradi, “Magneto-optical Kerr-effect enhancement in glass/Cu/SnO2/Co/SnO2 thin films,” Opt. Eng.50(9), 093801 (2011).
    [CrossRef]
  33. Y. Halahovets, P. Siffalovic, M. Jergel, R. Senderak, E. Majkova, S. Luby, I. Kostic, B. Szymanski, and F. Stobiecki, “Scanning magneto-optical Kerr microscope with auto-balanced detection scheme,” Rev. Sci. Instrum.82(8), 083706 (2011).
    [CrossRef] [PubMed]
  34. X. Wang, J. Lian, G. T. Wang, P. Song, P. Li, and S. Gao, “Longitude magneto optical Kerr effect of Fe/GaAs (001) with Al overlayers,” J. Magn. Magn. Mater.323(22), 2711–2716 (2011).
    [CrossRef]
  35. J. M. Teixeira, R. Lusche, J. Ventura, R. Fermento, F. Carpinteiro, J. P. Araujo, J. B. Sousa, S. Cardoso, and P. P. Freitas, “Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials,” Rev. Sci. Instrum.82(4), 043902 (2011).
    [CrossRef] [PubMed]
  36. A. Barman, T. Kimura, Y. Otani, Y. Fukuma, K. Akahane, and S. Meguro, “Benchtop time-resolved magneto-optical Kerr magnetometer,” Rev. Sci. Instrum.79(12), 123905 (2008).
    [CrossRef] [PubMed]
  37. S. Polisetty, J. Scheffler, S. Sahoo, Y. Wang, T. Mukherjee, X. He, and Ch. Binek, “Optimization of magneto-optical Kerr setup: Analyzing experimental assemblies using Jones matrix formalism,” Rev. Sci. Instrum.79(5), 055107 (2008).
    [CrossRef] [PubMed]
  38. M. Cormier, J. Ferré, A. Mougin, J.-P. Cromières, and V. Klein, “High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics,” Rev. Sci. Instrum.79(3), 033706 (2008).
    [CrossRef] [PubMed]
  39. D. A. Allwood, P. R. Seem, S. Basu, P. W. Fry, U. J. Gibson, and R. P. Cowburn, “Over 40% transverse Kerr effect from Ni80Fe20,” Appl. Phys. Lett.92(7), 072503 (2008).
    [CrossRef]
  40. S. R. A. Bowden, K. K. L. Ahmed, and U. J. Gibson, “Longitudinal magneto-optic Kerr effect detection of latching vortex magnetization chirality in individual mesoscale rings,” Appl. Phys. Lett.91(23), 232505 (2007).
    [CrossRef]
  41. P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, “Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements,” J. Appl. Phys.100(9), 093910 (2006).
    [CrossRef]
  42. C. Nistor, G. S. D. Beach, and J. L. Erskine, “Versatile magneto-optic Kerr effect polarimeter for studies of domain-wall dynamics in magnetic nanostructures,” Rev. Sci. Instrum.77(10), 103901 (2006).
    [CrossRef]
  43. A. Westphalen, T. Schmitte, K. Westerholt, and H. Zabel, “Bragg magneto-optical Kerr effect measurements at Co stripe arrays on Fe(001),” J. Appl. Phys.97(7), 073909 (2005).
    [CrossRef]
  44. N. Mikuszeit, S. Pütter, R. Frömter, and H. P. Oepen, “Magneto-optic Kerr effect: Incorporating the nonlinearities of the analyzer into static photometric ellipsometry analysis,” J. Appl. Phys.97(10), 103107 (2005).
    [CrossRef]
  45. T. Mewes, H. Nembach, M. Rickart, and B. Hillebrands, “Separation of the first- and second-order contributions in magneto-optic Kerr effect magnetometry of epitaxial FeMn/NiFe bilayers,” J. Appl. Phys.95(10), 5324 (2004).
    [CrossRef]
  46. D. A. Allwood, X. Gang, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys.36(18), 2175–2182 (2003).
    [CrossRef]
  47. P. N. Argyres, “Theory of the Faraday and Kerr Effects in Ferromagnetics,” Phys. Rev.97(2), 334–345 (1955).
    [CrossRef]
  48. P. R. Bandaru, T. D. Sands, Y. Kubota, and E. E. Marinero, “Decoupling the structural and magnetic phase transformations in magneto-optic MnBi thin films by the partial substitution of Cr for Mn,” Appl. Phys. Lett.72(18), 2337–2339 (1998).
    [CrossRef]
  49. Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71(3), 1243–1255 (2000).
    [CrossRef]
  50. S. Wittekoek and D. E. Lacklison, “Investigation of the Origin of the Anomalous Faraday Rotation of BixCa3-xFe3.5+0.5 xV1.5-0.5xO12 by means of the magneto-optical Kerr effect,” Phys. Rev. Lett.28(12), 740–743 (1972).
    [CrossRef]
  51. J. Pommier, P. Meyer, G. Pénissard, J. Ferré, P. Bruno, and D. Renard, “Magnetization reversal in ultrathin ferromagnetic films with perpendicular anistropy: domain observations,” Phys. Rev. Lett.65(16), 2054–2057 (1990).
    [CrossRef] [PubMed]
  52. E. R. Moog, C. Liu, S. D. Bader, and J. Zak, “Thickness and polarization dependence of the magnetooptic signal from ultrathin ferromagnetic films,” Phys. Rev. B Condens. Matter39(10), 6949–6956 (1989).
    [CrossRef] [PubMed]
  53. S. Visnovsk, M. Nývlt, V. Prosser, R. Lopusník, R. Urban, J. Ferré, G. Pénissard, D. Renard, and R. Krishnan, “Polar magneto-optics in simple ultrathin-magnetic-film structures,” Phys. Rev. B Condens. Matter52(2), 1090–1106 (1995).
    [CrossRef] [PubMed]
  54. M. Kučera, P. Beránková, K. Nitsch, and M. Matyáš., “Low-temperature Faraday effect in charge-uncompensated garnet Ca:YIG,” J. Magn. Magn. Mater.157–158, 323–325 (1996).
    [CrossRef]
  55. J. Ostorero, H. Le Gall, M. Guillot, and A. Marchand, “Faraday effect in gadolinium iron garnet,” Magnetics, IEEE Transactions on22(5), 1242–1244 (1986).
    [CrossRef]
  56. N. Xiao-Jing and H. Min, “Faraday effect optical current/magnetic field sensors based on cerium-substituted yttrium iron garnet single crystal,” in Power and Energy Engineering Conference (APPEEC),2010Asia-Pacific, 2010), 1–4.
  57. E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc 1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett.99(1), 011111 (2011).
    [CrossRef]
  58. I. Mukhin, A. Voitovich, O. Palashov, and E. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun.282(10), 1969–1972 (2009).
    [CrossRef]
  59. M. I. Bakunov, R. V. Mikhaylovskiy, and S. B. Bodrov, “Probing ultrafast optomagnetism by terahertz Cherenkov radiation,” Phys. Rev. B86(13), 134405 (2012).
    [CrossRef]
  60. C. W. Su, S. C. Chang, and Y. C. Chang, “Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films,” AIP Advances3(7), 072125 (2013).
    [CrossRef]
  61. S. D. Bader, E. R. Moog, and P. Grünberg, “Magnetic hysteresis of epitaxially-deposited iron in the monolayer range: A Kerr effect experiment in surface magnetism,” J. Magn. Magn. Mater.53(4), L295–L298 (1986).
    [CrossRef]
  62. L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
    [CrossRef]
  63. J. S. Jiang, E. E. Fullerton, M. Grimsditch, C. H. Sowers, and S. D. Bader, “Exchange-spring behavior in epitaxial hard/soft magnetic bilayer films,” J. Appl. Phys.83(11), 6238 (1998).
    [CrossRef]
  64. D. Li, M. Freitag, J. Pearson, Z. Q. Qiu, and S. D. Bader, “Magnetic phases of ultrathin Fe grown on Cu(100) as epitaxial wedges,” Phys. Rev. Lett.72(19), 3112–3115 (1994).
    [CrossRef] [PubMed]
  65. C. Liu and S. D. Bader, “Two-dimensional magnetic phase transition of ultrathin iron films on Pd(100),” J. Appl. Phys.67(9), 5758–5760 (1990).
    [CrossRef]
  66. C. Liu, E. R. Moog, and S. D. Bader, “Polar Kerr-effect observation of perpendicular surface anisotropy for ultrathin fcc Fe Grown on Cu(100),” Phys. Rev. Lett.60(23), 2422–2425 (1988).
    [CrossRef] [PubMed]
  67. Z. Q. Qiu, J. Pearson, and S. D. Bader, “Oscillatory interlayer magnetic coupling of wedged Co/Cu/Co sandwiches grown on Cu(100) by molecular beam epitaxy,” Phys. Rev. B Condens. Matter46(13), 8659–8662 (1992).
    [CrossRef] [PubMed]
  68. R. W. Wang, D. L. Mills, E. E. Fullerton, J. E. Mattson, and S. D. Bader, “Surface spin-flop transition in Fe/Cr(211) superlattices: Experiment and theory,” Phys. Rev. Lett.72(6), 920–923 (1994).
    [CrossRef] [PubMed]
  69. J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Elementary formula for the magneto-optic Kerr effect from model superlattices,” Appl. Phys. Lett.58(11), 1214 (1991).
    [CrossRef]
  70. J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Magneto-optics of multilayers with arbitrary magnetization directions,” Phys. Rev. B Condens. Matter43(8), 6423–6429 (1991).
    [CrossRef] [PubMed]
  71. J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater.89(1-2), 107–123 (1990).
    [CrossRef]
  72. J. Ye, W. He, Q. Wu, H.-L. Liu, X.-Q. Zhang, Z.-Y. Chen, and Z.-H. Cheng, “Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance,” Sci Rep3, 2148 (2013).
    [CrossRef] [PubMed]
  73. T. V. Murzina, A. V. Shebarshin, A. I. Maidykovski, E. A. Ganshina, O. A. Aktsipetrov, N. N. Novitski, A. I. Stognij, and A. Stashkevich, “Linear and nonlinear magnetooptics of planar Au/Co/Si nanostructures,” Thin Solid Films517(20), 5918–5921 (2009).
    [CrossRef]
  74. D. Li, Encyclopedia of Microfluidics and Nanofluidics (Springer-Verlag, 2008).
  75. M. A. Reed, P. S. Krstic, W. Guan, and X. Zhao, “System and method for trapping and measuring a charged particle in a liquid,” US Patent US20110031389 A1 (2013).
  76. S. Maat, L. Shen, C. Hou, H. Fujiwara, and G. J. Mankey, “Optical interference in magneto-optic Kerr-effect measurements of magnetic multilayers,” J. Appl. Phys.85(3), 1658–1662 (1999).
    [CrossRef]
  77. C.-W. Su, Y.-C. Chang, and S.-C. Chang, “Magnetic phase transition in ion-irradiated ultrathin CoN films via magneto-optic Faraday effect,” Materials6(11), 5247–5257 (2013).
    [CrossRef]
  78. C. W. Su, S. C. Chang, and Y. C. Chang, “Magneto-optic faraday effect on spin anisotropic co ultrathin films and post-nitridization on sno(002) crystal,” SPIN02(04), 1250017 (2012).
    [CrossRef]
  79. Y.-C. Chang, C.-W. Su, S.-C. Chang, and Y.-H. Lee, “Variations of surface roughness for deposition of Co-sputtered-ZnO(002) by Auger electron spectroscopy and surface magneto-optic Faraday effect,” Eur. Phys. J. Appl. Phys.53, 21501 (2011).
  80. G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, 1994).
  81. C. W. Su, M. S. Huang, T. H. Tsai, and S. C. Chang, “Verification of surface polarity of O-face ZnO(0001) by quantitative modeling analysis of Auger electron spectroscopy,” Appl. Surf. Sci.263, 174–181 (2012).
    [CrossRef]
  82. J.-m. Liu, Photonic Devices (Cambridge University Press, 2005).
  83. V. G. Bordo and H.-G. Rubahn, Optics and Spectroscopy at Surfaces and Interfaces (Wiley-VCH, Weinheim 2005).
  84. J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, and R. Sporken, “Thermally Activated Processes at the Co/ZnO Interface Elucidated Using High Energy X-rays,” J. Phys. Chem. C115(15), 7411–7418 (2011).
    [CrossRef]
  85. S. H. Su, H.-H. Chen, T.-H. Lee, Y.-J. Hsu, and J. C. A. Huang, “Thermally Activated Interaction of Co Growth with ZnO(101̅0) Surface,” J. Phys. Chem. C117(34), 17540–17547 (2013).
    [CrossRef]
  86. P. W. M. Blom, J. J. L. Horikx, P. J. H. Bloemen, C. A. Verschuren, H. W. Van Kesteren, H. Awano, and N. Ohta, “Spatial resolution of domain copying in a magnetic domain expansion readout disk,” Magnetics, IEEE Transactions on37(5), 3860–3864 (2001).
    [CrossRef]
  87. G. P. Zhao and X. L. Wang, “Nucleation, pinning, and coercivity in magnetic nanosystems: An analytical micromagnetic approach,” Phys. Rev. B74(1), 012409 (2006).
    [CrossRef]
  88. C.-W. Su, Y.-C. Chang, T.-H. Tsai, S.-C. Chang, and M.-S. Huang, “Formation of CoNx ultra-thin films during direct-current nitrogen ion sputtering in ultrahigh vacuum,” Thin Solid Films519(11), 3739–3744 (2011).
    [CrossRef]

2013

S. Kyle, C. Turhan, D. B. Joshua, V. Ilya, and A. A. Chabanov, “Enhanced transmission and giant Faraday effect in magnetic metal–dielectric photonic structures,” J. Phys. D Appl. Phys.46(16), 165002 (2013).
[CrossRef]

X. Chen, X. Qian, K. Meng, J. Zhao, and Y. Ji, “The measurement of magneto-optical Kerr effect of ultrathin films in a pulsed magnetic field,” Measurement46(1), 52–56 (2013).
[CrossRef]

A. Kirilyuk, A. V. Kimel, and T. Rasing, “Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys,” Rep. Prog. Phys.76(2), 026501 (2013).
[CrossRef] [PubMed]

B. S. Chun, H.-H. Nahm, M. Abid, H.-C. Wu, Y.-S. Kim, I. C. Chu, and C. Hwang, “Positive exchange bias in thin film multilayers produced with nano-oxide layer,” Appl. Phys. Lett.102(25), 252406 (2013).
[CrossRef]

Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol.8(6), 438–444 (2013).
[CrossRef] [PubMed]

E. Młyńczak, P. Luches, S. Valeri, and J. Korecki, “NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure,” J. Appl. Phys.113(23), 234315 (2013).
[CrossRef]

W. M. Li, W. K. Lim, J. Z. Shi, and J. Ding, “The effect of capped layer thickness on switching behavior in perpendicular CoCrPt based coupled granular/continuous media,” J. Magn. Magn. Mater.340, 50–56 (2013).
[CrossRef]

C. W. Su, S. C. Chang, and Y. C. Chang, “Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films,” AIP Advances3(7), 072125 (2013).
[CrossRef]

J. Ye, W. He, Q. Wu, H.-L. Liu, X.-Q. Zhang, Z.-Y. Chen, and Z.-H. Cheng, “Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance,” Sci Rep3, 2148 (2013).
[CrossRef] [PubMed]

C.-W. Su, Y.-C. Chang, and S.-C. Chang, “Magnetic phase transition in ion-irradiated ultrathin CoN films via magneto-optic Faraday effect,” Materials6(11), 5247–5257 (2013).
[CrossRef]

S. H. Su, H.-H. Chen, T.-H. Lee, Y.-J. Hsu, and J. C. A. Huang, “Thermally Activated Interaction of Co Growth with ZnO(101̅0) Surface,” J. Phys. Chem. C117(34), 17540–17547 (2013).
[CrossRef]

2012

C. W. Su, M. S. Huang, T. H. Tsai, and S. C. Chang, “Verification of surface polarity of O-face ZnO(0001) by quantitative modeling analysis of Auger electron spectroscopy,” Appl. Surf. Sci.263, 174–181 (2012).
[CrossRef]

C. W. Su, S. C. Chang, and Y. C. Chang, “Magneto-optic faraday effect on spin anisotropic co ultrathin films and post-nitridization on sno(002) crystal,” SPIN02(04), 1250017 (2012).
[CrossRef]

M. I. Bakunov, R. V. Mikhaylovskiy, and S. B. Bodrov, “Probing ultrafast optomagnetism by terahertz Cherenkov radiation,” Phys. Rev. B86(13), 134405 (2012).
[CrossRef]

D. Chiba, M. Kawaguchi, S. Fukami, N. Ishiwata, K. Shimamura, K. Kobayashi, and T. Ono, “Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization,” Nat Commun3, 888 (2012).
[CrossRef] [PubMed]

T. H. E. Lahtinen, K. J. A. Franke, and S. van Dijken, “Electric-field control of magnetic domain wall motion and local magnetization reversal,” Sci Rep2, 258 (2012).
[CrossRef] [PubMed]

S. Pathak and M. Sharma, “Magneto-optical Kerr effect measurements on highly ordered nanomagnet arrays,” J. Appl. Phys.111(7), 07E331 (2012).
[CrossRef]

J. Li, Z. Y. Wang, A. Tan, P. A. Glans, E. Arenholz, C. Hwang, J. Shi, and Z. Q. Qiu, “Magnetic dead layer at the interface between a Co film and the topological insulator Bi_{2}Se_{3},” Phys. Rev. B86(5), 054430 (2012).
[CrossRef]

T. S. Pennanen, S. Ikäläinen, P. Lantto, and J. Vaara, “Nuclear spin optical rotation and Faraday effect in gaseous and liquid water,” J. Chem. Phys.136(18), 184502 (2012).
[CrossRef] [PubMed]

G. Siva Ramaiah and Y. Pan, “Thermodynamic and magnetic properties of surface Fe3+ species on quartz: effects of gamma-ray irradiation and implications for aerosol–radiation interactions,” Phys. Chem. Miner.39(6), 515–523 (2012).
[CrossRef]

2011

G. X. Du, S. Saito, and M. Takahashi, “Tailoring the Faraday effect by birefringence of two dimensional plasmonic nanorod array,” Appl. Phys. Lett.99(19), 191107 (2011).
[CrossRef]

W.-K. Tse and A. H. MacDonald, “Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized Hall systems,” Phys. Rev. B84(20), 205327 (2011).
[CrossRef]

M. Ghanaatshoar and M. Moradi, “Magneto-optical Kerr-effect enhancement in glass/Cu/SnO2/Co/SnO2 thin films,” Opt. Eng.50(9), 093801 (2011).
[CrossRef]

Y. Halahovets, P. Siffalovic, M. Jergel, R. Senderak, E. Majkova, S. Luby, I. Kostic, B. Szymanski, and F. Stobiecki, “Scanning magneto-optical Kerr microscope with auto-balanced detection scheme,” Rev. Sci. Instrum.82(8), 083706 (2011).
[CrossRef] [PubMed]

X. Wang, J. Lian, G. T. Wang, P. Song, P. Li, and S. Gao, “Longitude magneto optical Kerr effect of Fe/GaAs (001) with Al overlayers,” J. Magn. Magn. Mater.323(22), 2711–2716 (2011).
[CrossRef]

J. M. Teixeira, R. Lusche, J. Ventura, R. Fermento, F. Carpinteiro, J. P. Araujo, J. B. Sousa, S. Cardoso, and P. P. Freitas, “Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials,” Rev. Sci. Instrum.82(4), 043902 (2011).
[CrossRef] [PubMed]

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc 1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett.99(1), 011111 (2011).
[CrossRef]

Y.-C. Chang, C.-W. Su, S.-C. Chang, and Y.-H. Lee, “Variations of surface roughness for deposition of Co-sputtered-ZnO(002) by Auger electron spectroscopy and surface magneto-optic Faraday effect,” Eur. Phys. J. Appl. Phys.53, 21501 (2011).

J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, and R. Sporken, “Thermally Activated Processes at the Co/ZnO Interface Elucidated Using High Energy X-rays,” J. Phys. Chem. C115(15), 7411–7418 (2011).
[CrossRef]

C.-W. Su, Y.-C. Chang, T.-H. Tsai, S.-C. Chang, and M.-S. Huang, “Formation of CoNx ultra-thin films during direct-current nitrogen ion sputtering in ultrahigh vacuum,” Thin Solid Films519(11), 3739–3744 (2011).
[CrossRef]

2010

W.-K. Tse and A. H. MacDonald, “Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators,” Phys. Rev. Lett.105(5), 057401 (2010).
[CrossRef] [PubMed]

S. Matsuzaka, Y. Ohno, and H. Ohno, “Scanning Kerr microscopy of the spin hall effect in n-doped GaAs with various doping concentration,” Journal of Superconductivity and Novel Magnetism23(1), 37–39 (2010).
[CrossRef]

2009

T. V. Murzina, A. V. Shebarshin, A. I. Maidykovski, E. A. Ganshina, O. A. Aktsipetrov, N. N. Novitski, A. I. Stognij, and A. Stashkevich, “Linear and nonlinear magnetooptics of planar Au/Co/Si nanostructures,” Thin Solid Films517(20), 5918–5921 (2009).
[CrossRef]

I. Mukhin, A. Voitovich, O. Palashov, and E. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun.282(10), 1969–1972 (2009).
[CrossRef]

2008

A. B. Khanikaev, A. B. Baryshev, P. B. Lim, H. Uchida, M. Inoue, A. G. Zhdanov, A. A. Fedyanin, A. I. Maydykovskiy, and O. A. Aktsipetrov, “Nonlinear Verdet law in magnetophotonic crystals: Interrelation between Faraday and Borrmann effects,” Phys. Rev. B78(19), 193102 (2008).
[CrossRef]

A. Barman, T. Kimura, Y. Otani, Y. Fukuma, K. Akahane, and S. Meguro, “Benchtop time-resolved magneto-optical Kerr magnetometer,” Rev. Sci. Instrum.79(12), 123905 (2008).
[CrossRef] [PubMed]

S. Polisetty, J. Scheffler, S. Sahoo, Y. Wang, T. Mukherjee, X. He, and Ch. Binek, “Optimization of magneto-optical Kerr setup: Analyzing experimental assemblies using Jones matrix formalism,” Rev. Sci. Instrum.79(5), 055107 (2008).
[CrossRef] [PubMed]

M. Cormier, J. Ferré, A. Mougin, J.-P. Cromières, and V. Klein, “High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics,” Rev. Sci. Instrum.79(3), 033706 (2008).
[CrossRef] [PubMed]

D. A. Allwood, P. R. Seem, S. Basu, P. W. Fry, U. J. Gibson, and R. P. Cowburn, “Over 40% transverse Kerr effect from Ni80Fe20,” Appl. Phys. Lett.92(7), 072503 (2008).
[CrossRef]

2007

S. R. A. Bowden, K. K. L. Ahmed, and U. J. Gibson, “Longitudinal magneto-optic Kerr effect detection of latching vortex magnetization chirality in individual mesoscale rings,” Appl. Phys. Lett.91(23), 232505 (2007).
[CrossRef]

2006

P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, “Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements,” J. Appl. Phys.100(9), 093910 (2006).
[CrossRef]

C. Nistor, G. S. D. Beach, and J. L. Erskine, “Versatile magneto-optic Kerr effect polarimeter for studies of domain-wall dynamics in magnetic nanostructures,” Rev. Sci. Instrum.77(10), 103901 (2006).
[CrossRef]

G. P. Zhao and X. L. Wang, “Nucleation, pinning, and coercivity in magnetic nanosystems: An analytical micromagnetic approach,” Phys. Rev. B74(1), 012409 (2006).
[CrossRef]

2005

A. Westphalen, T. Schmitte, K. Westerholt, and H. Zabel, “Bragg magneto-optical Kerr effect measurements at Co stripe arrays on Fe(001),” J. Appl. Phys.97(7), 073909 (2005).
[CrossRef]

N. Mikuszeit, S. Pütter, R. Frömter, and H. P. Oepen, “Magneto-optic Kerr effect: Incorporating the nonlinearities of the analyzer into static photometric ellipsometry analysis,” J. Appl. Phys.97(10), 103107 (2005).
[CrossRef]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature435(7042), 655–657 (2005).
[CrossRef] [PubMed]

S. H. Chung, A. Hoffmann, and M. Grimsditch, “Interplay between exchange bias and uniaxial anisotropy in a ferromagnetic/antiferromagnetic exchange-coupled system,” Phys. Rev. B71(21), 214430 (2005).
[CrossRef]

2004

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the Spin Hall effect in semiconductors,” Science306(5703), 1910–1913 (2004).
[CrossRef] [PubMed]

T. Mewes, H. Nembach, M. Rickart, and B. Hillebrands, “Separation of the first- and second-order contributions in magneto-optic Kerr effect magnetometry of epitaxial FeMn/NiFe bilayers,” J. Appl. Phys.95(10), 5324 (2004).
[CrossRef]

2003

D. A. Allwood, X. Gang, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys.36(18), 2175–2182 (2003).
[CrossRef]

2001

P. W. M. Blom, J. J. L. Horikx, P. J. H. Bloemen, C. A. Verschuren, H. W. Van Kesteren, H. Awano, and N. Ohta, “Spatial resolution of domain copying in a magnetic domain expansion readout disk,” Magnetics, IEEE Transactions on37(5), 3860–3864 (2001).
[CrossRef]

2000

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71(3), 1243–1255 (2000).
[CrossRef]

1999

S. Maat, L. Shen, C. Hou, H. Fujiwara, and G. J. Mankey, “Optical interference in magneto-optic Kerr-effect measurements of magnetic multilayers,” J. Appl. Phys.85(3), 1658–1662 (1999).
[CrossRef]

1998

J. S. Jiang, E. E. Fullerton, M. Grimsditch, C. H. Sowers, and S. D. Bader, “Exchange-spring behavior in epitaxial hard/soft magnetic bilayer films,” J. Appl. Phys.83(11), 6238 (1998).
[CrossRef]

P. R. Bandaru, T. D. Sands, Y. Kubota, and E. E. Marinero, “Decoupling the structural and magnetic phase transformations in magneto-optic MnBi thin films by the partial substitution of Cr for Mn,” Appl. Phys. Lett.72(18), 2337–2339 (1998).
[CrossRef]

1996

M. Kučera, P. Beránková, K. Nitsch, and M. Matyáš., “Low-temperature Faraday effect in charge-uncompensated garnet Ca:YIG,” J. Magn. Magn. Mater.157–158, 323–325 (1996).
[CrossRef]

Y. A. Lisovskii, E. G. Knizhnik, V. L. Stolyarov, and L. K. Fionova, “The structure and magnetic properties of Co-Cr thin films for perpendicular recording,” Mater. Chem. Phys.44(3), 239–244 (1996).
[CrossRef]

J. P. Woerdman, F. J. Blok, M. Kristensen, and C. A. Schrama, “Multiperturber effects in the Faraday spectrum of Rb atoms immersed in a high-density Xe gas,” Phys. Rev. A53(2), 1183–1186 (1996).
[CrossRef] [PubMed]

1995

M. Kristensen, F. J. Blok, M. A. van Eijkelenborg, G. Nienhuis, and J. P. Woerdman, “Onset of a collisional modification of the Faraday effect in a high-density atomic gas,” Phys. Rev. A51(2), 1085–1096 (1995).

S. Visnovsk, M. Nývlt, V. Prosser, R. Lopusník, R. Urban, J. Ferré, G. Pénissard, D. Renard, and R. Krishnan, “Polar magneto-optics in simple ultrathin-magnetic-film structures,” Phys. Rev. B Condens. Matter52(2), 1090–1106 (1995).
[CrossRef] [PubMed]

1994

D. Li, M. Freitag, J. Pearson, Z. Q. Qiu, and S. D. Bader, “Magnetic phases of ultrathin Fe grown on Cu(100) as epitaxial wedges,” Phys. Rev. Lett.72(19), 3112–3115 (1994).
[CrossRef] [PubMed]

R. W. Wang, D. L. Mills, E. E. Fullerton, J. E. Mattson, and S. D. Bader, “Surface spin-flop transition in Fe/Cr(211) superlattices: Experiment and theory,” Phys. Rev. Lett.72(6), 920–923 (1994).
[CrossRef] [PubMed]

1992

Z. Q. Qiu, J. Pearson, and S. D. Bader, “Oscillatory interlayer magnetic coupling of wedged Co/Cu/Co sandwiches grown on Cu(100) by molecular beam epitaxy,” Phys. Rev. B Condens. Matter46(13), 8659–8662 (1992).
[CrossRef] [PubMed]

1991

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Elementary formula for the magneto-optic Kerr effect from model superlattices,” Appl. Phys. Lett.58(11), 1214 (1991).
[CrossRef]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Magneto-optics of multilayers with arbitrary magnetization directions,” Phys. Rev. B Condens. Matter43(8), 6423–6429 (1991).
[CrossRef] [PubMed]

1990

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater.89(1-2), 107–123 (1990).
[CrossRef]

C. Liu and S. D. Bader, “Two-dimensional magnetic phase transition of ultrathin iron films on Pd(100),” J. Appl. Phys.67(9), 5758–5760 (1990).
[CrossRef]

L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
[CrossRef]

J. Pommier, P. Meyer, G. Pénissard, J. Ferré, P. Bruno, and D. Renard, “Magnetization reversal in ultrathin ferromagnetic films with perpendicular anistropy: domain observations,” Phys. Rev. Lett.65(16), 2054–2057 (1990).
[CrossRef] [PubMed]

1989

E. R. Moog, C. Liu, S. D. Bader, and J. Zak, “Thickness and polarization dependence of the magnetooptic signal from ultrathin ferromagnetic films,” Phys. Rev. B Condens. Matter39(10), 6949–6956 (1989).
[CrossRef] [PubMed]

1988

C. Liu, E. R. Moog, and S. D. Bader, “Polar Kerr-effect observation of perpendicular surface anisotropy for ultrathin fcc Fe Grown on Cu(100),” Phys. Rev. Lett.60(23), 2422–2425 (1988).
[CrossRef] [PubMed]

1986

S. D. Bader, E. R. Moog, and P. Grünberg, “Magnetic hysteresis of epitaxially-deposited iron in the monolayer range: A Kerr effect experiment in surface magnetism,” J. Magn. Magn. Mater.53(4), L295–L298 (1986).
[CrossRef]

J. Ostorero, H. Le Gall, M. Guillot, and A. Marchand, “Faraday effect in gadolinium iron garnet,” Magnetics, IEEE Transactions on22(5), 1242–1244 (1986).
[CrossRef]

R. Brunetton and J. Monin, “Highly efficient low field magneto-optic modulator,” J. Opt.17(4), 191–196 (1986).
[CrossRef]

1982

B. A. Glushko and V. O. Chaltykyan, “Magnetic properties of a diamagnetic gas in a resonance radiation field,” Soviet Journal of Quantum Electronics12(11), 1388–1390 (1982).
[CrossRef]

1981

B. Segard and J. M. Carpentier, “Millimetre polarisation spectrometer for paramagnetic gas molecules,” J. Phys. E Sci. Instrum.14(4), 442–447 (1981).
[CrossRef]

1977

N. B. Baranova, Y. V. Bogdanov, and B. Y. Zel’Dovich, “Electrical analog of the Faraday effect and other new optical effects in liquids,” Opt. Commun.22(2), 243–247 (1977).
[CrossRef]

1972

S. Wittekoek and D. E. Lacklison, “Investigation of the Origin of the Anomalous Faraday Rotation of BixCa3-xFe3.5+0.5 xV1.5-0.5xO12 by means of the magneto-optical Kerr effect,” Phys. Rev. Lett.28(12), 740–743 (1972).
[CrossRef]

1955

P. N. Argyres, “Theory of the Faraday and Kerr Effects in Ferromagnetics,” Phys. Rev.97(2), 334–345 (1955).
[CrossRef]

Abid, M.

B. S. Chun, H.-H. Nahm, M. Abid, H.-C. Wu, Y.-S. Kim, I. C. Chu, and C. Hwang, “Positive exchange bias in thin film multilayers produced with nano-oxide layer,” Appl. Phys. Lett.102(25), 252406 (2013).
[CrossRef]

Ahmed, K. K. L.

S. R. A. Bowden, K. K. L. Ahmed, and U. J. Gibson, “Longitudinal magneto-optic Kerr effect detection of latching vortex magnetization chirality in individual mesoscale rings,” Appl. Phys. Lett.91(23), 232505 (2007).
[CrossRef]

Akahane, K.

A. Barman, T. Kimura, Y. Otani, Y. Fukuma, K. Akahane, and S. Meguro, “Benchtop time-resolved magneto-optical Kerr magnetometer,” Rev. Sci. Instrum.79(12), 123905 (2008).
[CrossRef] [PubMed]

Aktsipetrov, O. A.

T. V. Murzina, A. V. Shebarshin, A. I. Maidykovski, E. A. Ganshina, O. A. Aktsipetrov, N. N. Novitski, A. I. Stognij, and A. Stashkevich, “Linear and nonlinear magnetooptics of planar Au/Co/Si nanostructures,” Thin Solid Films517(20), 5918–5921 (2009).
[CrossRef]

A. B. Khanikaev, A. B. Baryshev, P. B. Lim, H. Uchida, M. Inoue, A. G. Zhdanov, A. A. Fedyanin, A. I. Maydykovskiy, and O. A. Aktsipetrov, “Nonlinear Verdet law in magnetophotonic crystals: Interrelation between Faraday and Borrmann effects,” Phys. Rev. B78(19), 193102 (2008).
[CrossRef]

Allwood, D. A.

D. A. Allwood, P. R. Seem, S. Basu, P. W. Fry, U. J. Gibson, and R. P. Cowburn, “Over 40% transverse Kerr effect from Ni80Fe20,” Appl. Phys. Lett.92(7), 072503 (2008).
[CrossRef]

P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, “Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements,” J. Appl. Phys.100(9), 093910 (2006).
[CrossRef]

D. A. Allwood, X. Gang, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys.36(18), 2175–2182 (2003).
[CrossRef]

Araujo, J. P.

J. M. Teixeira, R. Lusche, J. Ventura, R. Fermento, F. Carpinteiro, J. P. Araujo, J. B. Sousa, S. Cardoso, and P. P. Freitas, “Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials,” Rev. Sci. Instrum.82(4), 043902 (2011).
[CrossRef] [PubMed]

Arenholz, E.

J. Li, Z. Y. Wang, A. Tan, P. A. Glans, E. Arenholz, C. Hwang, J. Shi, and Z. Q. Qiu, “Magnetic dead layer at the interface between a Co film and the topological insulator Bi_{2}Se_{3},” Phys. Rev. B86(5), 054430 (2012).
[CrossRef]

Argyres, P. N.

P. N. Argyres, “Theory of the Faraday and Kerr Effects in Ferromagnetics,” Phys. Rev.97(2), 334–345 (1955).
[CrossRef]

Awano, H.

P. W. M. Blom, J. J. L. Horikx, P. J. H. Bloemen, C. A. Verschuren, H. W. Van Kesteren, H. Awano, and N. Ohta, “Spatial resolution of domain copying in a magnetic domain expansion readout disk,” Magnetics, IEEE Transactions on37(5), 3860–3864 (2001).
[CrossRef]

Awschalom, D. D.

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the Spin Hall effect in semiconductors,” Science306(5703), 1910–1913 (2004).
[CrossRef] [PubMed]

Bader, S. D.

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71(3), 1243–1255 (2000).
[CrossRef]

J. S. Jiang, E. E. Fullerton, M. Grimsditch, C. H. Sowers, and S. D. Bader, “Exchange-spring behavior in epitaxial hard/soft magnetic bilayer films,” J. Appl. Phys.83(11), 6238 (1998).
[CrossRef]

R. W. Wang, D. L. Mills, E. E. Fullerton, J. E. Mattson, and S. D. Bader, “Surface spin-flop transition in Fe/Cr(211) superlattices: Experiment and theory,” Phys. Rev. Lett.72(6), 920–923 (1994).
[CrossRef] [PubMed]

D. Li, M. Freitag, J. Pearson, Z. Q. Qiu, and S. D. Bader, “Magnetic phases of ultrathin Fe grown on Cu(100) as epitaxial wedges,” Phys. Rev. Lett.72(19), 3112–3115 (1994).
[CrossRef] [PubMed]

Z. Q. Qiu, J. Pearson, and S. D. Bader, “Oscillatory interlayer magnetic coupling of wedged Co/Cu/Co sandwiches grown on Cu(100) by molecular beam epitaxy,” Phys. Rev. B Condens. Matter46(13), 8659–8662 (1992).
[CrossRef] [PubMed]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Elementary formula for the magneto-optic Kerr effect from model superlattices,” Appl. Phys. Lett.58(11), 1214 (1991).
[CrossRef]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Magneto-optics of multilayers with arbitrary magnetization directions,” Phys. Rev. B Condens. Matter43(8), 6423–6429 (1991).
[CrossRef] [PubMed]

C. Liu and S. D. Bader, “Two-dimensional magnetic phase transition of ultrathin iron films on Pd(100),” J. Appl. Phys.67(9), 5758–5760 (1990).
[CrossRef]

L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
[CrossRef]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater.89(1-2), 107–123 (1990).
[CrossRef]

E. R. Moog, C. Liu, S. D. Bader, and J. Zak, “Thickness and polarization dependence of the magnetooptic signal from ultrathin ferromagnetic films,” Phys. Rev. B Condens. Matter39(10), 6949–6956 (1989).
[CrossRef] [PubMed]

C. Liu, E. R. Moog, and S. D. Bader, “Polar Kerr-effect observation of perpendicular surface anisotropy for ultrathin fcc Fe Grown on Cu(100),” Phys. Rev. Lett.60(23), 2422–2425 (1988).
[CrossRef] [PubMed]

S. D. Bader, E. R. Moog, and P. Grünberg, “Magnetic hysteresis of epitaxially-deposited iron in the monolayer range: A Kerr effect experiment in surface magnetism,” J. Magn. Magn. Mater.53(4), L295–L298 (1986).
[CrossRef]

Bakunov, M. I.

M. I. Bakunov, R. V. Mikhaylovskiy, and S. B. Bodrov, “Probing ultrafast optomagnetism by terahertz Cherenkov radiation,” Phys. Rev. B86(13), 134405 (2012).
[CrossRef]

Balbashov, A. M.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Bandaru, P. R.

P. R. Bandaru, T. D. Sands, Y. Kubota, and E. E. Marinero, “Decoupling the structural and magnetic phase transformations in magneto-optic MnBi thin films by the partial substitution of Cr for Mn,” Appl. Phys. Lett.72(18), 2337–2339 (1998).
[CrossRef]

Baranova, N. B.

N. B. Baranova, Y. V. Bogdanov, and B. Y. Zel’Dovich, “Electrical analog of the Faraday effect and other new optical effects in liquids,” Opt. Commun.22(2), 243–247 (1977).
[CrossRef]

Barman, A.

A. Barman, T. Kimura, Y. Otani, Y. Fukuma, K. Akahane, and S. Meguro, “Benchtop time-resolved magneto-optical Kerr magnetometer,” Rev. Sci. Instrum.79(12), 123905 (2008).
[CrossRef] [PubMed]

Baryshev, A. B.

A. B. Khanikaev, A. B. Baryshev, P. B. Lim, H. Uchida, M. Inoue, A. G. Zhdanov, A. A. Fedyanin, A. I. Maydykovskiy, and O. A. Aktsipetrov, “Nonlinear Verdet law in magnetophotonic crystals: Interrelation between Faraday and Borrmann effects,” Phys. Rev. B78(19), 193102 (2008).
[CrossRef]

Basu, S.

D. A. Allwood, P. R. Seem, S. Basu, P. W. Fry, U. J. Gibson, and R. P. Cowburn, “Over 40% transverse Kerr effect from Ni80Fe20,” Appl. Phys. Lett.92(7), 072503 (2008).
[CrossRef]

Beach, G. S. D.

C. Nistor, G. S. D. Beach, and J. L. Erskine, “Versatile magneto-optic Kerr effect polarimeter for studies of domain-wall dynamics in magnetic nanostructures,” Rev. Sci. Instrum.77(10), 103901 (2006).
[CrossRef]

Beránková, P.

M. Kučera, P. Beránková, K. Nitsch, and M. Matyáš., “Low-temperature Faraday effect in charge-uncompensated garnet Ca:YIG,” J. Magn. Magn. Mater.157–158, 323–325 (1996).
[CrossRef]

Binek, Ch.

S. Polisetty, J. Scheffler, S. Sahoo, Y. Wang, T. Mukherjee, X. He, and Ch. Binek, “Optimization of magneto-optical Kerr setup: Analyzing experimental assemblies using Jones matrix formalism,” Rev. Sci. Instrum.79(5), 055107 (2008).
[CrossRef] [PubMed]

Bloemen, P. J. H.

P. W. M. Blom, J. J. L. Horikx, P. J. H. Bloemen, C. A. Verschuren, H. W. Van Kesteren, H. Awano, and N. Ohta, “Spatial resolution of domain copying in a magnetic domain expansion readout disk,” Magnetics, IEEE Transactions on37(5), 3860–3864 (2001).
[CrossRef]

Blok, F. J.

J. P. Woerdman, F. J. Blok, M. Kristensen, and C. A. Schrama, “Multiperturber effects in the Faraday spectrum of Rb atoms immersed in a high-density Xe gas,” Phys. Rev. A53(2), 1183–1186 (1996).
[CrossRef] [PubMed]

M. Kristensen, F. J. Blok, M. A. van Eijkelenborg, G. Nienhuis, and J. P. Woerdman, “Onset of a collisional modification of the Faraday effect in a high-density atomic gas,” Phys. Rev. A51(2), 1085–1096 (1995).

Blom, P. W. M.

P. W. M. Blom, J. J. L. Horikx, P. J. H. Bloemen, C. A. Verschuren, H. W. Van Kesteren, H. Awano, and N. Ohta, “Spatial resolution of domain copying in a magnetic domain expansion readout disk,” Magnetics, IEEE Transactions on37(5), 3860–3864 (2001).
[CrossRef]

Bodrov, S. B.

M. I. Bakunov, R. V. Mikhaylovskiy, and S. B. Bodrov, “Probing ultrafast optomagnetism by terahertz Cherenkov radiation,” Phys. Rev. B86(13), 134405 (2012).
[CrossRef]

Bogdanov, Y. V.

N. B. Baranova, Y. V. Bogdanov, and B. Y. Zel’Dovich, “Electrical analog of the Faraday effect and other new optical effects in liquids,” Opt. Commun.22(2), 243–247 (1977).
[CrossRef]

Bowden, S. R. A.

S. R. A. Bowden, K. K. L. Ahmed, and U. J. Gibson, “Longitudinal magneto-optic Kerr effect detection of latching vortex magnetization chirality in individual mesoscale rings,” Appl. Phys. Lett.91(23), 232505 (2007).
[CrossRef]

Brunetton, R.

R. Brunetton and J. Monin, “Highly efficient low field magneto-optic modulator,” J. Opt.17(4), 191–196 (1986).
[CrossRef]

Bruno, P.

J. Pommier, P. Meyer, G. Pénissard, J. Ferré, P. Bruno, and D. Renard, “Magnetization reversal in ultrathin ferromagnetic films with perpendicular anistropy: domain observations,” Phys. Rev. Lett.65(16), 2054–2057 (1990).
[CrossRef] [PubMed]

Cantwell, P. R.

P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, “Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements,” J. Appl. Phys.100(9), 093910 (2006).
[CrossRef]

Cardoso, S.

J. M. Teixeira, R. Lusche, J. Ventura, R. Fermento, F. Carpinteiro, J. P. Araujo, J. B. Sousa, S. Cardoso, and P. P. Freitas, “Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials,” Rev. Sci. Instrum.82(4), 043902 (2011).
[CrossRef] [PubMed]

Carpentier, J. M.

B. Segard and J. M. Carpentier, “Millimetre polarisation spectrometer for paramagnetic gas molecules,” J. Phys. E Sci. Instrum.14(4), 442–447 (1981).
[CrossRef]

Carpinteiro, F.

J. M. Teixeira, R. Lusche, J. Ventura, R. Fermento, F. Carpinteiro, J. P. Araujo, J. B. Sousa, S. Cardoso, and P. P. Freitas, “Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials,” Rev. Sci. Instrum.82(4), 043902 (2011).
[CrossRef] [PubMed]

Chabanov, A. A.

S. Kyle, C. Turhan, D. B. Joshua, V. Ilya, and A. A. Chabanov, “Enhanced transmission and giant Faraday effect in magnetic metal–dielectric photonic structures,” J. Phys. D Appl. Phys.46(16), 165002 (2013).
[CrossRef]

Chaltykyan, V. O.

B. A. Glushko and V. O. Chaltykyan, “Magnetic properties of a diamagnetic gas in a resonance radiation field,” Soviet Journal of Quantum Electronics12(11), 1388–1390 (1982).
[CrossRef]

Chang, S. C.

C. W. Su, S. C. Chang, and Y. C. Chang, “Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films,” AIP Advances3(7), 072125 (2013).
[CrossRef]

C. W. Su, S. C. Chang, and Y. C. Chang, “Magneto-optic faraday effect on spin anisotropic co ultrathin films and post-nitridization on sno(002) crystal,” SPIN02(04), 1250017 (2012).
[CrossRef]

C. W. Su, M. S. Huang, T. H. Tsai, and S. C. Chang, “Verification of surface polarity of O-face ZnO(0001) by quantitative modeling analysis of Auger electron spectroscopy,” Appl. Surf. Sci.263, 174–181 (2012).
[CrossRef]

Chang, S.-C.

C.-W. Su, Y.-C. Chang, and S.-C. Chang, “Magnetic phase transition in ion-irradiated ultrathin CoN films via magneto-optic Faraday effect,” Materials6(11), 5247–5257 (2013).
[CrossRef]

C.-W. Su, Y.-C. Chang, T.-H. Tsai, S.-C. Chang, and M.-S. Huang, “Formation of CoNx ultra-thin films during direct-current nitrogen ion sputtering in ultrahigh vacuum,” Thin Solid Films519(11), 3739–3744 (2011).
[CrossRef]

Y.-C. Chang, C.-W. Su, S.-C. Chang, and Y.-H. Lee, “Variations of surface roughness for deposition of Co-sputtered-ZnO(002) by Auger electron spectroscopy and surface magneto-optic Faraday effect,” Eur. Phys. J. Appl. Phys.53, 21501 (2011).

Chang, Y. C.

C. W. Su, S. C. Chang, and Y. C. Chang, “Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films,” AIP Advances3(7), 072125 (2013).
[CrossRef]

C. W. Su, S. C. Chang, and Y. C. Chang, “Magneto-optic faraday effect on spin anisotropic co ultrathin films and post-nitridization on sno(002) crystal,” SPIN02(04), 1250017 (2012).
[CrossRef]

Chang, Y.-C.

C.-W. Su, Y.-C. Chang, and S.-C. Chang, “Magnetic phase transition in ion-irradiated ultrathin CoN films via magneto-optic Faraday effect,” Materials6(11), 5247–5257 (2013).
[CrossRef]

C.-W. Su, Y.-C. Chang, T.-H. Tsai, S.-C. Chang, and M.-S. Huang, “Formation of CoNx ultra-thin films during direct-current nitrogen ion sputtering in ultrahigh vacuum,” Thin Solid Films519(11), 3739–3744 (2011).
[CrossRef]

Y.-C. Chang, C.-W. Su, S.-C. Chang, and Y.-H. Lee, “Variations of surface roughness for deposition of Co-sputtered-ZnO(002) by Auger electron spectroscopy and surface magneto-optic Faraday effect,” Eur. Phys. J. Appl. Phys.53, 21501 (2011).

Chen, H.-H.

S. H. Su, H.-H. Chen, T.-H. Lee, Y.-J. Hsu, and J. C. A. Huang, “Thermally Activated Interaction of Co Growth with ZnO(101̅0) Surface,” J. Phys. Chem. C117(34), 17540–17547 (2013).
[CrossRef]

Chen, X.

X. Chen, X. Qian, K. Meng, J. Zhao, and Y. Ji, “The measurement of magneto-optical Kerr effect of ultrathin films in a pulsed magnetic field,” Measurement46(1), 52–56 (2013).
[CrossRef]

Chen, Z.-Y.

J. Ye, W. He, Q. Wu, H.-L. Liu, X.-Q. Zhang, Z.-Y. Chen, and Z.-H. Cheng, “Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance,” Sci Rep3, 2148 (2013).
[CrossRef] [PubMed]

Cheng, Z.-H.

J. Ye, W. He, Q. Wu, H.-L. Liu, X.-Q. Zhang, Z.-Y. Chen, and Z.-H. Cheng, “Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance,” Sci Rep3, 2148 (2013).
[CrossRef] [PubMed]

Chiba, D.

D. Chiba, M. Kawaguchi, S. Fukami, N. Ishiwata, K. Shimamura, K. Kobayashi, and T. Ono, “Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization,” Nat Commun3, 888 (2012).
[CrossRef] [PubMed]

Chu, I. C.

B. S. Chun, H.-H. Nahm, M. Abid, H.-C. Wu, Y.-S. Kim, I. C. Chu, and C. Hwang, “Positive exchange bias in thin film multilayers produced with nano-oxide layer,” Appl. Phys. Lett.102(25), 252406 (2013).
[CrossRef]

Chun, B. S.

B. S. Chun, H.-H. Nahm, M. Abid, H.-C. Wu, Y.-S. Kim, I. C. Chu, and C. Hwang, “Positive exchange bias in thin film multilayers produced with nano-oxide layer,” Appl. Phys. Lett.102(25), 252406 (2013).
[CrossRef]

Chung, S. H.

S. H. Chung, A. Hoffmann, and M. Grimsditch, “Interplay between exchange bias and uniaxial anisotropy in a ferromagnetic/antiferromagnetic exchange-coupled system,” Phys. Rev. B71(21), 214430 (2005).
[CrossRef]

Cooke, M. D.

D. A. Allwood, X. Gang, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys.36(18), 2175–2182 (2003).
[CrossRef]

Cormier, M.

M. Cormier, J. Ferré, A. Mougin, J.-P. Cromières, and V. Klein, “High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics,” Rev. Sci. Instrum.79(3), 033706 (2008).
[CrossRef] [PubMed]

Cowburn, R. P.

D. A. Allwood, P. R. Seem, S. Basu, P. W. Fry, U. J. Gibson, and R. P. Cowburn, “Over 40% transverse Kerr effect from Ni80Fe20,” Appl. Phys. Lett.92(7), 072503 (2008).
[CrossRef]

D. A. Allwood, X. Gang, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys.36(18), 2175–2182 (2003).
[CrossRef]

Cromières, J.-P.

M. Cormier, J. Ferré, A. Mougin, J.-P. Cromières, and V. Klein, “High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics,” Rev. Sci. Instrum.79(3), 033706 (2008).
[CrossRef] [PubMed]

de Groot, F. M. F.

J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, and R. Sporken, “Thermally Activated Processes at the Co/ZnO Interface Elucidated Using High Energy X-rays,” J. Phys. Chem. C115(15), 7411–7418 (2011).
[CrossRef]

Ding, J.

W. M. Li, W. K. Lim, J. Z. Shi, and J. Ding, “The effect of capped layer thickness on switching behavior in perpendicular CoCrPt based coupled granular/continuous media,” J. Magn. Magn. Mater.340, 50–56 (2013).
[CrossRef]

Drube, W.

J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, and R. Sporken, “Thermally Activated Processes at the Co/ZnO Interface Elucidated Using High Energy X-rays,” J. Phys. Chem. C115(15), 7411–7418 (2011).
[CrossRef]

Du, G. X.

G. X. Du, S. Saito, and M. Takahashi, “Tailoring the Faraday effect by birefringence of two dimensional plasmonic nanorod array,” Appl. Phys. Lett.99(19), 191107 (2011).
[CrossRef]

Dumont, J. A.

J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, and R. Sporken, “Thermally Activated Processes at the Co/ZnO Interface Elucidated Using High Energy X-rays,” J. Phys. Chem. C115(15), 7411–7418 (2011).
[CrossRef]

Erskine, J. L.

C. Nistor, G. S. D. Beach, and J. L. Erskine, “Versatile magneto-optic Kerr effect polarimeter for studies of domain-wall dynamics in magnetic nanostructures,” Rev. Sci. Instrum.77(10), 103901 (2006).
[CrossRef]

Falicov, L. M.

L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
[CrossRef]

Fan, Y.

Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol.8(6), 438–444 (2013).
[CrossRef] [PubMed]

Fedyanin, A. A.

A. B. Khanikaev, A. B. Baryshev, P. B. Lim, H. Uchida, M. Inoue, A. G. Zhdanov, A. A. Fedyanin, A. I. Maydykovskiy, and O. A. Aktsipetrov, “Nonlinear Verdet law in magnetophotonic crystals: Interrelation between Faraday and Borrmann effects,” Phys. Rev. B78(19), 193102 (2008).
[CrossRef]

Fermento, R.

J. M. Teixeira, R. Lusche, J. Ventura, R. Fermento, F. Carpinteiro, J. P. Araujo, J. B. Sousa, S. Cardoso, and P. P. Freitas, “Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials,” Rev. Sci. Instrum.82(4), 043902 (2011).
[CrossRef] [PubMed]

Ferré, J.

M. Cormier, J. Ferré, A. Mougin, J.-P. Cromières, and V. Klein, “High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics,” Rev. Sci. Instrum.79(3), 033706 (2008).
[CrossRef] [PubMed]

S. Visnovsk, M. Nývlt, V. Prosser, R. Lopusník, R. Urban, J. Ferré, G. Pénissard, D. Renard, and R. Krishnan, “Polar magneto-optics in simple ultrathin-magnetic-film structures,” Phys. Rev. B Condens. Matter52(2), 1090–1106 (1995).
[CrossRef] [PubMed]

J. Pommier, P. Meyer, G. Pénissard, J. Ferré, P. Bruno, and D. Renard, “Magnetization reversal in ultrathin ferromagnetic films with perpendicular anistropy: domain observations,” Phys. Rev. Lett.65(16), 2054–2057 (1990).
[CrossRef] [PubMed]

Fionova, L. K.

Y. A. Lisovskii, E. G. Knizhnik, V. L. Stolyarov, and L. K. Fionova, “The structure and magnetic properties of Co-Cr thin films for perpendicular recording,” Mater. Chem. Phys.44(3), 239–244 (1996).
[CrossRef]

Franke, K. J. A.

T. H. E. Lahtinen, K. J. A. Franke, and S. van Dijken, “Electric-field control of magnetic domain wall motion and local magnetization reversal,” Sci Rep2, 258 (2012).
[CrossRef] [PubMed]

Freitag, M.

D. Li, M. Freitag, J. Pearson, Z. Q. Qiu, and S. D. Bader, “Magnetic phases of ultrathin Fe grown on Cu(100) as epitaxial wedges,” Phys. Rev. Lett.72(19), 3112–3115 (1994).
[CrossRef] [PubMed]

Freitas, P. P.

J. M. Teixeira, R. Lusche, J. Ventura, R. Fermento, F. Carpinteiro, J. P. Araujo, J. B. Sousa, S. Cardoso, and P. P. Freitas, “Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials,” Rev. Sci. Instrum.82(4), 043902 (2011).
[CrossRef] [PubMed]

Frömter, R.

N. Mikuszeit, S. Pütter, R. Frömter, and H. P. Oepen, “Magneto-optic Kerr effect: Incorporating the nonlinearities of the analyzer into static photometric ellipsometry analysis,” J. Appl. Phys.97(10), 103107 (2005).
[CrossRef]

Fry, P. W.

D. A. Allwood, P. R. Seem, S. Basu, P. W. Fry, U. J. Gibson, and R. P. Cowburn, “Over 40% transverse Kerr effect from Ni80Fe20,” Appl. Phys. Lett.92(7), 072503 (2008).
[CrossRef]

Fujiwara, H.

S. Maat, L. Shen, C. Hou, H. Fujiwara, and G. J. Mankey, “Optical interference in magneto-optic Kerr-effect measurements of magnetic multilayers,” J. Appl. Phys.85(3), 1658–1662 (1999).
[CrossRef]

Fukami, S.

D. Chiba, M. Kawaguchi, S. Fukami, N. Ishiwata, K. Shimamura, K. Kobayashi, and T. Ono, “Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization,” Nat Commun3, 888 (2012).
[CrossRef] [PubMed]

Fukuma, Y.

A. Barman, T. Kimura, Y. Otani, Y. Fukuma, K. Akahane, and S. Meguro, “Benchtop time-resolved magneto-optical Kerr magnetometer,” Rev. Sci. Instrum.79(12), 123905 (2008).
[CrossRef] [PubMed]

Fullerton, E. E.

J. S. Jiang, E. E. Fullerton, M. Grimsditch, C. H. Sowers, and S. D. Bader, “Exchange-spring behavior in epitaxial hard/soft magnetic bilayer films,” J. Appl. Phys.83(11), 6238 (1998).
[CrossRef]

R. W. Wang, D. L. Mills, E. E. Fullerton, J. E. Mattson, and S. D. Bader, “Surface spin-flop transition in Fe/Cr(211) superlattices: Experiment and theory,” Phys. Rev. Lett.72(6), 920–923 (1994).
[CrossRef] [PubMed]

Funaki, A.

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc 1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett.99(1), 011111 (2011).
[CrossRef]

Gang, X.

D. A. Allwood, X. Gang, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys.36(18), 2175–2182 (2003).
[CrossRef]

Ganshina, E. A.

T. V. Murzina, A. V. Shebarshin, A. I. Maidykovski, E. A. Ganshina, O. A. Aktsipetrov, N. N. Novitski, A. I. Stognij, and A. Stashkevich, “Linear and nonlinear magnetooptics of planar Au/Co/Si nanostructures,” Thin Solid Films517(20), 5918–5921 (2009).
[CrossRef]

Gao, S.

X. Wang, J. Lian, G. T. Wang, P. Song, P. Li, and S. Gao, “Longitude magneto optical Kerr effect of Fe/GaAs (001) with Al overlayers,” J. Magn. Magn. Mater.323(22), 2711–2716 (2011).
[CrossRef]

Ghanaatshoar, M.

M. Ghanaatshoar and M. Moradi, “Magneto-optical Kerr-effect enhancement in glass/Cu/SnO2/Co/SnO2 thin films,” Opt. Eng.50(9), 093801 (2011).
[CrossRef]

Ghijsen, J.

J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, and R. Sporken, “Thermally Activated Processes at the Co/ZnO Interface Elucidated Using High Energy X-rays,” J. Phys. Chem. C115(15), 7411–7418 (2011).
[CrossRef]

Gibson, U. J.

D. A. Allwood, P. R. Seem, S. Basu, P. W. Fry, U. J. Gibson, and R. P. Cowburn, “Over 40% transverse Kerr effect from Ni80Fe20,” Appl. Phys. Lett.92(7), 072503 (2008).
[CrossRef]

S. R. A. Bowden, K. K. L. Ahmed, and U. J. Gibson, “Longitudinal magneto-optic Kerr effect detection of latching vortex magnetization chirality in individual mesoscale rings,” Appl. Phys. Lett.91(23), 232505 (2007).
[CrossRef]

P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, “Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements,” J. Appl. Phys.100(9), 093910 (2006).
[CrossRef]

Glans, P. A.

J. Li, Z. Y. Wang, A. Tan, P. A. Glans, E. Arenholz, C. Hwang, J. Shi, and Z. Q. Qiu, “Magnetic dead layer at the interface between a Co film and the topological insulator Bi_{2}Se_{3},” Phys. Rev. B86(5), 054430 (2012).
[CrossRef]

Glushko, B. A.

B. A. Glushko and V. O. Chaltykyan, “Magnetic properties of a diamagnetic gas in a resonance radiation field,” Soviet Journal of Quantum Electronics12(11), 1388–1390 (1982).
[CrossRef]

Gossard, A. C.

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the Spin Hall effect in semiconductors,” Science306(5703), 1910–1913 (2004).
[CrossRef] [PubMed]

Goswami, R.

Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol.8(6), 438–444 (2013).
[CrossRef] [PubMed]

Grimsditch, M.

S. H. Chung, A. Hoffmann, and M. Grimsditch, “Interplay between exchange bias and uniaxial anisotropy in a ferromagnetic/antiferromagnetic exchange-coupled system,” Phys. Rev. B71(21), 214430 (2005).
[CrossRef]

J. S. Jiang, E. E. Fullerton, M. Grimsditch, C. H. Sowers, and S. D. Bader, “Exchange-spring behavior in epitaxial hard/soft magnetic bilayer films,” J. Appl. Phys.83(11), 6238 (1998).
[CrossRef]

Gronsky, R.

L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
[CrossRef]

Grünberg, P.

S. D. Bader, E. R. Moog, and P. Grünberg, “Magnetic hysteresis of epitaxially-deposited iron in the monolayer range: A Kerr effect experiment in surface magnetism,” J. Magn. Magn. Mater.53(4), L295–L298 (1986).
[CrossRef]

Guillot, M.

J. Ostorero, H. Le Gall, M. Guillot, and A. Marchand, “Faraday effect in gadolinium iron garnet,” Magnetics, IEEE Transactions on22(5), 1242–1244 (1986).
[CrossRef]

Halahovets, Y.

Y. Halahovets, P. Siffalovic, M. Jergel, R. Senderak, E. Majkova, S. Luby, I. Kostic, B. Szymanski, and F. Stobiecki, “Scanning magneto-optical Kerr microscope with auto-balanced detection scheme,” Rev. Sci. Instrum.82(8), 083706 (2011).
[CrossRef] [PubMed]

Hanbicki, A. T.

Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol.8(6), 438–444 (2013).
[CrossRef] [PubMed]

Hatanaka, T.

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc 1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett.99(1), 011111 (2011).
[CrossRef]

Hathaway, K. B.

L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
[CrossRef]

He, W.

J. Ye, W. He, Q. Wu, H.-L. Liu, X.-Q. Zhang, Z.-Y. Chen, and Z.-H. Cheng, “Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance,” Sci Rep3, 2148 (2013).
[CrossRef] [PubMed]

He, X.

S. Polisetty, J. Scheffler, S. Sahoo, Y. Wang, T. Mukherjee, X. He, and Ch. Binek, “Optimization of magneto-optical Kerr setup: Analyzing experimental assemblies using Jones matrix formalism,” Rev. Sci. Instrum.79(5), 055107 (2008).
[CrossRef] [PubMed]

Hillebrands, B.

T. Mewes, H. Nembach, M. Rickart, and B. Hillebrands, “Separation of the first- and second-order contributions in magneto-optic Kerr effect magnetometry of epitaxial FeMn/NiFe bilayers,” J. Appl. Phys.95(10), 5324 (2004).
[CrossRef]

Hoffmann, A.

S. H. Chung, A. Hoffmann, and M. Grimsditch, “Interplay between exchange bias and uniaxial anisotropy in a ferromagnetic/antiferromagnetic exchange-coupled system,” Phys. Rev. B71(21), 214430 (2005).
[CrossRef]

Hopster, H. J.

L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
[CrossRef]

Horikx, J. J. L.

P. W. M. Blom, J. J. L. Horikx, P. J. H. Bloemen, C. A. Verschuren, H. W. Van Kesteren, H. Awano, and N. Ohta, “Spatial resolution of domain copying in a magnetic domain expansion readout disk,” Magnetics, IEEE Transactions on37(5), 3860–3864 (2001).
[CrossRef]

Hou, C.

S. Maat, L. Shen, C. Hou, H. Fujiwara, and G. J. Mankey, “Optical interference in magneto-optic Kerr-effect measurements of magnetic multilayers,” J. Appl. Phys.85(3), 1658–1662 (1999).
[CrossRef]

Hsu, Y.-J.

S. H. Su, H.-H. Chen, T.-H. Lee, Y.-J. Hsu, and J. C. A. Huang, “Thermally Activated Interaction of Co Growth with ZnO(101̅0) Surface,” J. Phys. Chem. C117(34), 17540–17547 (2013).
[CrossRef]

Huang, J. C. A.

S. H. Su, H.-H. Chen, T.-H. Lee, Y.-J. Hsu, and J. C. A. Huang, “Thermally Activated Interaction of Co Growth with ZnO(101̅0) Surface,” J. Phys. Chem. C117(34), 17540–17547 (2013).
[CrossRef]

Huang, M. S.

C. W. Su, M. S. Huang, T. H. Tsai, and S. C. Chang, “Verification of surface polarity of O-face ZnO(0001) by quantitative modeling analysis of Auger electron spectroscopy,” Appl. Surf. Sci.263, 174–181 (2012).
[CrossRef]

Huang, M.-S.

C.-W. Su, Y.-C. Chang, T.-H. Tsai, S.-C. Chang, and M.-S. Huang, “Formation of CoNx ultra-thin films during direct-current nitrogen ion sputtering in ultrahigh vacuum,” Thin Solid Films519(11), 3739–3744 (2011).
[CrossRef]

Hwang, C.

B. S. Chun, H.-H. Nahm, M. Abid, H.-C. Wu, Y.-S. Kim, I. C. Chu, and C. Hwang, “Positive exchange bias in thin film multilayers produced with nano-oxide layer,” Appl. Phys. Lett.102(25), 252406 (2013).
[CrossRef]

J. Li, Z. Y. Wang, A. Tan, P. A. Glans, E. Arenholz, C. Hwang, J. Shi, and Z. Q. Qiu, “Magnetic dead layer at the interface between a Co film and the topological insulator Bi_{2}Se_{3},” Phys. Rev. B86(5), 054430 (2012).
[CrossRef]

Ikäläinen, S.

T. S. Pennanen, S. Ikäläinen, P. Lantto, and J. Vaara, “Nuclear spin optical rotation and Faraday effect in gaseous and liquid water,” J. Chem. Phys.136(18), 184502 (2012).
[CrossRef] [PubMed]

Ilya, V.

S. Kyle, C. Turhan, D. B. Joshua, V. Ilya, and A. A. Chabanov, “Enhanced transmission and giant Faraday effect in magnetic metal–dielectric photonic structures,” J. Phys. D Appl. Phys.46(16), 165002 (2013).
[CrossRef]

Inoue, M.

A. B. Khanikaev, A. B. Baryshev, P. B. Lim, H. Uchida, M. Inoue, A. G. Zhdanov, A. A. Fedyanin, A. I. Maydykovskiy, and O. A. Aktsipetrov, “Nonlinear Verdet law in magnetophotonic crystals: Interrelation between Faraday and Borrmann effects,” Phys. Rev. B78(19), 193102 (2008).
[CrossRef]

Ishiwata, N.

D. Chiba, M. Kawaguchi, S. Fukami, N. Ishiwata, K. Shimamura, K. Kobayashi, and T. Ono, “Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization,” Nat Commun3, 888 (2012).
[CrossRef] [PubMed]

Jergel, M.

Y. Halahovets, P. Siffalovic, M. Jergel, R. Senderak, E. Majkova, S. Luby, I. Kostic, B. Szymanski, and F. Stobiecki, “Scanning magneto-optical Kerr microscope with auto-balanced detection scheme,” Rev. Sci. Instrum.82(8), 083706 (2011).
[CrossRef] [PubMed]

Ji, Y.

X. Chen, X. Qian, K. Meng, J. Zhao, and Y. Ji, “The measurement of magneto-optical Kerr effect of ultrathin films in a pulsed magnetic field,” Measurement46(1), 52–56 (2013).
[CrossRef]

Jiang, J. S.

J. S. Jiang, E. E. Fullerton, M. Grimsditch, C. H. Sowers, and S. D. Bader, “Exchange-spring behavior in epitaxial hard/soft magnetic bilayer films,” J. Appl. Phys.83(11), 6238 (1998).
[CrossRef]

Jonker, B. T.

Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol.8(6), 438–444 (2013).
[CrossRef] [PubMed]

Joshua, D. B.

S. Kyle, C. Turhan, D. B. Joshua, V. Ilya, and A. A. Chabanov, “Enhanced transmission and giant Faraday effect in magnetic metal–dielectric photonic structures,” J. Phys. D Appl. Phys.46(16), 165002 (2013).
[CrossRef]

Kato, Y. K.

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the Spin Hall effect in semiconductors,” Science306(5703), 1910–1913 (2004).
[CrossRef] [PubMed]

Kawaguchi, M.

D. Chiba, M. Kawaguchi, S. Fukami, N. Ishiwata, K. Shimamura, K. Kobayashi, and T. Ono, “Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization,” Nat Commun3, 888 (2012).
[CrossRef] [PubMed]

Khanikaev, A. B.

A. B. Khanikaev, A. B. Baryshev, P. B. Lim, H. Uchida, M. Inoue, A. G. Zhdanov, A. A. Fedyanin, A. I. Maydykovskiy, and O. A. Aktsipetrov, “Nonlinear Verdet law in magnetophotonic crystals: Interrelation between Faraday and Borrmann effects,” Phys. Rev. B78(19), 193102 (2008).
[CrossRef]

Khazanov, E.

I. Mukhin, A. Voitovich, O. Palashov, and E. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun.282(10), 1969–1972 (2009).
[CrossRef]

Kim, Y.-S.

B. S. Chun, H.-H. Nahm, M. Abid, H.-C. Wu, Y.-S. Kim, I. C. Chu, and C. Hwang, “Positive exchange bias in thin film multilayers produced with nano-oxide layer,” Appl. Phys. Lett.102(25), 252406 (2013).
[CrossRef]

Kimel, A. V.

A. Kirilyuk, A. V. Kimel, and T. Rasing, “Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys,” Rep. Prog. Phys.76(2), 026501 (2013).
[CrossRef] [PubMed]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Kimura, T.

A. Barman, T. Kimura, Y. Otani, Y. Fukuma, K. Akahane, and S. Meguro, “Benchtop time-resolved magneto-optical Kerr magnetometer,” Rev. Sci. Instrum.79(12), 123905 (2008).
[CrossRef] [PubMed]

Kirilyuk, A.

A. Kirilyuk, A. V. Kimel, and T. Rasing, “Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys,” Rep. Prog. Phys.76(2), 026501 (2013).
[CrossRef] [PubMed]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Klein, V.

M. Cormier, J. Ferré, A. Mougin, J.-P. Cromières, and V. Klein, “High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics,” Rev. Sci. Instrum.79(3), 033706 (2008).
[CrossRef] [PubMed]

Knizhnik, E. G.

Y. A. Lisovskii, E. G. Knizhnik, V. L. Stolyarov, and L. K. Fionova, “The structure and magnetic properties of Co-Cr thin films for perpendicular recording,” Mater. Chem. Phys.44(3), 239–244 (1996).
[CrossRef]

Kobayashi, K.

D. Chiba, M. Kawaguchi, S. Fukami, N. Ishiwata, K. Shimamura, K. Kobayashi, and T. Ono, “Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization,” Nat Commun3, 888 (2012).
[CrossRef] [PubMed]

Korecki, J.

E. Młyńczak, P. Luches, S. Valeri, and J. Korecki, “NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure,” J. Appl. Phys.113(23), 234315 (2013).
[CrossRef]

Kostic, I.

Y. Halahovets, P. Siffalovic, M. Jergel, R. Senderak, E. Majkova, S. Luby, I. Kostic, B. Szymanski, and F. Stobiecki, “Scanning magneto-optical Kerr microscope with auto-balanced detection scheme,” Rev. Sci. Instrum.82(8), 083706 (2011).
[CrossRef] [PubMed]

Krishnan, R.

S. Visnovsk, M. Nývlt, V. Prosser, R. Lopusník, R. Urban, J. Ferré, G. Pénissard, D. Renard, and R. Krishnan, “Polar magneto-optics in simple ultrathin-magnetic-film structures,” Phys. Rev. B Condens. Matter52(2), 1090–1106 (1995).
[CrossRef] [PubMed]

Kristensen, M.

J. P. Woerdman, F. J. Blok, M. Kristensen, and C. A. Schrama, “Multiperturber effects in the Faraday spectrum of Rb atoms immersed in a high-density Xe gas,” Phys. Rev. A53(2), 1183–1186 (1996).
[CrossRef] [PubMed]

M. Kristensen, F. J. Blok, M. A. van Eijkelenborg, G. Nienhuis, and J. P. Woerdman, “Onset of a collisional modification of the Faraday effect in a high-density atomic gas,” Phys. Rev. A51(2), 1085–1096 (1995).

Kubota, Y.

P. R. Bandaru, T. D. Sands, Y. Kubota, and E. E. Marinero, “Decoupling the structural and magnetic phase transformations in magneto-optic MnBi thin films by the partial substitution of Cr for Mn,” Appl. Phys. Lett.72(18), 2337–2339 (1998).
[CrossRef]

Kucera, M.

M. Kučera, P. Beránková, K. Nitsch, and M. Matyáš., “Low-temperature Faraday effect in charge-uncompensated garnet Ca:YIG,” J. Magn. Magn. Mater.157–158, 323–325 (1996).
[CrossRef]

Kyle, S.

S. Kyle, C. Turhan, D. B. Joshua, V. Ilya, and A. A. Chabanov, “Enhanced transmission and giant Faraday effect in magnetic metal–dielectric photonic structures,” J. Phys. D Appl. Phys.46(16), 165002 (2013).
[CrossRef]

Lacklison, D. E.

S. Wittekoek and D. E. Lacklison, “Investigation of the Origin of the Anomalous Faraday Rotation of BixCa3-xFe3.5+0.5 xV1.5-0.5xO12 by means of the magneto-optical Kerr effect,” Phys. Rev. Lett.28(12), 740–743 (1972).
[CrossRef]

Lahtinen, T. H. E.

T. H. E. Lahtinen, K. J. A. Franke, and S. van Dijken, “Electric-field control of magnetic domain wall motion and local magnetization reversal,” Sci Rep2, 258 (2012).
[CrossRef] [PubMed]

Lambeth, D. N.

L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
[CrossRef]

Lantto, P.

T. S. Pennanen, S. Ikäläinen, P. Lantto, and J. Vaara, “Nuclear spin optical rotation and Faraday effect in gaseous and liquid water,” J. Chem. Phys.136(18), 184502 (2012).
[CrossRef] [PubMed]

Le Gall, H.

J. Ostorero, H. Le Gall, M. Guillot, and A. Marchand, “Faraday effect in gadolinium iron garnet,” Magnetics, IEEE Transactions on22(5), 1242–1244 (1986).
[CrossRef]

Lee, T.-H.

S. H. Su, H.-H. Chen, T.-H. Lee, Y.-J. Hsu, and J. C. A. Huang, “Thermally Activated Interaction of Co Growth with ZnO(101̅0) Surface,” J. Phys. Chem. C117(34), 17540–17547 (2013).
[CrossRef]

Lee, Y.-H.

Y.-C. Chang, C.-W. Su, S.-C. Chang, and Y.-H. Lee, “Variations of surface roughness for deposition of Co-sputtered-ZnO(002) by Auger electron spectroscopy and surface magneto-optic Faraday effect,” Eur. Phys. J. Appl. Phys.53, 21501 (2011).

Li, C. H.

Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol.8(6), 438–444 (2013).
[CrossRef] [PubMed]

Li, D.

D. Li, M. Freitag, J. Pearson, Z. Q. Qiu, and S. D. Bader, “Magnetic phases of ultrathin Fe grown on Cu(100) as epitaxial wedges,” Phys. Rev. Lett.72(19), 3112–3115 (1994).
[CrossRef] [PubMed]

Li, J.

J. Li, Z. Y. Wang, A. Tan, P. A. Glans, E. Arenholz, C. Hwang, J. Shi, and Z. Q. Qiu, “Magnetic dead layer at the interface between a Co film and the topological insulator Bi_{2}Se_{3},” Phys. Rev. B86(5), 054430 (2012).
[CrossRef]

Li, P.

X. Wang, J. Lian, G. T. Wang, P. Song, P. Li, and S. Gao, “Longitude magneto optical Kerr effect of Fe/GaAs (001) with Al overlayers,” J. Magn. Magn. Mater.323(22), 2711–2716 (2011).
[CrossRef]

Li, W. M.

W. M. Li, W. K. Lim, J. Z. Shi, and J. Ding, “The effect of capped layer thickness on switching behavior in perpendicular CoCrPt based coupled granular/continuous media,” J. Magn. Magn. Mater.340, 50–56 (2013).
[CrossRef]

Lian, J.

X. Wang, J. Lian, G. T. Wang, P. Song, P. Li, and S. Gao, “Longitude magneto optical Kerr effect of Fe/GaAs (001) with Al overlayers,” J. Magn. Magn. Mater.323(22), 2711–2716 (2011).
[CrossRef]

Lim, P. B.

A. B. Khanikaev, A. B. Baryshev, P. B. Lim, H. Uchida, M. Inoue, A. G. Zhdanov, A. A. Fedyanin, A. I. Maydykovskiy, and O. A. Aktsipetrov, “Nonlinear Verdet law in magnetophotonic crystals: Interrelation between Faraday and Borrmann effects,” Phys. Rev. B78(19), 193102 (2008).
[CrossRef]

Lim, W. K.

W. M. Li, W. K. Lim, J. Z. Shi, and J. Ding, “The effect of capped layer thickness on switching behavior in perpendicular CoCrPt based coupled granular/continuous media,” J. Magn. Magn. Mater.340, 50–56 (2013).
[CrossRef]

Lisovskii, Y. A.

Y. A. Lisovskii, E. G. Knizhnik, V. L. Stolyarov, and L. K. Fionova, “The structure and magnetic properties of Co-Cr thin films for perpendicular recording,” Mater. Chem. Phys.44(3), 239–244 (1996).
[CrossRef]

Liu, C.

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Magneto-optics of multilayers with arbitrary magnetization directions,” Phys. Rev. B Condens. Matter43(8), 6423–6429 (1991).
[CrossRef] [PubMed]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Elementary formula for the magneto-optic Kerr effect from model superlattices,” Appl. Phys. Lett.58(11), 1214 (1991).
[CrossRef]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater.89(1-2), 107–123 (1990).
[CrossRef]

C. Liu and S. D. Bader, “Two-dimensional magnetic phase transition of ultrathin iron films on Pd(100),” J. Appl. Phys.67(9), 5758–5760 (1990).
[CrossRef]

E. R. Moog, C. Liu, S. D. Bader, and J. Zak, “Thickness and polarization dependence of the magnetooptic signal from ultrathin ferromagnetic films,” Phys. Rev. B Condens. Matter39(10), 6949–6956 (1989).
[CrossRef] [PubMed]

C. Liu, E. R. Moog, and S. D. Bader, “Polar Kerr-effect observation of perpendicular surface anisotropy for ultrathin fcc Fe Grown on Cu(100),” Phys. Rev. Lett.60(23), 2422–2425 (1988).
[CrossRef] [PubMed]

Liu, H.-L.

J. Ye, W. He, Q. Wu, H.-L. Liu, X.-Q. Zhang, Z.-Y. Chen, and Z.-H. Cheng, “Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance,” Sci Rep3, 2148 (2013).
[CrossRef] [PubMed]

Lopusník, R.

S. Visnovsk, M. Nývlt, V. Prosser, R. Lopusník, R. Urban, J. Ferré, G. Pénissard, D. Renard, and R. Krishnan, “Polar magneto-optics in simple ultrathin-magnetic-film structures,” Phys. Rev. B Condens. Matter52(2), 1090–1106 (1995).
[CrossRef] [PubMed]

Luby, S.

Y. Halahovets, P. Siffalovic, M. Jergel, R. Senderak, E. Majkova, S. Luby, I. Kostic, B. Szymanski, and F. Stobiecki, “Scanning magneto-optical Kerr microscope with auto-balanced detection scheme,” Rev. Sci. Instrum.82(8), 083706 (2011).
[CrossRef] [PubMed]

Luches, P.

E. Młyńczak, P. Luches, S. Valeri, and J. Korecki, “NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure,” J. Appl. Phys.113(23), 234315 (2013).
[CrossRef]

Lüpke, G.

Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol.8(6), 438–444 (2013).
[CrossRef] [PubMed]

Lusche, R.

J. M. Teixeira, R. Lusche, J. Ventura, R. Fermento, F. Carpinteiro, J. P. Araujo, J. B. Sousa, S. Cardoso, and P. P. Freitas, “Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials,” Rev. Sci. Instrum.82(4), 043902 (2011).
[CrossRef] [PubMed]

Maat, S.

S. Maat, L. Shen, C. Hou, H. Fujiwara, and G. J. Mankey, “Optical interference in magneto-optic Kerr-effect measurements of magnetic multilayers,” J. Appl. Phys.85(3), 1658–1662 (1999).
[CrossRef]

MacDonald, A. H.

W.-K. Tse and A. H. MacDonald, “Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized Hall systems,” Phys. Rev. B84(20), 205327 (2011).
[CrossRef]

W.-K. Tse and A. H. MacDonald, “Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators,” Phys. Rev. Lett.105(5), 057401 (2010).
[CrossRef] [PubMed]

Macleod, H. A. M.

P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, “Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements,” J. Appl. Phys.100(9), 093910 (2006).
[CrossRef]

Maidykovski, A. I.

T. V. Murzina, A. V. Shebarshin, A. I. Maidykovski, E. A. Ganshina, O. A. Aktsipetrov, N. N. Novitski, A. I. Stognij, and A. Stashkevich, “Linear and nonlinear magnetooptics of planar Au/Co/Si nanostructures,” Thin Solid Films517(20), 5918–5921 (2009).
[CrossRef]

Majkova, E.

Y. Halahovets, P. Siffalovic, M. Jergel, R. Senderak, E. Majkova, S. Luby, I. Kostic, B. Szymanski, and F. Stobiecki, “Scanning magneto-optical Kerr microscope with auto-balanced detection scheme,” Rev. Sci. Instrum.82(8), 083706 (2011).
[CrossRef] [PubMed]

Mankey, G. J.

S. Maat, L. Shen, C. Hou, H. Fujiwara, and G. J. Mankey, “Optical interference in magneto-optic Kerr-effect measurements of magnetic multilayers,” J. Appl. Phys.85(3), 1658–1662 (1999).
[CrossRef]

Marchand, A.

J. Ostorero, H. Le Gall, M. Guillot, and A. Marchand, “Faraday effect in gadolinium iron garnet,” Magnetics, IEEE Transactions on22(5), 1242–1244 (1986).
[CrossRef]

Marinero, E. E.

P. R. Bandaru, T. D. Sands, Y. Kubota, and E. E. Marinero, “Decoupling the structural and magnetic phase transformations in magneto-optic MnBi thin films by the partial substitution of Cr for Mn,” Appl. Phys. Lett.72(18), 2337–2339 (1998).
[CrossRef]

Matsuzaka, S.

S. Matsuzaka, Y. Ohno, and H. Ohno, “Scanning Kerr microscopy of the spin hall effect in n-doped GaAs with various doping concentration,” Journal of Superconductivity and Novel Magnetism23(1), 37–39 (2010).
[CrossRef]

Mattson, J. E.

R. W. Wang, D. L. Mills, E. E. Fullerton, J. E. Mattson, and S. D. Bader, “Surface spin-flop transition in Fe/Cr(211) superlattices: Experiment and theory,” Phys. Rev. Lett.72(6), 920–923 (1994).
[CrossRef] [PubMed]

Matyáš, M.

M. Kučera, P. Beránková, K. Nitsch, and M. Matyáš., “Low-temperature Faraday effect in charge-uncompensated garnet Ca:YIG,” J. Magn. Magn. Mater.157–158, 323–325 (1996).
[CrossRef]

Maydykovskiy, A. I.

A. B. Khanikaev, A. B. Baryshev, P. B. Lim, H. Uchida, M. Inoue, A. G. Zhdanov, A. A. Fedyanin, A. I. Maydykovskiy, and O. A. Aktsipetrov, “Nonlinear Verdet law in magnetophotonic crystals: Interrelation between Faraday and Borrmann effects,” Phys. Rev. B78(19), 193102 (2008).
[CrossRef]

Meguro, S.

A. Barman, T. Kimura, Y. Otani, Y. Fukuma, K. Akahane, and S. Meguro, “Benchtop time-resolved magneto-optical Kerr magnetometer,” Rev. Sci. Instrum.79(12), 123905 (2008).
[CrossRef] [PubMed]

Meng, K.

X. Chen, X. Qian, K. Meng, J. Zhao, and Y. Ji, “The measurement of magneto-optical Kerr effect of ultrathin films in a pulsed magnetic field,” Measurement46(1), 52–56 (2013).
[CrossRef]

Mewes, T.

T. Mewes, H. Nembach, M. Rickart, and B. Hillebrands, “Separation of the first- and second-order contributions in magneto-optic Kerr effect magnetometry of epitaxial FeMn/NiFe bilayers,” J. Appl. Phys.95(10), 5324 (2004).
[CrossRef]

Meyer, P.

J. Pommier, P. Meyer, G. Pénissard, J. Ferré, P. Bruno, and D. Renard, “Magnetization reversal in ultrathin ferromagnetic films with perpendicular anistropy: domain observations,” Phys. Rev. Lett.65(16), 2054–2057 (1990).
[CrossRef] [PubMed]

Mikhaylovskiy, R. V.

M. I. Bakunov, R. V. Mikhaylovskiy, and S. B. Bodrov, “Probing ultrafast optomagnetism by terahertz Cherenkov radiation,” Phys. Rev. B86(13), 134405 (2012).
[CrossRef]

Mikuszeit, N.

N. Mikuszeit, S. Pütter, R. Frömter, and H. P. Oepen, “Magneto-optic Kerr effect: Incorporating the nonlinearities of the analyzer into static photometric ellipsometry analysis,” J. Appl. Phys.97(10), 103107 (2005).
[CrossRef]

Mills, D. L.

R. W. Wang, D. L. Mills, E. E. Fullerton, J. E. Mattson, and S. D. Bader, “Surface spin-flop transition in Fe/Cr(211) superlattices: Experiment and theory,” Phys. Rev. Lett.72(6), 920–923 (1994).
[CrossRef] [PubMed]

Mlynczak, E.

E. Młyńczak, P. Luches, S. Valeri, and J. Korecki, “NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure,” J. Appl. Phys.113(23), 234315 (2013).
[CrossRef]

Molina, P.

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc 1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett.99(1), 011111 (2011).
[CrossRef]

Monin, J.

R. Brunetton and J. Monin, “Highly efficient low field magneto-optic modulator,” J. Opt.17(4), 191–196 (1986).
[CrossRef]

Moog, E. R.

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Magneto-optics of multilayers with arbitrary magnetization directions,” Phys. Rev. B Condens. Matter43(8), 6423–6429 (1991).
[CrossRef] [PubMed]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Elementary formula for the magneto-optic Kerr effect from model superlattices,” Appl. Phys. Lett.58(11), 1214 (1991).
[CrossRef]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater.89(1-2), 107–123 (1990).
[CrossRef]

E. R. Moog, C. Liu, S. D. Bader, and J. Zak, “Thickness and polarization dependence of the magnetooptic signal from ultrathin ferromagnetic films,” Phys. Rev. B Condens. Matter39(10), 6949–6956 (1989).
[CrossRef] [PubMed]

C. Liu, E. R. Moog, and S. D. Bader, “Polar Kerr-effect observation of perpendicular surface anisotropy for ultrathin fcc Fe Grown on Cu(100),” Phys. Rev. Lett.60(23), 2422–2425 (1988).
[CrossRef] [PubMed]

S. D. Bader, E. R. Moog, and P. Grünberg, “Magnetic hysteresis of epitaxially-deposited iron in the monolayer range: A Kerr effect experiment in surface magnetism,” J. Magn. Magn. Mater.53(4), L295–L298 (1986).
[CrossRef]

Moradi, M.

M. Ghanaatshoar and M. Moradi, “Magneto-optical Kerr-effect enhancement in glass/Cu/SnO2/Co/SnO2 thin films,” Opt. Eng.50(9), 093801 (2011).
[CrossRef]

Mougin, A.

M. Cormier, J. Ferré, A. Mougin, J.-P. Cromières, and V. Klein, “High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics,” Rev. Sci. Instrum.79(3), 033706 (2008).
[CrossRef] [PubMed]

Mugumaoderha, M. C.

J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, and R. Sporken, “Thermally Activated Processes at the Co/ZnO Interface Elucidated Using High Energy X-rays,” J. Phys. Chem. C115(15), 7411–7418 (2011).
[CrossRef]

Mukherjee, T.

S. Polisetty, J. Scheffler, S. Sahoo, Y. Wang, T. Mukherjee, X. He, and Ch. Binek, “Optimization of magneto-optical Kerr setup: Analyzing experimental assemblies using Jones matrix formalism,” Rev. Sci. Instrum.79(5), 055107 (2008).
[CrossRef] [PubMed]

Mukhin, I.

I. Mukhin, A. Voitovich, O. Palashov, and E. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun.282(10), 1969–1972 (2009).
[CrossRef]

Murzina, T. V.

T. V. Murzina, A. V. Shebarshin, A. I. Maidykovski, E. A. Ganshina, O. A. Aktsipetrov, N. N. Novitski, A. I. Stognij, and A. Stashkevich, “Linear and nonlinear magnetooptics of planar Au/Co/Si nanostructures,” Thin Solid Films517(20), 5918–5921 (2009).
[CrossRef]

Myers, R. C.

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the Spin Hall effect in semiconductors,” Science306(5703), 1910–1913 (2004).
[CrossRef] [PubMed]

Nahm, H.-H.

B. S. Chun, H.-H. Nahm, M. Abid, H.-C. Wu, Y.-S. Kim, I. C. Chu, and C. Hwang, “Positive exchange bias in thin film multilayers produced with nano-oxide layer,” Appl. Phys. Lett.102(25), 252406 (2013).
[CrossRef]

Nakamura, M.

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc 1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett.99(1), 011111 (2011).
[CrossRef]

Naoe, K.

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc 1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett.99(1), 011111 (2011).
[CrossRef]

Nembach, H.

T. Mewes, H. Nembach, M. Rickart, and B. Hillebrands, “Separation of the first- and second-order contributions in magneto-optic Kerr effect magnetometry of epitaxial FeMn/NiFe bilayers,” J. Appl. Phys.95(10), 5324 (2004).
[CrossRef]

Nienhuis, G.

M. Kristensen, F. J. Blok, M. A. van Eijkelenborg, G. Nienhuis, and J. P. Woerdman, “Onset of a collisional modification of the Faraday effect in a high-density atomic gas,” Phys. Rev. A51(2), 1085–1096 (1995).

Nistor, C.

C. Nistor, G. S. D. Beach, and J. L. Erskine, “Versatile magneto-optic Kerr effect polarimeter for studies of domain-wall dynamics in magnetic nanostructures,” Rev. Sci. Instrum.77(10), 103901 (2006).
[CrossRef]

Nitsch, K.

M. Kučera, P. Beránková, K. Nitsch, and M. Matyáš., “Low-temperature Faraday effect in charge-uncompensated garnet Ca:YIG,” J. Magn. Magn. Mater.157–158, 323–325 (1996).
[CrossRef]

Novikov, D.

J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, and R. Sporken, “Thermally Activated Processes at the Co/ZnO Interface Elucidated Using High Energy X-rays,” J. Phys. Chem. C115(15), 7411–7418 (2011).
[CrossRef]

Novitski, N. N.

T. V. Murzina, A. V. Shebarshin, A. I. Maidykovski, E. A. Ganshina, O. A. Aktsipetrov, N. N. Novitski, A. I. Stognij, and A. Stashkevich, “Linear and nonlinear magnetooptics of planar Au/Co/Si nanostructures,” Thin Solid Films517(20), 5918–5921 (2009).
[CrossRef]

Nývlt, M.

S. Visnovsk, M. Nývlt, V. Prosser, R. Lopusník, R. Urban, J. Ferré, G. Pénissard, D. Renard, and R. Krishnan, “Polar magneto-optics in simple ultrathin-magnetic-film structures,” Phys. Rev. B Condens. Matter52(2), 1090–1106 (1995).
[CrossRef] [PubMed]

Oepen, H. P.

N. Mikuszeit, S. Pütter, R. Frömter, and H. P. Oepen, “Magneto-optic Kerr effect: Incorporating the nonlinearities of the analyzer into static photometric ellipsometry analysis,” J. Appl. Phys.97(10), 103107 (2005).
[CrossRef]

Ohno, H.

S. Matsuzaka, Y. Ohno, and H. Ohno, “Scanning Kerr microscopy of the spin hall effect in n-doped GaAs with various doping concentration,” Journal of Superconductivity and Novel Magnetism23(1), 37–39 (2010).
[CrossRef]

Ohno, Y.

S. Matsuzaka, Y. Ohno, and H. Ohno, “Scanning Kerr microscopy of the spin hall effect in n-doped GaAs with various doping concentration,” Journal of Superconductivity and Novel Magnetism23(1), 37–39 (2010).
[CrossRef]

Ohta, N.

P. W. M. Blom, J. J. L. Horikx, P. J. H. Bloemen, C. A. Verschuren, H. W. Van Kesteren, H. Awano, and N. Ohta, “Spatial resolution of domain copying in a magnetic domain expansion readout disk,” Magnetics, IEEE Transactions on37(5), 3860–3864 (2001).
[CrossRef]

Ono, T.

D. Chiba, M. Kawaguchi, S. Fukami, N. Ishiwata, K. Shimamura, K. Kobayashi, and T. Ono, “Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization,” Nat Commun3, 888 (2012).
[CrossRef] [PubMed]

Ostorero, J.

J. Ostorero, H. Le Gall, M. Guillot, and A. Marchand, “Faraday effect in gadolinium iron garnet,” Magnetics, IEEE Transactions on22(5), 1242–1244 (1986).
[CrossRef]

Otani, Y.

A. Barman, T. Kimura, Y. Otani, Y. Fukuma, K. Akahane, and S. Meguro, “Benchtop time-resolved magneto-optical Kerr magnetometer,” Rev. Sci. Instrum.79(12), 123905 (2008).
[CrossRef] [PubMed]

Palashov, O.

I. Mukhin, A. Voitovich, O. Palashov, and E. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun.282(10), 1969–1972 (2009).
[CrossRef]

Pan, Y.

G. Siva Ramaiah and Y. Pan, “Thermodynamic and magnetic properties of surface Fe3+ species on quartz: effects of gamma-ray irradiation and implications for aerosol–radiation interactions,” Phys. Chem. Miner.39(6), 515–523 (2012).
[CrossRef]

Parkin, S. S. P.

L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
[CrossRef]

Pathak, S.

S. Pathak and M. Sharma, “Magneto-optical Kerr effect measurements on highly ordered nanomagnet arrays,” J. Appl. Phys.111(7), 07E331 (2012).
[CrossRef]

Pearson, J.

D. Li, M. Freitag, J. Pearson, Z. Q. Qiu, and S. D. Bader, “Magnetic phases of ultrathin Fe grown on Cu(100) as epitaxial wedges,” Phys. Rev. Lett.72(19), 3112–3115 (1994).
[CrossRef] [PubMed]

Z. Q. Qiu, J. Pearson, and S. D. Bader, “Oscillatory interlayer magnetic coupling of wedged Co/Cu/Co sandwiches grown on Cu(100) by molecular beam epitaxy,” Phys. Rev. B Condens. Matter46(13), 8659–8662 (1992).
[CrossRef] [PubMed]

Pénissard, G.

S. Visnovsk, M. Nývlt, V. Prosser, R. Lopusník, R. Urban, J. Ferré, G. Pénissard, D. Renard, and R. Krishnan, “Polar magneto-optics in simple ultrathin-magnetic-film structures,” Phys. Rev. B Condens. Matter52(2), 1090–1106 (1995).
[CrossRef] [PubMed]

J. Pommier, P. Meyer, G. Pénissard, J. Ferré, P. Bruno, and D. Renard, “Magnetization reversal in ultrathin ferromagnetic films with perpendicular anistropy: domain observations,” Phys. Rev. Lett.65(16), 2054–2057 (1990).
[CrossRef] [PubMed]

Pennanen, T. S.

T. S. Pennanen, S. Ikäläinen, P. Lantto, and J. Vaara, “Nuclear spin optical rotation and Faraday effect in gaseous and liquid water,” J. Chem. Phys.136(18), 184502 (2012).
[CrossRef] [PubMed]

Pierce, D. T.

L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
[CrossRef]

Pisarev, R. V.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Polisetty, S.

S. Polisetty, J. Scheffler, S. Sahoo, Y. Wang, T. Mukherjee, X. He, and Ch. Binek, “Optimization of magneto-optical Kerr setup: Analyzing experimental assemblies using Jones matrix formalism,” Rev. Sci. Instrum.79(5), 055107 (2008).
[CrossRef] [PubMed]

Pommier, J.

J. Pommier, P. Meyer, G. Pénissard, J. Ferré, P. Bruno, and D. Renard, “Magnetization reversal in ultrathin ferromagnetic films with perpendicular anistropy: domain observations,” Phys. Rev. Lett.65(16), 2054–2057 (1990).
[CrossRef] [PubMed]

Prinz, G.

L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
[CrossRef]

Prosser, V.

S. Visnovsk, M. Nývlt, V. Prosser, R. Lopusník, R. Urban, J. Ferré, G. Pénissard, D. Renard, and R. Krishnan, “Polar magneto-optics in simple ultrathin-magnetic-film structures,” Phys. Rev. B Condens. Matter52(2), 1090–1106 (1995).
[CrossRef] [PubMed]

Pütter, S.

N. Mikuszeit, S. Pütter, R. Frömter, and H. P. Oepen, “Magneto-optic Kerr effect: Incorporating the nonlinearities of the analyzer into static photometric ellipsometry analysis,” J. Appl. Phys.97(10), 103107 (2005).
[CrossRef]

Qian, X.

X. Chen, X. Qian, K. Meng, J. Zhao, and Y. Ji, “The measurement of magneto-optical Kerr effect of ultrathin films in a pulsed magnetic field,” Measurement46(1), 52–56 (2013).
[CrossRef]

Qiu, Z. Q.

J. Li, Z. Y. Wang, A. Tan, P. A. Glans, E. Arenholz, C. Hwang, J. Shi, and Z. Q. Qiu, “Magnetic dead layer at the interface between a Co film and the topological insulator Bi_{2}Se_{3},” Phys. Rev. B86(5), 054430 (2012).
[CrossRef]

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71(3), 1243–1255 (2000).
[CrossRef]

D. Li, M. Freitag, J. Pearson, Z. Q. Qiu, and S. D. Bader, “Magnetic phases of ultrathin Fe grown on Cu(100) as epitaxial wedges,” Phys. Rev. Lett.72(19), 3112–3115 (1994).
[CrossRef] [PubMed]

Z. Q. Qiu, J. Pearson, and S. D. Bader, “Oscillatory interlayer magnetic coupling of wedged Co/Cu/Co sandwiches grown on Cu(100) by molecular beam epitaxy,” Phys. Rev. B Condens. Matter46(13), 8659–8662 (1992).
[CrossRef] [PubMed]

Rasing, T.

A. Kirilyuk, A. V. Kimel, and T. Rasing, “Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys,” Rep. Prog. Phys.76(2), 026501 (2013).
[CrossRef] [PubMed]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Renard, D.

S. Visnovsk, M. Nývlt, V. Prosser, R. Lopusník, R. Urban, J. Ferré, G. Pénissard, D. Renard, and R. Krishnan, “Polar magneto-optics in simple ultrathin-magnetic-film structures,” Phys. Rev. B Condens. Matter52(2), 1090–1106 (1995).
[CrossRef] [PubMed]

J. Pommier, P. Meyer, G. Pénissard, J. Ferré, P. Bruno, and D. Renard, “Magnetization reversal in ultrathin ferromagnetic films with perpendicular anistropy: domain observations,” Phys. Rev. Lett.65(16), 2054–2057 (1990).
[CrossRef] [PubMed]

Rickart, M.

T. Mewes, H. Nembach, M. Rickart, and B. Hillebrands, “Separation of the first- and second-order contributions in magneto-optic Kerr effect magnetometry of epitaxial FeMn/NiFe bilayers,” J. Appl. Phys.95(10), 5324 (2004).
[CrossRef]

Sahoo, S.

S. Polisetty, J. Scheffler, S. Sahoo, Y. Wang, T. Mukherjee, X. He, and Ch. Binek, “Optimization of magneto-optical Kerr setup: Analyzing experimental assemblies using Jones matrix formalism,” Rev. Sci. Instrum.79(5), 055107 (2008).
[CrossRef] [PubMed]

Saito, S.

G. X. Du, S. Saito, and M. Takahashi, “Tailoring the Faraday effect by birefringence of two dimensional plasmonic nanorod array,” Appl. Phys. Lett.99(19), 191107 (2011).
[CrossRef]

Salamon, M.

L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
[CrossRef]

Sands, T. D.

P. R. Bandaru, T. D. Sands, Y. Kubota, and E. E. Marinero, “Decoupling the structural and magnetic phase transformations in magneto-optic MnBi thin films by the partial substitution of Cr for Mn,” Appl. Phys. Lett.72(18), 2337–2339 (1998).
[CrossRef]

Scheffler, J.

S. Polisetty, J. Scheffler, S. Sahoo, Y. Wang, T. Mukherjee, X. He, and Ch. Binek, “Optimization of magneto-optical Kerr setup: Analyzing experimental assemblies using Jones matrix formalism,” Rev. Sci. Instrum.79(5), 055107 (2008).
[CrossRef] [PubMed]

Schmitte, T.

A. Westphalen, T. Schmitte, K. Westerholt, and H. Zabel, “Bragg magneto-optical Kerr effect measurements at Co stripe arrays on Fe(001),” J. Appl. Phys.97(7), 073909 (2005).
[CrossRef]

Schrama, C. A.

J. P. Woerdman, F. J. Blok, M. Kristensen, and C. A. Schrama, “Multiperturber effects in the Faraday spectrum of Rb atoms immersed in a high-density Xe gas,” Phys. Rev. A53(2), 1183–1186 (1996).
[CrossRef] [PubMed]

Schuller, I. K.

L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
[CrossRef]

Seem, P. R.

D. A. Allwood, P. R. Seem, S. Basu, P. W. Fry, U. J. Gibson, and R. P. Cowburn, “Over 40% transverse Kerr effect from Ni80Fe20,” Appl. Phys. Lett.92(7), 072503 (2008).
[CrossRef]

Segard, B.

B. Segard and J. M. Carpentier, “Millimetre polarisation spectrometer for paramagnetic gas molecules,” J. Phys. E Sci. Instrum.14(4), 442–447 (1981).
[CrossRef]

Senderak, R.

Y. Halahovets, P. Siffalovic, M. Jergel, R. Senderak, E. Majkova, S. Luby, I. Kostic, B. Szymanski, and F. Stobiecki, “Scanning magneto-optical Kerr microscope with auto-balanced detection scheme,” Rev. Sci. Instrum.82(8), 083706 (2011).
[CrossRef] [PubMed]

Sharma, M.

S. Pathak and M. Sharma, “Magneto-optical Kerr effect measurements on highly ordered nanomagnet arrays,” J. Appl. Phys.111(7), 07E331 (2012).
[CrossRef]

Shebarshin, A. V.

T. V. Murzina, A. V. Shebarshin, A. I. Maidykovski, E. A. Ganshina, O. A. Aktsipetrov, N. N. Novitski, A. I. Stognij, and A. Stashkevich, “Linear and nonlinear magnetooptics of planar Au/Co/Si nanostructures,” Thin Solid Films517(20), 5918–5921 (2009).
[CrossRef]

Shen, L.

S. Maat, L. Shen, C. Hou, H. Fujiwara, and G. J. Mankey, “Optical interference in magneto-optic Kerr-effect measurements of magnetic multilayers,” J. Appl. Phys.85(3), 1658–1662 (1999).
[CrossRef]

Shi, J.

J. Li, Z. Y. Wang, A. Tan, P. A. Glans, E. Arenholz, C. Hwang, J. Shi, and Z. Q. Qiu, “Magnetic dead layer at the interface between a Co film and the topological insulator Bi_{2}Se_{3},” Phys. Rev. B86(5), 054430 (2012).
[CrossRef]

Shi, J. Z.

W. M. Li, W. K. Lim, J. Z. Shi, and J. Ding, “The effect of capped layer thickness on switching behavior in perpendicular CoCrPt based coupled granular/continuous media,” J. Magn. Magn. Mater.340, 50–56 (2013).
[CrossRef]

Shimamura, K.

D. Chiba, M. Kawaguchi, S. Fukami, N. Ishiwata, K. Shimamura, K. Kobayashi, and T. Ono, “Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization,” Nat Commun3, 888 (2012).
[CrossRef] [PubMed]

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc 1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett.99(1), 011111 (2011).
[CrossRef]

Siffalovic, P.

Y. Halahovets, P. Siffalovic, M. Jergel, R. Senderak, E. Majkova, S. Luby, I. Kostic, B. Szymanski, and F. Stobiecki, “Scanning magneto-optical Kerr microscope with auto-balanced detection scheme,” Rev. Sci. Instrum.82(8), 083706 (2011).
[CrossRef] [PubMed]

Siva Ramaiah, G.

G. Siva Ramaiah and Y. Pan, “Thermodynamic and magnetic properties of surface Fe3+ species on quartz: effects of gamma-ray irradiation and implications for aerosol–radiation interactions,” Phys. Chem. Miner.39(6), 515–523 (2012).
[CrossRef]

Smith, K. J.

Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol.8(6), 438–444 (2013).
[CrossRef] [PubMed]

Song, P.

X. Wang, J. Lian, G. T. Wang, P. Song, P. Li, and S. Gao, “Longitude magneto optical Kerr effect of Fe/GaAs (001) with Al overlayers,” J. Magn. Magn. Mater.323(22), 2711–2716 (2011).
[CrossRef]

Sousa, J. B.

J. M. Teixeira, R. Lusche, J. Ventura, R. Fermento, F. Carpinteiro, J. P. Araujo, J. B. Sousa, S. Cardoso, and P. P. Freitas, “Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials,” Rev. Sci. Instrum.82(4), 043902 (2011).
[CrossRef] [PubMed]

Sowers, C. H.

J. S. Jiang, E. E. Fullerton, M. Grimsditch, C. H. Sowers, and S. D. Bader, “Exchange-spring behavior in epitaxial hard/soft magnetic bilayer films,” J. Appl. Phys.83(11), 6238 (1998).
[CrossRef]

Sporken, R.

J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, and R. Sporken, “Thermally Activated Processes at the Co/ZnO Interface Elucidated Using High Energy X-rays,” J. Phys. Chem. C115(15), 7411–7418 (2011).
[CrossRef]

Stashkevich, A.

T. V. Murzina, A. V. Shebarshin, A. I. Maidykovski, E. A. Ganshina, O. A. Aktsipetrov, N. N. Novitski, A. I. Stognij, and A. Stashkevich, “Linear and nonlinear magnetooptics of planar Au/Co/Si nanostructures,” Thin Solid Films517(20), 5918–5921 (2009).
[CrossRef]

Stobiecki, F.

Y. Halahovets, P. Siffalovic, M. Jergel, R. Senderak, E. Majkova, S. Luby, I. Kostic, B. Szymanski, and F. Stobiecki, “Scanning magneto-optical Kerr microscope with auto-balanced detection scheme,” Rev. Sci. Instrum.82(8), 083706 (2011).
[CrossRef] [PubMed]

Stognij, A. I.

T. V. Murzina, A. V. Shebarshin, A. I. Maidykovski, E. A. Ganshina, O. A. Aktsipetrov, N. N. Novitski, A. I. Stognij, and A. Stashkevich, “Linear and nonlinear magnetooptics of planar Au/Co/Si nanostructures,” Thin Solid Films517(20), 5918–5921 (2009).
[CrossRef]

Stolyarov, V. L.

Y. A. Lisovskii, E. G. Knizhnik, V. L. Stolyarov, and L. K. Fionova, “The structure and magnetic properties of Co-Cr thin films for perpendicular recording,” Mater. Chem. Phys.44(3), 239–244 (1996).
[CrossRef]

Su, C. W.

C. W. Su, S. C. Chang, and Y. C. Chang, “Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films,” AIP Advances3(7), 072125 (2013).
[CrossRef]

C. W. Su, S. C. Chang, and Y. C. Chang, “Magneto-optic faraday effect on spin anisotropic co ultrathin films and post-nitridization on sno(002) crystal,” SPIN02(04), 1250017 (2012).
[CrossRef]

C. W. Su, M. S. Huang, T. H. Tsai, and S. C. Chang, “Verification of surface polarity of O-face ZnO(0001) by quantitative modeling analysis of Auger electron spectroscopy,” Appl. Surf. Sci.263, 174–181 (2012).
[CrossRef]

Su, C.-W.

C.-W. Su, Y.-C. Chang, and S.-C. Chang, “Magnetic phase transition in ion-irradiated ultrathin CoN films via magneto-optic Faraday effect,” Materials6(11), 5247–5257 (2013).
[CrossRef]

C.-W. Su, Y.-C. Chang, T.-H. Tsai, S.-C. Chang, and M.-S. Huang, “Formation of CoNx ultra-thin films during direct-current nitrogen ion sputtering in ultrahigh vacuum,” Thin Solid Films519(11), 3739–3744 (2011).
[CrossRef]

Y.-C. Chang, C.-W. Su, S.-C. Chang, and Y.-H. Lee, “Variations of surface roughness for deposition of Co-sputtered-ZnO(002) by Auger electron spectroscopy and surface magneto-optic Faraday effect,” Eur. Phys. J. Appl. Phys.53, 21501 (2011).

Su, S. H.

S. H. Su, H.-H. Chen, T.-H. Lee, Y.-J. Hsu, and J. C. A. Huang, “Thermally Activated Interaction of Co Growth with ZnO(101̅0) Surface,” J. Phys. Chem. C117(34), 17540–17547 (2013).
[CrossRef]

Szymanski, B.

Y. Halahovets, P. Siffalovic, M. Jergel, R. Senderak, E. Majkova, S. Luby, I. Kostic, B. Szymanski, and F. Stobiecki, “Scanning magneto-optical Kerr microscope with auto-balanced detection scheme,” Rev. Sci. Instrum.82(8), 083706 (2011).
[CrossRef] [PubMed]

Takahashi, M.

G. X. Du, S. Saito, and M. Takahashi, “Tailoring the Faraday effect by birefringence of two dimensional plasmonic nanorod array,” Appl. Phys. Lett.99(19), 191107 (2011).
[CrossRef]

Tan, A.

J. Li, Z. Y. Wang, A. Tan, P. A. Glans, E. Arenholz, C. Hwang, J. Shi, and Z. Q. Qiu, “Magnetic dead layer at the interface between a Co film and the topological insulator Bi_{2}Se_{3},” Phys. Rev. B86(5), 054430 (2012).
[CrossRef]

Teixeira, J. M.

J. M. Teixeira, R. Lusche, J. Ventura, R. Fermento, F. Carpinteiro, J. P. Araujo, J. B. Sousa, S. Cardoso, and P. P. Freitas, “Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials,” Rev. Sci. Instrum.82(4), 043902 (2011).
[CrossRef] [PubMed]

Thiess, S.

J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, and R. Sporken, “Thermally Activated Processes at the Co/ZnO Interface Elucidated Using High Energy X-rays,” J. Phys. Chem. C115(15), 7411–7418 (2011).
[CrossRef]

Tolkiehn, M.

J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, and R. Sporken, “Thermally Activated Processes at the Co/ZnO Interface Elucidated Using High Energy X-rays,” J. Phys. Chem. C115(15), 7411–7418 (2011).
[CrossRef]

Tsai, T. H.

C. W. Su, M. S. Huang, T. H. Tsai, and S. C. Chang, “Verification of surface polarity of O-face ZnO(0001) by quantitative modeling analysis of Auger electron spectroscopy,” Appl. Surf. Sci.263, 174–181 (2012).
[CrossRef]

Tsai, T.-H.

C.-W. Su, Y.-C. Chang, T.-H. Tsai, S.-C. Chang, and M.-S. Huang, “Formation of CoNx ultra-thin films during direct-current nitrogen ion sputtering in ultrahigh vacuum,” Thin Solid Films519(11), 3739–3744 (2011).
[CrossRef]

Tse, W.-K.

W.-K. Tse and A. H. MacDonald, “Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized Hall systems,” Phys. Rev. B84(20), 205327 (2011).
[CrossRef]

W.-K. Tse and A. H. MacDonald, “Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators,” Phys. Rev. Lett.105(5), 057401 (2010).
[CrossRef] [PubMed]

Turhan, C.

S. Kyle, C. Turhan, D. B. Joshua, V. Ilya, and A. A. Chabanov, “Enhanced transmission and giant Faraday effect in magnetic metal–dielectric photonic structures,” J. Phys. D Appl. Phys.46(16), 165002 (2013).
[CrossRef]

Uchida, H.

A. B. Khanikaev, A. B. Baryshev, P. B. Lim, H. Uchida, M. Inoue, A. G. Zhdanov, A. A. Fedyanin, A. I. Maydykovskiy, and O. A. Aktsipetrov, “Nonlinear Verdet law in magnetophotonic crystals: Interrelation between Faraday and Borrmann effects,” Phys. Rev. B78(19), 193102 (2008).
[CrossRef]

Urban, R.

S. Visnovsk, M. Nývlt, V. Prosser, R. Lopusník, R. Urban, J. Ferré, G. Pénissard, D. Renard, and R. Krishnan, “Polar magneto-optics in simple ultrathin-magnetic-film structures,” Phys. Rev. B Condens. Matter52(2), 1090–1106 (1995).
[CrossRef] [PubMed]

Usachev, P. A.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Vaara, J.

T. S. Pennanen, S. Ikäläinen, P. Lantto, and J. Vaara, “Nuclear spin optical rotation and Faraday effect in gaseous and liquid water,” J. Chem. Phys.136(18), 184502 (2012).
[CrossRef] [PubMed]

Valeri, S.

E. Młyńczak, P. Luches, S. Valeri, and J. Korecki, “NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure,” J. Appl. Phys.113(23), 234315 (2013).
[CrossRef]

van Dijken, S.

T. H. E. Lahtinen, K. J. A. Franke, and S. van Dijken, “Electric-field control of magnetic domain wall motion and local magnetization reversal,” Sci Rep2, 258 (2012).
[CrossRef] [PubMed]

van Eijkelenborg, M. A.

M. Kristensen, F. J. Blok, M. A. van Eijkelenborg, G. Nienhuis, and J. P. Woerdman, “Onset of a collisional modification of the Faraday effect in a high-density atomic gas,” Phys. Rev. A51(2), 1085–1096 (1995).

Van Kesteren, H. W.

P. W. M. Blom, J. J. L. Horikx, P. J. H. Bloemen, C. A. Verschuren, H. W. Van Kesteren, H. Awano, and N. Ohta, “Spatial resolution of domain copying in a magnetic domain expansion readout disk,” Magnetics, IEEE Transactions on37(5), 3860–3864 (2001).
[CrossRef]

Ventura, J.

J. M. Teixeira, R. Lusche, J. Ventura, R. Fermento, F. Carpinteiro, J. P. Araujo, J. B. Sousa, S. Cardoso, and P. P. Freitas, “Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials,” Rev. Sci. Instrum.82(4), 043902 (2011).
[CrossRef] [PubMed]

Verschuren, C. A.

P. W. M. Blom, J. J. L. Horikx, P. J. H. Bloemen, C. A. Verschuren, H. W. Van Kesteren, H. Awano, and N. Ohta, “Spatial resolution of domain copying in a magnetic domain expansion readout disk,” Magnetics, IEEE Transactions on37(5), 3860–3864 (2001).
[CrossRef]

Victora, R. H.

L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
[CrossRef]

Villora, E. G.

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc 1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett.99(1), 011111 (2011).
[CrossRef]

Visnovsk, S.

S. Visnovsk, M. Nývlt, V. Prosser, R. Lopusník, R. Urban, J. Ferré, G. Pénissard, D. Renard, and R. Krishnan, “Polar magneto-optics in simple ultrathin-magnetic-film structures,” Phys. Rev. B Condens. Matter52(2), 1090–1106 (1995).
[CrossRef] [PubMed]

Voitovich, A.

I. Mukhin, A. Voitovich, O. Palashov, and E. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun.282(10), 1969–1972 (2009).
[CrossRef]

Walz, B.

J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, and R. Sporken, “Thermally Activated Processes at the Co/ZnO Interface Elucidated Using High Energy X-rays,” J. Phys. Chem. C115(15), 7411–7418 (2011).
[CrossRef]

Wang, G. T.

X. Wang, J. Lian, G. T. Wang, P. Song, P. Li, and S. Gao, “Longitude magneto optical Kerr effect of Fe/GaAs (001) with Al overlayers,” J. Magn. Magn. Mater.323(22), 2711–2716 (2011).
[CrossRef]

Wang, R. W.

R. W. Wang, D. L. Mills, E. E. Fullerton, J. E. Mattson, and S. D. Bader, “Surface spin-flop transition in Fe/Cr(211) superlattices: Experiment and theory,” Phys. Rev. Lett.72(6), 920–923 (1994).
[CrossRef] [PubMed]

Wang, X.

X. Wang, J. Lian, G. T. Wang, P. Song, P. Li, and S. Gao, “Longitude magneto optical Kerr effect of Fe/GaAs (001) with Al overlayers,” J. Magn. Magn. Mater.323(22), 2711–2716 (2011).
[CrossRef]

Wang, X. L.

G. P. Zhao and X. L. Wang, “Nucleation, pinning, and coercivity in magnetic nanosystems: An analytical micromagnetic approach,” Phys. Rev. B74(1), 012409 (2006).
[CrossRef]

Wang, Y.

S. Polisetty, J. Scheffler, S. Sahoo, Y. Wang, T. Mukherjee, X. He, and Ch. Binek, “Optimization of magneto-optical Kerr setup: Analyzing experimental assemblies using Jones matrix formalism,” Rev. Sci. Instrum.79(5), 055107 (2008).
[CrossRef] [PubMed]

Wang, Z. Y.

J. Li, Z. Y. Wang, A. Tan, P. A. Glans, E. Arenholz, C. Hwang, J. Shi, and Z. Q. Qiu, “Magnetic dead layer at the interface between a Co film and the topological insulator Bi_{2}Se_{3},” Phys. Rev. B86(5), 054430 (2012).
[CrossRef]

Westerholt, K.

A. Westphalen, T. Schmitte, K. Westerholt, and H. Zabel, “Bragg magneto-optical Kerr effect measurements at Co stripe arrays on Fe(001),” J. Appl. Phys.97(7), 073909 (2005).
[CrossRef]

Westphalen, A.

A. Westphalen, T. Schmitte, K. Westerholt, and H. Zabel, “Bragg magneto-optical Kerr effect measurements at Co stripe arrays on Fe(001),” J. Appl. Phys.97(7), 073909 (2005).
[CrossRef]

Wittekoek, S.

S. Wittekoek and D. E. Lacklison, “Investigation of the Origin of the Anomalous Faraday Rotation of BixCa3-xFe3.5+0.5 xV1.5-0.5xO12 by means of the magneto-optical Kerr effect,” Phys. Rev. Lett.28(12), 740–743 (1972).
[CrossRef]

Woerdman, J. P.

J. P. Woerdman, F. J. Blok, M. Kristensen, and C. A. Schrama, “Multiperturber effects in the Faraday spectrum of Rb atoms immersed in a high-density Xe gas,” Phys. Rev. A53(2), 1183–1186 (1996).
[CrossRef] [PubMed]

M. Kristensen, F. J. Blok, M. A. van Eijkelenborg, G. Nienhuis, and J. P. Woerdman, “Onset of a collisional modification of the Faraday effect in a high-density atomic gas,” Phys. Rev. A51(2), 1085–1096 (1995).

Wu, H.-C.

B. S. Chun, H.-H. Nahm, M. Abid, H.-C. Wu, Y.-S. Kim, I. C. Chu, and C. Hwang, “Positive exchange bias in thin film multilayers produced with nano-oxide layer,” Appl. Phys. Lett.102(25), 252406 (2013).
[CrossRef]

Wu, Q.

J. Ye, W. He, Q. Wu, H.-L. Liu, X.-Q. Zhang, Z.-Y. Chen, and Z.-H. Cheng, “Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance,” Sci Rep3, 2148 (2013).
[CrossRef] [PubMed]

Ye, J.

J. Ye, W. He, Q. Wu, H.-L. Liu, X.-Q. Zhang, Z.-Y. Chen, and Z.-H. Cheng, “Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance,” Sci Rep3, 2148 (2013).
[CrossRef] [PubMed]

Zabel, H.

A. Westphalen, T. Schmitte, K. Westerholt, and H. Zabel, “Bragg magneto-optical Kerr effect measurements at Co stripe arrays on Fe(001),” J. Appl. Phys.97(7), 073909 (2005).
[CrossRef]

Zak, J.

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Magneto-optics of multilayers with arbitrary magnetization directions,” Phys. Rev. B Condens. Matter43(8), 6423–6429 (1991).
[CrossRef] [PubMed]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Elementary formula for the magneto-optic Kerr effect from model superlattices,” Appl. Phys. Lett.58(11), 1214 (1991).
[CrossRef]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater.89(1-2), 107–123 (1990).
[CrossRef]

E. R. Moog, C. Liu, S. D. Bader, and J. Zak, “Thickness and polarization dependence of the magnetooptic signal from ultrathin ferromagnetic films,” Phys. Rev. B Condens. Matter39(10), 6949–6956 (1989).
[CrossRef] [PubMed]

Zel’Dovich, B. Y.

N. B. Baranova, Y. V. Bogdanov, and B. Y. Zel’Dovich, “Electrical analog of the Faraday effect and other new optical effects in liquids,” Opt. Commun.22(2), 243–247 (1977).
[CrossRef]

Zhang, X.-Q.

J. Ye, W. He, Q. Wu, H.-L. Liu, X.-Q. Zhang, Z.-Y. Chen, and Z.-H. Cheng, “Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance,” Sci Rep3, 2148 (2013).
[CrossRef] [PubMed]

Zhao, G. P.

G. P. Zhao and X. L. Wang, “Nucleation, pinning, and coercivity in magnetic nanosystems: An analytical micromagnetic approach,” Phys. Rev. B74(1), 012409 (2006).
[CrossRef]

Zhao, H. B.

Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol.8(6), 438–444 (2013).
[CrossRef] [PubMed]

Zhao, J.

X. Chen, X. Qian, K. Meng, J. Zhao, and Y. Ji, “The measurement of magneto-optical Kerr effect of ultrathin films in a pulsed magnetic field,” Measurement46(1), 52–56 (2013).
[CrossRef]

Zhdanov, A. G.

A. B. Khanikaev, A. B. Baryshev, P. B. Lim, H. Uchida, M. Inoue, A. G. Zhdanov, A. A. Fedyanin, A. I. Maydykovskiy, and O. A. Aktsipetrov, “Nonlinear Verdet law in magnetophotonic crystals: Interrelation between Faraday and Borrmann effects,” Phys. Rev. B78(19), 193102 (2008).
[CrossRef]

AIP Advances

C. W. Su, S. C. Chang, and Y. C. Chang, “Periodic reversal of magneto-optic Faraday rotation on uniaxial birefringence crystal with ultrathin magnetic films,” AIP Advances3(7), 072125 (2013).
[CrossRef]

Appl. Phys. Lett.

E. G. Villora, P. Molina, M. Nakamura, K. Shimamura, T. Hatanaka, A. Funaki, and K. Naoe, “Faraday rotator properties of {Tb3}[Sc 1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators,” Appl. Phys. Lett.99(1), 011111 (2011).
[CrossRef]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Elementary formula for the magneto-optic Kerr effect from model superlattices,” Appl. Phys. Lett.58(11), 1214 (1991).
[CrossRef]

D. A. Allwood, P. R. Seem, S. Basu, P. W. Fry, U. J. Gibson, and R. P. Cowburn, “Over 40% transverse Kerr effect from Ni80Fe20,” Appl. Phys. Lett.92(7), 072503 (2008).
[CrossRef]

S. R. A. Bowden, K. K. L. Ahmed, and U. J. Gibson, “Longitudinal magneto-optic Kerr effect detection of latching vortex magnetization chirality in individual mesoscale rings,” Appl. Phys. Lett.91(23), 232505 (2007).
[CrossRef]

P. R. Bandaru, T. D. Sands, Y. Kubota, and E. E. Marinero, “Decoupling the structural and magnetic phase transformations in magneto-optic MnBi thin films by the partial substitution of Cr for Mn,” Appl. Phys. Lett.72(18), 2337–2339 (1998).
[CrossRef]

G. X. Du, S. Saito, and M. Takahashi, “Tailoring the Faraday effect by birefringence of two dimensional plasmonic nanorod array,” Appl. Phys. Lett.99(19), 191107 (2011).
[CrossRef]

B. S. Chun, H.-H. Nahm, M. Abid, H.-C. Wu, Y.-S. Kim, I. C. Chu, and C. Hwang, “Positive exchange bias in thin film multilayers produced with nano-oxide layer,” Appl. Phys. Lett.102(25), 252406 (2013).
[CrossRef]

Appl. Surf. Sci.

C. W. Su, M. S. Huang, T. H. Tsai, and S. C. Chang, “Verification of surface polarity of O-face ZnO(0001) by quantitative modeling analysis of Auger electron spectroscopy,” Appl. Surf. Sci.263, 174–181 (2012).
[CrossRef]

Eur. Phys. J. Appl. Phys.

Y.-C. Chang, C.-W. Su, S.-C. Chang, and Y.-H. Lee, “Variations of surface roughness for deposition of Co-sputtered-ZnO(002) by Auger electron spectroscopy and surface magneto-optic Faraday effect,” Eur. Phys. J. Appl. Phys.53, 21501 (2011).

J. Appl. Phys.

S. Maat, L. Shen, C. Hou, H. Fujiwara, and G. J. Mankey, “Optical interference in magneto-optic Kerr-effect measurements of magnetic multilayers,” J. Appl. Phys.85(3), 1658–1662 (1999).
[CrossRef]

E. Młyńczak, P. Luches, S. Valeri, and J. Korecki, “NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure,” J. Appl. Phys.113(23), 234315 (2013).
[CrossRef]

S. Pathak and M. Sharma, “Magneto-optical Kerr effect measurements on highly ordered nanomagnet arrays,” J. Appl. Phys.111(7), 07E331 (2012).
[CrossRef]

P. R. Cantwell, U. J. Gibson, D. A. Allwood, and H. A. M. Macleod, “Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements,” J. Appl. Phys.100(9), 093910 (2006).
[CrossRef]

A. Westphalen, T. Schmitte, K. Westerholt, and H. Zabel, “Bragg magneto-optical Kerr effect measurements at Co stripe arrays on Fe(001),” J. Appl. Phys.97(7), 073909 (2005).
[CrossRef]

N. Mikuszeit, S. Pütter, R. Frömter, and H. P. Oepen, “Magneto-optic Kerr effect: Incorporating the nonlinearities of the analyzer into static photometric ellipsometry analysis,” J. Appl. Phys.97(10), 103107 (2005).
[CrossRef]

T. Mewes, H. Nembach, M. Rickart, and B. Hillebrands, “Separation of the first- and second-order contributions in magneto-optic Kerr effect magnetometry of epitaxial FeMn/NiFe bilayers,” J. Appl. Phys.95(10), 5324 (2004).
[CrossRef]

J. S. Jiang, E. E. Fullerton, M. Grimsditch, C. H. Sowers, and S. D. Bader, “Exchange-spring behavior in epitaxial hard/soft magnetic bilayer films,” J. Appl. Phys.83(11), 6238 (1998).
[CrossRef]

C. Liu and S. D. Bader, “Two-dimensional magnetic phase transition of ultrathin iron films on Pd(100),” J. Appl. Phys.67(9), 5758–5760 (1990).
[CrossRef]

J. Chem. Phys.

T. S. Pennanen, S. Ikäläinen, P. Lantto, and J. Vaara, “Nuclear spin optical rotation and Faraday effect in gaseous and liquid water,” J. Chem. Phys.136(18), 184502 (2012).
[CrossRef] [PubMed]

J. Magn. Magn. Mater.

X. Wang, J. Lian, G. T. Wang, P. Song, P. Li, and S. Gao, “Longitude magneto optical Kerr effect of Fe/GaAs (001) with Al overlayers,” J. Magn. Magn. Mater.323(22), 2711–2716 (2011).
[CrossRef]

W. M. Li, W. K. Lim, J. Z. Shi, and J. Ding, “The effect of capped layer thickness on switching behavior in perpendicular CoCrPt based coupled granular/continuous media,” J. Magn. Magn. Mater.340, 50–56 (2013).
[CrossRef]

S. D. Bader, E. R. Moog, and P. Grünberg, “Magnetic hysteresis of epitaxially-deposited iron in the monolayer range: A Kerr effect experiment in surface magnetism,” J. Magn. Magn. Mater.53(4), L295–L298 (1986).
[CrossRef]

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Universal approach to magneto-optics,” J. Magn. Magn. Mater.89(1-2), 107–123 (1990).
[CrossRef]

M. Kučera, P. Beránková, K. Nitsch, and M. Matyáš., “Low-temperature Faraday effect in charge-uncompensated garnet Ca:YIG,” J. Magn. Magn. Mater.157–158, 323–325 (1996).
[CrossRef]

J. Mater. Res.

L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. J. Hopster, D. N. Lambeth, S. S. P. Parkin, G. Prinz, M. Salamon, I. K. Schuller, and R. H. Victora, “Surface, interface, and thin-film magnetism,” J. Mater. Res.5(06), 1299–1340 (1990).
[CrossRef]

J. Opt.

R. Brunetton and J. Monin, “Highly efficient low field magneto-optic modulator,” J. Opt.17(4), 191–196 (1986).
[CrossRef]

J. Phys. Chem. C

J. A. Dumont, M. C. Mugumaoderha, J. Ghijsen, S. Thiess, W. Drube, B. Walz, M. Tolkiehn, D. Novikov, F. M. F. de Groot, and R. Sporken, “Thermally Activated Processes at the Co/ZnO Interface Elucidated Using High Energy X-rays,” J. Phys. Chem. C115(15), 7411–7418 (2011).
[CrossRef]

S. H. Su, H.-H. Chen, T.-H. Lee, Y.-J. Hsu, and J. C. A. Huang, “Thermally Activated Interaction of Co Growth with ZnO(101̅0) Surface,” J. Phys. Chem. C117(34), 17540–17547 (2013).
[CrossRef]

J. Phys. D Appl. Phys.

S. Kyle, C. Turhan, D. B. Joshua, V. Ilya, and A. A. Chabanov, “Enhanced transmission and giant Faraday effect in magnetic metal–dielectric photonic structures,” J. Phys. D Appl. Phys.46(16), 165002 (2013).
[CrossRef]

D. A. Allwood, X. Gang, M. D. Cooke, and R. P. Cowburn, “Magneto-optical Kerr effect analysis of magnetic nanostructures,” J. Phys. D Appl. Phys.36(18), 2175–2182 (2003).
[CrossRef]

J. Phys. E Sci. Instrum.

B. Segard and J. M. Carpentier, “Millimetre polarisation spectrometer for paramagnetic gas molecules,” J. Phys. E Sci. Instrum.14(4), 442–447 (1981).
[CrossRef]

Journal of Superconductivity and Novel Magnetism

S. Matsuzaka, Y. Ohno, and H. Ohno, “Scanning Kerr microscopy of the spin hall effect in n-doped GaAs with various doping concentration,” Journal of Superconductivity and Novel Magnetism23(1), 37–39 (2010).
[CrossRef]

Magnetics, IEEE Transactions on

J. Ostorero, H. Le Gall, M. Guillot, and A. Marchand, “Faraday effect in gadolinium iron garnet,” Magnetics, IEEE Transactions on22(5), 1242–1244 (1986).
[CrossRef]

P. W. M. Blom, J. J. L. Horikx, P. J. H. Bloemen, C. A. Verschuren, H. W. Van Kesteren, H. Awano, and N. Ohta, “Spatial resolution of domain copying in a magnetic domain expansion readout disk,” Magnetics, IEEE Transactions on37(5), 3860–3864 (2001).
[CrossRef]

Mater. Chem. Phys.

Y. A. Lisovskii, E. G. Knizhnik, V. L. Stolyarov, and L. K. Fionova, “The structure and magnetic properties of Co-Cr thin films for perpendicular recording,” Mater. Chem. Phys.44(3), 239–244 (1996).
[CrossRef]

Materials

C.-W. Su, Y.-C. Chang, and S.-C. Chang, “Magnetic phase transition in ion-irradiated ultrathin CoN films via magneto-optic Faraday effect,” Materials6(11), 5247–5257 (2013).
[CrossRef]

Measurement

X. Chen, X. Qian, K. Meng, J. Zhao, and Y. Ji, “The measurement of magneto-optical Kerr effect of ultrathin films in a pulsed magnetic field,” Measurement46(1), 52–56 (2013).
[CrossRef]

Nat Commun

D. Chiba, M. Kawaguchi, S. Fukami, N. Ishiwata, K. Shimamura, K. Kobayashi, and T. Ono, “Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization,” Nat Commun3, 888 (2012).
[CrossRef] [PubMed]

Nat. Nanotechnol.

Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol.8(6), 438–444 (2013).
[CrossRef] [PubMed]

Nature

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Opt. Commun.

N. B. Baranova, Y. V. Bogdanov, and B. Y. Zel’Dovich, “Electrical analog of the Faraday effect and other new optical effects in liquids,” Opt. Commun.22(2), 243–247 (1977).
[CrossRef]

I. Mukhin, A. Voitovich, O. Palashov, and E. Khazanov, “2.1 Tesla permanent-magnet Faraday isolator for subkilowatt average power lasers,” Opt. Commun.282(10), 1969–1972 (2009).
[CrossRef]

Opt. Eng.

M. Ghanaatshoar and M. Moradi, “Magneto-optical Kerr-effect enhancement in glass/Cu/SnO2/Co/SnO2 thin films,” Opt. Eng.50(9), 093801 (2011).
[CrossRef]

Phys. Chem. Miner.

G. Siva Ramaiah and Y. Pan, “Thermodynamic and magnetic properties of surface Fe3+ species on quartz: effects of gamma-ray irradiation and implications for aerosol–radiation interactions,” Phys. Chem. Miner.39(6), 515–523 (2012).
[CrossRef]

Phys. Rev.

P. N. Argyres, “Theory of the Faraday and Kerr Effects in Ferromagnetics,” Phys. Rev.97(2), 334–345 (1955).
[CrossRef]

Phys. Rev. A

J. P. Woerdman, F. J. Blok, M. Kristensen, and C. A. Schrama, “Multiperturber effects in the Faraday spectrum of Rb atoms immersed in a high-density Xe gas,” Phys. Rev. A53(2), 1183–1186 (1996).
[CrossRef] [PubMed]

M. Kristensen, F. J. Blok, M. A. van Eijkelenborg, G. Nienhuis, and J. P. Woerdman, “Onset of a collisional modification of the Faraday effect in a high-density atomic gas,” Phys. Rev. A51(2), 1085–1096 (1995).

Phys. Rev. B

A. B. Khanikaev, A. B. Baryshev, P. B. Lim, H. Uchida, M. Inoue, A. G. Zhdanov, A. A. Fedyanin, A. I. Maydykovskiy, and O. A. Aktsipetrov, “Nonlinear Verdet law in magnetophotonic crystals: Interrelation between Faraday and Borrmann effects,” Phys. Rev. B78(19), 193102 (2008).
[CrossRef]

W.-K. Tse and A. H. MacDonald, “Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized Hall systems,” Phys. Rev. B84(20), 205327 (2011).
[CrossRef]

J. Li, Z. Y. Wang, A. Tan, P. A. Glans, E. Arenholz, C. Hwang, J. Shi, and Z. Q. Qiu, “Magnetic dead layer at the interface between a Co film and the topological insulator Bi_{2}Se_{3},” Phys. Rev. B86(5), 054430 (2012).
[CrossRef]

S. H. Chung, A. Hoffmann, and M. Grimsditch, “Interplay between exchange bias and uniaxial anisotropy in a ferromagnetic/antiferromagnetic exchange-coupled system,” Phys. Rev. B71(21), 214430 (2005).
[CrossRef]

M. I. Bakunov, R. V. Mikhaylovskiy, and S. B. Bodrov, “Probing ultrafast optomagnetism by terahertz Cherenkov radiation,” Phys. Rev. B86(13), 134405 (2012).
[CrossRef]

G. P. Zhao and X. L. Wang, “Nucleation, pinning, and coercivity in magnetic nanosystems: An analytical micromagnetic approach,” Phys. Rev. B74(1), 012409 (2006).
[CrossRef]

Phys. Rev. B Condens. Matter

J. Zak, E. R. Moog, C. Liu, and S. D. Bader, “Magneto-optics of multilayers with arbitrary magnetization directions,” Phys. Rev. B Condens. Matter43(8), 6423–6429 (1991).
[CrossRef] [PubMed]

Z. Q. Qiu, J. Pearson, and S. D. Bader, “Oscillatory interlayer magnetic coupling of wedged Co/Cu/Co sandwiches grown on Cu(100) by molecular beam epitaxy,” Phys. Rev. B Condens. Matter46(13), 8659–8662 (1992).
[CrossRef] [PubMed]

E. R. Moog, C. Liu, S. D. Bader, and J. Zak, “Thickness and polarization dependence of the magnetooptic signal from ultrathin ferromagnetic films,” Phys. Rev. B Condens. Matter39(10), 6949–6956 (1989).
[CrossRef] [PubMed]

S. Visnovsk, M. Nývlt, V. Prosser, R. Lopusník, R. Urban, J. Ferré, G. Pénissard, D. Renard, and R. Krishnan, “Polar magneto-optics in simple ultrathin-magnetic-film structures,” Phys. Rev. B Condens. Matter52(2), 1090–1106 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

S. Wittekoek and D. E. Lacklison, “Investigation of the Origin of the Anomalous Faraday Rotation of BixCa3-xFe3.5+0.5 xV1.5-0.5xO12 by means of the magneto-optical Kerr effect,” Phys. Rev. Lett.28(12), 740–743 (1972).
[CrossRef]

J. Pommier, P. Meyer, G. Pénissard, J. Ferré, P. Bruno, and D. Renard, “Magnetization reversal in ultrathin ferromagnetic films with perpendicular anistropy: domain observations,” Phys. Rev. Lett.65(16), 2054–2057 (1990).
[CrossRef] [PubMed]

R. W. Wang, D. L. Mills, E. E. Fullerton, J. E. Mattson, and S. D. Bader, “Surface spin-flop transition in Fe/Cr(211) superlattices: Experiment and theory,” Phys. Rev. Lett.72(6), 920–923 (1994).
[CrossRef] [PubMed]

C. Liu, E. R. Moog, and S. D. Bader, “Polar Kerr-effect observation of perpendicular surface anisotropy for ultrathin fcc Fe Grown on Cu(100),” Phys. Rev. Lett.60(23), 2422–2425 (1988).
[CrossRef] [PubMed]

D. Li, M. Freitag, J. Pearson, Z. Q. Qiu, and S. D. Bader, “Magnetic phases of ultrathin Fe grown on Cu(100) as epitaxial wedges,” Phys. Rev. Lett.72(19), 3112–3115 (1994).
[CrossRef] [PubMed]

W.-K. Tse and A. H. MacDonald, “Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators,” Phys. Rev. Lett.105(5), 057401 (2010).
[CrossRef] [PubMed]

Rep. Prog. Phys.

A. Kirilyuk, A. V. Kimel, and T. Rasing, “Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys,” Rep. Prog. Phys.76(2), 026501 (2013).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

Y. Halahovets, P. Siffalovic, M. Jergel, R. Senderak, E. Majkova, S. Luby, I. Kostic, B. Szymanski, and F. Stobiecki, “Scanning magneto-optical Kerr microscope with auto-balanced detection scheme,” Rev. Sci. Instrum.82(8), 083706 (2011).
[CrossRef] [PubMed]

J. M. Teixeira, R. Lusche, J. Ventura, R. Fermento, F. Carpinteiro, J. P. Araujo, J. B. Sousa, S. Cardoso, and P. P. Freitas, “Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials,” Rev. Sci. Instrum.82(4), 043902 (2011).
[CrossRef] [PubMed]

A. Barman, T. Kimura, Y. Otani, Y. Fukuma, K. Akahane, and S. Meguro, “Benchtop time-resolved magneto-optical Kerr magnetometer,” Rev. Sci. Instrum.79(12), 123905 (2008).
[CrossRef] [PubMed]

S. Polisetty, J. Scheffler, S. Sahoo, Y. Wang, T. Mukherjee, X. He, and Ch. Binek, “Optimization of magneto-optical Kerr setup: Analyzing experimental assemblies using Jones matrix formalism,” Rev. Sci. Instrum.79(5), 055107 (2008).
[CrossRef] [PubMed]

M. Cormier, J. Ferré, A. Mougin, J.-P. Cromières, and V. Klein, “High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics,” Rev. Sci. Instrum.79(3), 033706 (2008).
[CrossRef] [PubMed]

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum.71(3), 1243–1255 (2000).
[CrossRef]

C. Nistor, G. S. D. Beach, and J. L. Erskine, “Versatile magneto-optic Kerr effect polarimeter for studies of domain-wall dynamics in magnetic nanostructures,” Rev. Sci. Instrum.77(10), 103901 (2006).
[CrossRef]

Sci Rep

J. Ye, W. He, Q. Wu, H.-L. Liu, X.-Q. Zhang, Z.-Y. Chen, and Z.-H. Cheng, “Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance,” Sci Rep3, 2148 (2013).
[CrossRef] [PubMed]

T. H. E. Lahtinen, K. J. A. Franke, and S. van Dijken, “Electric-field control of magnetic domain wall motion and local magnetization reversal,” Sci Rep2, 258 (2012).
[CrossRef] [PubMed]

Science

Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Observation of the Spin Hall effect in semiconductors,” Science306(5703), 1910–1913 (2004).
[CrossRef] [PubMed]

Soviet Journal of Quantum Electronics

B. A. Glushko and V. O. Chaltykyan, “Magnetic properties of a diamagnetic gas in a resonance radiation field,” Soviet Journal of Quantum Electronics12(11), 1388–1390 (1982).
[CrossRef]

SPIN

C. W. Su, S. C. Chang, and Y. C. Chang, “Magneto-optic faraday effect on spin anisotropic co ultrathin films and post-nitridization on sno(002) crystal,” SPIN02(04), 1250017 (2012).
[CrossRef]

Thin Solid Films

C.-W. Su, Y.-C. Chang, T.-H. Tsai, S.-C. Chang, and M.-S. Huang, “Formation of CoNx ultra-thin films during direct-current nitrogen ion sputtering in ultrahigh vacuum,” Thin Solid Films519(11), 3739–3744 (2011).
[CrossRef]

T. V. Murzina, A. V. Shebarshin, A. I. Maidykovski, E. A. Ganshina, O. A. Aktsipetrov, N. N. Novitski, A. I. Stognij, and A. Stashkevich, “Linear and nonlinear magnetooptics of planar Au/Co/Si nanostructures,” Thin Solid Films517(20), 5918–5921 (2009).
[CrossRef]

Other

D. Li, Encyclopedia of Microfluidics and Nanofluidics (Springer-Verlag, 2008).

M. A. Reed, P. S. Krstic, W. Guan, and X. Zhao, “System and method for trapping and measuring a charged particle in a liquid,” US Patent US20110031389 A1 (2013).

N. Xiao-Jing and H. Min, “Faraday effect optical current/magnetic field sensors based on cerium-substituted yttrium iron garnet single crystal,” in Power and Energy Engineering Conference (APPEEC),2010Asia-Pacific, 2010), 1–4.

M. Faraday, Faraday's Diary, Begin from note #7504 (13 Sep 1845), 2nd ed. (HR Direct, 2008), Vol. IV.

Š. Višňovský, Optics in Magnetic Multilayers and Nanostructures (CRC/Taylor & Francis, 2006).

M. O. Takada, Hiroshi, Sugiyama, and Naoshi, “Faraday Rotation Effect of Intracluster Magnetic Field on Cosmic Microwave Background Polarization,” arXiv:astro-ph/0112412 (2001).

G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, 1994).

J.-m. Liu, Photonic Devices (Cambridge University Press, 2005).

V. G. Bordo and H.-G. Rubahn, Optics and Spectroscopy at Surfaces and Interfaces (Wiley-VCH, Weinheim 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Oscillation behaviors of optical and magneto-optical Faraday intensities of the 2.3 nm Co/ZnO(0001) with the angle of incidence: (a) zero-field MOFE intensity I0 from optically anisotropic substrate and the 1 × original MOFE signal (same scale compared with the substrate); (b) oscillation behavior of MOFE signal intensity with 100 × zoom-in multiplication from (a). Here the Faraday optical intensity is measured from the hysteresis loop. The sensitivity of optical intensity in the apparatus is higher than that of FR. The scale bar of FR is indicated. Black line is a guide to the oscillation.

Fig. 2
Fig. 2

Traditional Faraday effect apparatus. P and A are polarizer and analyzer. Typical bar-shaped material is situated between two electromagnetic poles. D: is the photo detector.

Fig. 3
Fig. 3

Hysteresis loops of 2.3-nm Co/ZnO(0001) measured at two different angles of incidence: (a) 49° and (b) 71°, for examples. The data were observed from the same sample.

Fig. 4
Fig. 4

(a) Evolution of hysteresis loops from specific incident angles in the area of indicated arrow in (b). The downward arrow follows the loop data from top to bottom. (b) FR oscillation experiments as a function of incident angle for the 4-nm Co/ZnO and sputtering time of post N+ irradiation. Schematic digital idea described in the text is shown.

Fig. 5
Fig. 5

Schematic diagram of UHV-MOFE apparatus in author’s laboratory.

Fig. 6
Fig. 6

Deviation angle shifted to the s-minimum analyzer at normal incidence. The data are acquired from the sample conditions: (a) deposition of Co film and increase of thickness up to 2.3 nm and (b) the 4-nm Co film was sputtered by 1-keV N+ plasma (with time of 113 and 225 s). Dash lines L and P are corresponding to the longitudinal and perpendicular field configurations.

Fig. 7
Fig. 7

Thickness-dependent coercivity measured from MOFEs along in-plane and out-of-plane magnetic field under the Co growth. Critical thickness is apparent at 2 nm. Below 2 nm, only in-plane magnetic anisotropy was observed and coercivity can be measured.

Fig. 8
Fig. 8

(a) Angle-resolved coercivity of 4 nm of Co recorded in different sputtered condition by N+ ion irradiation over a short period (sputtering energy and time are indicated on the figure). Parts of data without Hc are also indicated. (b) Possible model of multilayered structure with layer-dependent anisotropy by MOFE. Bottom magnetic layer close to substrate with low Hc values along in-plane magnetic easy axis and surface magnetic layer with high Hc values along out-of-plane easy axis form a layered magnetic structure.

Metrics