Abstract

We investigate volume holographic recording in a photopolymerizable nanoparticle-polymer (NPC) composite film that employs radical-mediated thiol-yne step-growth photopolymerizations. Because each alkyne functional group can react consecutively with two thiol functional groups in thiol-yne photopolymerizatins, the thiol-yne based NPC system dispersed with inorganic nanoparticles has the potentiality to overcome the drawback of low crosslinking densities but to retain the advantage of low shrinkage that is possible by use of thiol-ene photopolymerizations. We show that a thiol-yne based NPC film dispersed with 25 vol.% SiO2 nanoparticles and 15 wt.% single functional co-monomer gives the saturated refractive index change as large as 0.008 and the material recording sensitivity as high as 2005 cm/J at a recording and readout wavelength of 532 nm. We find that while the shrinkage of a volume hologram recorded in a thiol-yne based NPC dispersed with organic nanopartices can be as low as 0.5%, it is approximately 1% with the dispersion of SiO2 nanoparticles due to the plasticizing effect of the doped co-monomer. On the other hand, the thermal stability is improved better with the dispersion of SiO2 nanoparticles. We also demonstrate shift-multiplexed holographic storage of 80 digital data pages in a thiol-yne based NPC film with high readout fidelity.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Tomita, “Holographic Nanoparticle-Photo- polymerComposites, in NalwaH.S. ed. Encyclopedia of Nanoscience and Nanotechnology15 (American ScientificPublishers, Valencia,2011), p. 191.
  2. Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett.30, 839–841 (2005).
    [CrossRef] [PubMed]
  3. Y. Tomita, K. Chikama, Y. Nohara, N. Suzuki, K. Furushima, and Y. Endoh, “Two-dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film,” Opt. Lett.31, 1402–1404 (2006).
    [CrossRef] [PubMed]
  4. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett.81, 4121–4123 (2002).
    [CrossRef]
  5. A.T. Juhhl, J.D. Busbee, J.J. Koval, L.V. Natarajan, V.P. Tondiglia, R.A. Vaia, T.J. Bunning, and P.V. Braun, “Holographically directed aseembly of polymer nanocomposites,” ACS NANO4, 5953–5961 (2010).
    [CrossRef]
  6. T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:I. General approach to choice of components of nano composites and their holographic properties,” Opt. Spectrosc.110, 135–142 (2011).
    [CrossRef]
  7. T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:II. Mechanism of formation of polymer-nanoparticle bulk periodic structure and effect of parameters of forming field on structure efficiency,” Opt. Spectrosc.110, 143–150 (2011).
    [CrossRef]
  8. Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Opt. Lett.33, 1750–1752 (2008).
    [CrossRef] [PubMed]
  9. N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt.43, 2125–2129 (2004).
    [CrossRef] [PubMed]
  10. C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater.5, 1623–1629 (2005).
    [CrossRef]
  11. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14, 12712–12719 (2006).
    [CrossRef] [PubMed]
  12. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 1071103 (2006).
    [CrossRef]
  13. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14, 12712–12719 (2006).
    [CrossRef] [PubMed]
  14. I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE6252, 625206 (2006).
  15. O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2and TiO2nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology18, 1057041–1057047 (2007).
    [CrossRef]
  16. K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2nanoparticle-photopolymer composite materials,” J. Appl. Phys.103, 1131081–1131086 (2008).
    [CrossRef]
  17. O.V. Sakhno, T.N. Smirnova, L.M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposited,” Mater. Sci. Eng.C28, 28–35 (2008).
    [CrossRef]
  18. T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt.11, 0240101–0240107 (2009).
    [CrossRef]
  19. X. Liu, Y. Tomita, J. Oshima, K. Chikama, K. Matsubara, T. Nakashima, and T. Kawai, “Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%,” Appl. Phys. Lett.95, 2611091–2611093 (2009).
  20. T.N. Smirnova, O.V. Sakhno, P.V. Yezhov, L.M. Kokhtych, L.V. Goldenberg, and J. Stumpe, “Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method,” Nanotechnology20, 2457071–2457079 (2009).
    [CrossRef]
  21. K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2nanoparticle-polymer composites at 404 nm,” J. Appl. Phys.107, 0231071–0231076 (2010).
  22. M. Moothanchery, I. Naydenova, S. Mintova, and V. Toal, “Nanozeolites doped photopolymer layers with reduced shrinkage,” Opt. Express19, 25786–25791 (2011).
    [CrossRef]
  23. I. Naydenova, E. Leite, Tz. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanozeolites molecular sieves,” J. Opt.13, 0440191–04401910 (2011).
    [CrossRef]
  24. L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thiol-ene photopolymerization,” Chem. Mater.15, 2477–2484 (2003).
    [CrossRef]
  25. J.A. Carioscia, H. Lu, J.W. Stanbury, and C.N. Bowman, “Thiol-ene oligomers as dental restrative materials,” Dent. Mater.21, 1137–1143 (2005).
    [CrossRef] [PubMed]
  26. L. Dhar, M.G. Schnoes, H.E. Katz, A. Hale, M.L. Schilling, and A.L. Harris, “Photopolymers for Digital Holographic Data Storage,” in H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage (Springer, 2000).
    [CrossRef]
  27. G. Odian, Principles of Polymerization, 4th edition (Wiley, 1994), Chap. 2, p.110.
  28. C.E. Hoyle, T.Y. Lee, and T. Roper, “Thol-enes: Chemistry of the past with promise for the future,” J. Polym. Sci. part A:Polym. Chem.42, 5301–5338 (2004).
    [CrossRef]
  29. C.E. Hoyle and C.N. Bowman, “Thiol-ene click chemistry,” Angew. Chem. Int. Ed.49, 1540–1573 (2010).
    [CrossRef]
  30. D.P. Nair, N.B. Cramer, T.F. Scott, C.N. Bowman, and R. Shandas, “Photopolymerizd thiol-ene systems as shape memory polymers,” Polymer51, 4383–4389 (2010).
    [CrossRef]
  31. B.D. Fairbanks, T.F. Scott, C.J. Kloxin, K.S. Anseth, and C.N. Bowman, “Thiol-yne photopolymerizations: Novel mechanism, kinetics, and step-growth formation of highly cross-linked networks,” Macromolecules42, 211–217 (2009).
    [CrossRef] [PubMed]
  32. E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett.35, 396–398 (2010).
    [CrossRef] [PubMed]
  33. E. Hata, K. Mitsube, K. Momose, and Y. Tomita, Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express1, 207–222 (2011).
    [CrossRef]
  34. E. Hata and Y. Tomita, “Stoichiometric thiol-to-ene ratio dependences of refractive index modulation and shrinkage of volume gratings recorded in photopolymerizable nanoparticle-polymer composites based onstepgrowth polymerization,” Opt. Mater. Express1, 1113–1120 (2011).
    [CrossRef]
  35. D. A. Waldman, H.-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol.41, 497–514 (1997).
  36. K. Momose, S. Takayama, E. Hata, and Y. Tomita, “Shift-multiplexed holographic digital data page storage in a nanoparticle-(thiol-ene) polymer composite film,” Opt. Lett.37, 2250–2252 (2012).
    [CrossRef] [PubMed]
  37. B.D. Fairbanks, E.A. Sims, K.S. Anseth, and C.N. Bowman, “Reaction rates and mechanisms for radical, photoinitiated addition of thiols to alkynes, and implications for thiol-yne photopolymerizations and click reactions,” Macromolecules43, 4113–4119 (2010).
    [CrossRef]
  38. J.W. Chan, J. Shin, C.E. Hoyle, C.N. Bowman, and A.B. Lowe, “Synthesis, thiol-yne “click” photo polymerization, and physical properties of networks derived from novel multifunctional alkynes,” Macromolecules43, 4937–4942 (2010).
    [CrossRef]
  39. L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer47, 4411–4420 (2006).
    [CrossRef]
  40. N.B. Cramer and C.N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. Part A: Poly. Chem.39, 3311–3319 (2001).
    [CrossRef]
  41. H. Takahashi, J. Yamauchi, and Y. Tomita, “Characterization of silica-nanoparticle-dispersed photopolymer films that include Poly(methyl methacrylate) as host binder material,” Jpn. J. Appl. Phys.44, L1008–L1010 (2005),
    [CrossRef]
  42. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947(1969).
    [CrossRef]
  43. L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73, 1337–1339 (1998).
    [CrossRef]
  44. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic Press, London, 1998).
  45. S. Campbell, S.-H. Lin, X. Yi, and P. Yeh, “Absorption effects in photorefractive volume-holographic memory systems. II. Material heating,” J. Opt. Soc. Am. B13, 2218–2228 (1996).
    [CrossRef]
  46. T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys.40, 1732–1736 (2001).
    [CrossRef]
  47. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express15, 16196–16209 (2007).
    [CrossRef] [PubMed]

2012 (1)

2011 (6)

E. Hata, K. Mitsube, K. Momose, and Y. Tomita, Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express1, 207–222 (2011).
[CrossRef]

E. Hata and Y. Tomita, “Stoichiometric thiol-to-ene ratio dependences of refractive index modulation and shrinkage of volume gratings recorded in photopolymerizable nanoparticle-polymer composites based onstepgrowth polymerization,” Opt. Mater. Express1, 1113–1120 (2011).
[CrossRef]

M. Moothanchery, I. Naydenova, S. Mintova, and V. Toal, “Nanozeolites doped photopolymer layers with reduced shrinkage,” Opt. Express19, 25786–25791 (2011).
[CrossRef]

T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:I. General approach to choice of components of nano composites and their holographic properties,” Opt. Spectrosc.110, 135–142 (2011).
[CrossRef]

T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:II. Mechanism of formation of polymer-nanoparticle bulk periodic structure and effect of parameters of forming field on structure efficiency,” Opt. Spectrosc.110, 143–150 (2011).
[CrossRef]

I. Naydenova, E. Leite, Tz. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanozeolites molecular sieves,” J. Opt.13, 0440191–04401910 (2011).
[CrossRef]

2010 (7)

C.E. Hoyle and C.N. Bowman, “Thiol-ene click chemistry,” Angew. Chem. Int. Ed.49, 1540–1573 (2010).
[CrossRef]

D.P. Nair, N.B. Cramer, T.F. Scott, C.N. Bowman, and R. Shandas, “Photopolymerizd thiol-ene systems as shape memory polymers,” Polymer51, 4383–4389 (2010).
[CrossRef]

A.T. Juhhl, J.D. Busbee, J.J. Koval, L.V. Natarajan, V.P. Tondiglia, R.A. Vaia, T.J. Bunning, and P.V. Braun, “Holographically directed aseembly of polymer nanocomposites,” ACS NANO4, 5953–5961 (2010).
[CrossRef]

B.D. Fairbanks, E.A. Sims, K.S. Anseth, and C.N. Bowman, “Reaction rates and mechanisms for radical, photoinitiated addition of thiols to alkynes, and implications for thiol-yne photopolymerizations and click reactions,” Macromolecules43, 4113–4119 (2010).
[CrossRef]

J.W. Chan, J. Shin, C.E. Hoyle, C.N. Bowman, and A.B. Lowe, “Synthesis, thiol-yne “click” photo polymerization, and physical properties of networks derived from novel multifunctional alkynes,” Macromolecules43, 4937–4942 (2010).
[CrossRef]

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2nanoparticle-polymer composites at 404 nm,” J. Appl. Phys.107, 0231071–0231076 (2010).

E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett.35, 396–398 (2010).
[CrossRef] [PubMed]

2009 (4)

B.D. Fairbanks, T.F. Scott, C.J. Kloxin, K.S. Anseth, and C.N. Bowman, “Thiol-yne photopolymerizations: Novel mechanism, kinetics, and step-growth formation of highly cross-linked networks,” Macromolecules42, 211–217 (2009).
[CrossRef] [PubMed]

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt.11, 0240101–0240107 (2009).
[CrossRef]

X. Liu, Y. Tomita, J. Oshima, K. Chikama, K. Matsubara, T. Nakashima, and T. Kawai, “Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%,” Appl. Phys. Lett.95, 2611091–2611093 (2009).

T.N. Smirnova, O.V. Sakhno, P.V. Yezhov, L.M. Kokhtych, L.V. Goldenberg, and J. Stumpe, “Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method,” Nanotechnology20, 2457071–2457079 (2009).
[CrossRef]

2008 (3)

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2nanoparticle-photopolymer composite materials,” J. Appl. Phys.103, 1131081–1131086 (2008).
[CrossRef]

O.V. Sakhno, T.N. Smirnova, L.M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposited,” Mater. Sci. Eng.C28, 28–35 (2008).
[CrossRef]

Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Opt. Lett.33, 1750–1752 (2008).
[CrossRef] [PubMed]

2007 (2)

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express15, 16196–16209 (2007).
[CrossRef] [PubMed]

O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2and TiO2nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology18, 1057041–1057047 (2007).
[CrossRef]

2006 (6)

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE6252, 625206 (2006).

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer47, 4411–4420 (2006).
[CrossRef]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 1071103 (2006).
[CrossRef]

Y. Tomita, K. Chikama, Y. Nohara, N. Suzuki, K. Furushima, and Y. Endoh, “Two-dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film,” Opt. Lett.31, 1402–1404 (2006).
[CrossRef] [PubMed]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14, 12712–12719 (2006).
[CrossRef] [PubMed]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14, 12712–12719 (2006).
[CrossRef] [PubMed]

2005 (4)

Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett.30, 839–841 (2005).
[CrossRef] [PubMed]

H. Takahashi, J. Yamauchi, and Y. Tomita, “Characterization of silica-nanoparticle-dispersed photopolymer films that include Poly(methyl methacrylate) as host binder material,” Jpn. J. Appl. Phys.44, L1008–L1010 (2005),
[CrossRef]

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater.5, 1623–1629 (2005).
[CrossRef]

J.A. Carioscia, H. Lu, J.W. Stanbury, and C.N. Bowman, “Thiol-ene oligomers as dental restrative materials,” Dent. Mater.21, 1137–1143 (2005).
[CrossRef] [PubMed]

2004 (2)

C.E. Hoyle, T.Y. Lee, and T. Roper, “Thol-enes: Chemistry of the past with promise for the future,” J. Polym. Sci. part A:Polym. Chem.42, 5301–5338 (2004).
[CrossRef]

N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt.43, 2125–2129 (2004).
[CrossRef] [PubMed]

2003 (1)

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thiol-ene photopolymerization,” Chem. Mater.15, 2477–2484 (2003).
[CrossRef]

2002 (1)

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett.81, 4121–4123 (2002).
[CrossRef]

2001 (2)

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys.40, 1732–1736 (2001).
[CrossRef]

N.B. Cramer and C.N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. Part A: Poly. Chem.39, 3311–3319 (2001).
[CrossRef]

1998 (1)

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73, 1337–1339 (1998).
[CrossRef]

1997 (1)

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol.41, 497–514 (1997).

1996 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947(1969).
[CrossRef]

Anseth, K.S.

B.D. Fairbanks, E.A. Sims, K.S. Anseth, and C.N. Bowman, “Reaction rates and mechanisms for radical, photoinitiated addition of thiols to alkynes, and implications for thiol-yne photopolymerizations and click reactions,” Macromolecules43, 4113–4119 (2010).
[CrossRef]

B.D. Fairbanks, T.F. Scott, C.J. Kloxin, K.S. Anseth, and C.N. Bowman, “Thiol-yne photopolymerizations: Novel mechanism, kinetics, and step-growth formation of highly cross-linked networks,” Macromolecules42, 211–217 (2009).
[CrossRef] [PubMed]

Babeva, Tz.

I. Naydenova, E. Leite, Tz. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanozeolites molecular sieves,” J. Opt.13, 0440191–04401910 (2011).
[CrossRef]

Bair, H.

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73, 1337–1339 (1998).
[CrossRef]

Baron, T.

I. Naydenova, E. Leite, Tz. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanozeolites molecular sieves,” J. Opt.13, 0440191–04401910 (2011).
[CrossRef]

Bastiaansen, C.W.M.

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater.5, 1623–1629 (2005).
[CrossRef]

Bowman, C.N.

C.E. Hoyle and C.N. Bowman, “Thiol-ene click chemistry,” Angew. Chem. Int. Ed.49, 1540–1573 (2010).
[CrossRef]

B.D. Fairbanks, E.A. Sims, K.S. Anseth, and C.N. Bowman, “Reaction rates and mechanisms for radical, photoinitiated addition of thiols to alkynes, and implications for thiol-yne photopolymerizations and click reactions,” Macromolecules43, 4113–4119 (2010).
[CrossRef]

D.P. Nair, N.B. Cramer, T.F. Scott, C.N. Bowman, and R. Shandas, “Photopolymerizd thiol-ene systems as shape memory polymers,” Polymer51, 4383–4389 (2010).
[CrossRef]

J.W. Chan, J. Shin, C.E. Hoyle, C.N. Bowman, and A.B. Lowe, “Synthesis, thiol-yne “click” photo polymerization, and physical properties of networks derived from novel multifunctional alkynes,” Macromolecules43, 4937–4942 (2010).
[CrossRef]

B.D. Fairbanks, T.F. Scott, C.J. Kloxin, K.S. Anseth, and C.N. Bowman, “Thiol-yne photopolymerizations: Novel mechanism, kinetics, and step-growth formation of highly cross-linked networks,” Macromolecules42, 211–217 (2009).
[CrossRef] [PubMed]

J.A. Carioscia, H. Lu, J.W. Stanbury, and C.N. Bowman, “Thiol-ene oligomers as dental restrative materials,” Dent. Mater.21, 1137–1143 (2005).
[CrossRef] [PubMed]

N.B. Cramer and C.N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. Part A: Poly. Chem.39, 3311–3319 (2001).
[CrossRef]

Boyd, C.

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73, 1337–1339 (1998).
[CrossRef]

Brandelik, D.M.

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thiol-ene photopolymerization,” Chem. Mater.15, 2477–2484 (2003).
[CrossRef]

Braun, P.V.

A.T. Juhhl, J.D. Busbee, J.J. Koval, L.V. Natarajan, V.P. Tondiglia, R.A. Vaia, T.J. Bunning, and P.V. Braun, “Holographically directed aseembly of polymer nanocomposites,” ACS NANO4, 5953–5961 (2010).
[CrossRef]

Broer, D.J.

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater.5, 1623–1629 (2005).
[CrossRef]

Brown, D.P.

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer47, 4411–4420 (2006).
[CrossRef]

Bunning, T.J.

A.T. Juhhl, J.D. Busbee, J.J. Koval, L.V. Natarajan, V.P. Tondiglia, R.A. Vaia, T.J. Bunning, and P.V. Braun, “Holographically directed aseembly of polymer nanocomposites,” ACS NANO4, 5953–5961 (2010).
[CrossRef]

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer47, 4411–4420 (2006).
[CrossRef]

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thiol-ene photopolymerization,” Chem. Mater.15, 2477–2484 (2003).
[CrossRef]

Busbee, J.D.

A.T. Juhhl, J.D. Busbee, J.J. Koval, L.V. Natarajan, V.P. Tondiglia, R.A. Vaia, T.J. Bunning, and P.V. Braun, “Holographically directed aseembly of polymer nanocomposites,” ACS NANO4, 5953–5961 (2010).
[CrossRef]

Campbell, S.

Carioscia, J.A.

J.A. Carioscia, H. Lu, J.W. Stanbury, and C.N. Bowman, “Thiol-ene oligomers as dental restrative materials,” Dent. Mater.21, 1137–1143 (2005).
[CrossRef] [PubMed]

Chan, J.W.

J.W. Chan, J. Shin, C.E. Hoyle, C.N. Bowman, and A.B. Lowe, “Synthesis, thiol-yne “click” photo polymerization, and physical properties of networks derived from novel multifunctional alkynes,” Macromolecules43, 4937–4942 (2010).
[CrossRef]

Chandra, S.

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thiol-ene photopolymerization,” Chem. Mater.15, 2477–2484 (2003).
[CrossRef]

Chikama, K.

X. Liu, Y. Tomita, J. Oshima, K. Chikama, K. Matsubara, T. Nakashima, and T. Kawai, “Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%,” Appl. Phys. Lett.95, 2611091–2611093 (2009).

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2nanoparticle-photopolymer composite materials,” J. Appl. Phys.103, 1131081–1131086 (2008).
[CrossRef]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14, 12712–12719 (2006).
[CrossRef] [PubMed]

Y. Tomita, K. Chikama, Y. Nohara, N. Suzuki, K. Furushima, and Y. Endoh, “Two-dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film,” Opt. Lett.31, 1402–1404 (2006).
[CrossRef] [PubMed]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 1071103 (2006).
[CrossRef]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14, 12712–12719 (2006).
[CrossRef] [PubMed]

Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett.30, 839–841 (2005).
[CrossRef] [PubMed]

Cramer, N.B.

D.P. Nair, N.B. Cramer, T.F. Scott, C.N. Bowman, and R. Shandas, “Photopolymerizd thiol-ene systems as shape memory polymers,” Polymer51, 4383–4389 (2010).
[CrossRef]

N.B. Cramer and C.N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. Part A: Poly. Chem.39, 3311–3319 (2001).
[CrossRef]

Dhar, L.

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73, 1337–1339 (1998).
[CrossRef]

L. Dhar, M.G. Schnoes, H.E. Katz, A. Hale, M.L. Schilling, and A.L. Harris, “Photopolymers for Digital Holographic Data Storage,” in H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage (Springer, 2000).
[CrossRef]

Endoh, Y.

Escuti, M.J.

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater.5, 1623–1629 (2005).
[CrossRef]

Fairbanks, B.D.

B.D. Fairbanks, E.A. Sims, K.S. Anseth, and C.N. Bowman, “Reaction rates and mechanisms for radical, photoinitiated addition of thiols to alkynes, and implications for thiol-yne photopolymerizations and click reactions,” Macromolecules43, 4113–4119 (2010).
[CrossRef]

B.D. Fairbanks, T.F. Scott, C.J. Kloxin, K.S. Anseth, and C.N. Bowman, “Thiol-yne photopolymerizations: Novel mechanism, kinetics, and step-growth formation of highly cross-linked networks,” Macromolecules42, 211–217 (2009).
[CrossRef] [PubMed]

Fukumoto, A.

Furushima, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 1071103 (2006).
[CrossRef]

Y. Tomita, K. Chikama, Y. Nohara, N. Suzuki, K. Furushima, and Y. Endoh, “Two-dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film,” Opt. Lett.31, 1402–1404 (2006).
[CrossRef] [PubMed]

Ghosh, G.

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic Press, London, 1998).

Goldenberg, L.M.

O.V. Sakhno, T.N. Smirnova, L.M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposited,” Mater. Sci. Eng.C28, 28–35 (2008).
[CrossRef]

O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2and TiO2nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology18, 1057041–1057047 (2007).
[CrossRef]

Goldenberg, L.V.

T.N. Smirnova, O.V. Sakhno, P.V. Yezhov, L.M. Kokhtych, L.V. Goldenberg, and J. Stumpe, “Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method,” Nanotechnology20, 2457071–2457079 (2009).
[CrossRef]

Hale, A.

L. Dhar, M.G. Schnoes, H.E. Katz, A. Hale, M.L. Schilling, and A.L. Harris, “Photopolymers for Digital Holographic Data Storage,” in H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage (Springer, 2000).
[CrossRef]

Hara, M.

Harris, A.L.

L. Dhar, M.G. Schnoes, H.E. Katz, A. Hale, M.L. Schilling, and A.L. Harris, “Photopolymers for Digital Holographic Data Storage,” in H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage (Springer, 2000).
[CrossRef]

Hata, E.

Hidaka, M.

Hidaka, T.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt.11, 0240101–0240107 (2009).
[CrossRef]

Hirooka, K.

Horner, M. G.

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol.41, 497–514 (1997).

Hoyle, C.E.

J.W. Chan, J. Shin, C.E. Hoyle, C.N. Bowman, and A.B. Lowe, “Synthesis, thiol-yne “click” photo polymerization, and physical properties of networks derived from novel multifunctional alkynes,” Macromolecules43, 4937–4942 (2010).
[CrossRef]

C.E. Hoyle and C.N. Bowman, “Thiol-ene click chemistry,” Angew. Chem. Int. Ed.49, 1540–1573 (2010).
[CrossRef]

C.E. Hoyle, T.Y. Lee, and T. Roper, “Thol-enes: Chemistry of the past with promise for the future,” J. Polym. Sci. part A:Polym. Chem.42, 5301–5338 (2004).
[CrossRef]

Imai, T.

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys.40, 1732–1736 (2001).
[CrossRef]

Ishioka, K.

Ishizu, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 1071103 (2006).
[CrossRef]

Juhhl, A.T.

A.T. Juhhl, J.D. Busbee, J.J. Koval, L.V. Natarajan, V.P. Tondiglia, R.A. Vaia, T.J. Bunning, and P.V. Braun, “Holographically directed aseembly of polymer nanocomposites,” ACS NANO4, 5953–5961 (2010).
[CrossRef]

Katz, H.E.

L. Dhar, M.G. Schnoes, H.E. Katz, A. Hale, M.L. Schilling, and A.L. Harris, “Photopolymers for Digital Holographic Data Storage,” in H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage (Springer, 2000).
[CrossRef]

Kawai, T.

X. Liu, Y. Tomita, J. Oshima, K. Chikama, K. Matsubara, T. Nakashima, and T. Kawai, “Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%,” Appl. Phys. Lett.95, 2611091–2611093 (2009).

Kloxin, C.J.

B.D. Fairbanks, T.F. Scott, C.J. Kloxin, K.S. Anseth, and C.N. Bowman, “Thiol-yne photopolymerizations: Novel mechanism, kinetics, and step-growth formation of highly cross-linked networks,” Macromolecules42, 211–217 (2009).
[CrossRef] [PubMed]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947(1969).
[CrossRef]

Kojima, T.

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett.81, 4121–4123 (2002).
[CrossRef]

Kokhtich, L.M.

T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:I. General approach to choice of components of nano composites and their holographic properties,” Opt. Spectrosc.110, 135–142 (2011).
[CrossRef]

T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:II. Mechanism of formation of polymer-nanoparticle bulk periodic structure and effect of parameters of forming field on structure efficiency,” Opt. Spectrosc.110, 143–150 (2011).
[CrossRef]

Kokhtych, L.M.

T.N. Smirnova, O.V. Sakhno, P.V. Yezhov, L.M. Kokhtych, L.V. Goldenberg, and J. Stumpe, “Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method,” Nanotechnology20, 2457071–2457079 (2009).
[CrossRef]

Koval, J.J.

A.T. Juhhl, J.D. Busbee, J.J. Koval, L.V. Natarajan, V.P. Tondiglia, R.A. Vaia, T.J. Bunning, and P.V. Braun, “Holographically directed aseembly of polymer nanocomposites,” ACS NANO4, 5953–5961 (2010).
[CrossRef]

Kume, T.

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys.40, 1732–1736 (2001).
[CrossRef]

Lee, T.Y.

C.E. Hoyle, T.Y. Lee, and T. Roper, “Thol-enes: Chemistry of the past with promise for the future,” J. Polym. Sci. part A:Polym. Chem.42, 5301–5338 (2004).
[CrossRef]

Leite, E.

I. Naydenova, E. Leite, Tz. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanozeolites molecular sieves,” J. Opt.13, 0440191–04401910 (2011).
[CrossRef]

Li, H.-Y. S.

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol.41, 497–514 (1997).

Lin, S.-H.

Liu, X.

X. Liu, Y. Tomita, J. Oshima, K. Chikama, K. Matsubara, T. Nakashima, and T. Kawai, “Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%,” Appl. Phys. Lett.95, 2611091–2611093 (2009).

Lloyd, P.F.

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer47, 4411–4420 (2006).
[CrossRef]

Loos, J.

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater.5, 1623–1629 (2005).
[CrossRef]

Lowe, A.B.

J.W. Chan, J. Shin, C.E. Hoyle, C.N. Bowman, and A.B. Lowe, “Synthesis, thiol-yne “click” photo polymerization, and physical properties of networks derived from novel multifunctional alkynes,” Macromolecules43, 4937–4942 (2010).
[CrossRef]

Lu, H.

J.A. Carioscia, H. Lu, J.W. Stanbury, and C.N. Bowman, “Thiol-ene oligomers as dental restrative materials,” Dent. Mater.21, 1137–1143 (2005).
[CrossRef] [PubMed]

Martin, S.

I. Naydenova, E. Leite, Tz. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanozeolites molecular sieves,” J. Opt.13, 0440191–04401910 (2011).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE6252, 625206 (2006).

Mastubara, K.

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2nanoparticle-photopolymer composite materials,” J. Appl. Phys.103, 1131081–1131086 (2008).
[CrossRef]

Matsubara, K.

X. Liu, Y. Tomita, J. Oshima, K. Chikama, K. Matsubara, T. Nakashima, and T. Kawai, “Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%,” Appl. Phys. Lett.95, 2611091–2611093 (2009).

Mintova, S.

I. Naydenova, E. Leite, Tz. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanozeolites molecular sieves,” J. Opt.13, 0440191–04401910 (2011).
[CrossRef]

M. Moothanchery, I. Naydenova, S. Mintova, and V. Toal, “Nanozeolites doped photopolymer layers with reduced shrinkage,” Opt. Express19, 25786–25791 (2011).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE6252, 625206 (2006).

Mitsube, K.

Momose, K.

Moothanchery, M.

Nair, D.P.

D.P. Nair, N.B. Cramer, T.F. Scott, C.N. Bowman, and R. Shandas, “Photopolymerizd thiol-ene systems as shape memory polymers,” Polymer51, 4383–4389 (2010).
[CrossRef]

Nakamura, T.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt.11, 0240101–0240107 (2009).
[CrossRef]

Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Opt. Lett.33, 1750–1752 (2008).
[CrossRef] [PubMed]

Nakashima, T.

X. Liu, Y. Tomita, J. Oshima, K. Chikama, K. Matsubara, T. Nakashima, and T. Kawai, “Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%,” Appl. Phys. Lett.95, 2611091–2611093 (2009).

Natarajan, L.V.

A.T. Juhhl, J.D. Busbee, J.J. Koval, L.V. Natarajan, V.P. Tondiglia, R.A. Vaia, T.J. Bunning, and P.V. Braun, “Holographically directed aseembly of polymer nanocomposites,” ACS NANO4, 5953–5961 (2010).
[CrossRef]

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer47, 4411–4420 (2006).
[CrossRef]

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thiol-ene photopolymerization,” Chem. Mater.15, 2477–2484 (2003).
[CrossRef]

Naydenova, I.

I. Naydenova, E. Leite, Tz. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanozeolites molecular sieves,” J. Opt.13, 0440191–04401910 (2011).
[CrossRef]

M. Moothanchery, I. Naydenova, S. Mintova, and V. Toal, “Nanozeolites doped photopolymer layers with reduced shrinkage,” Opt. Express19, 25786–25791 (2011).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE6252, 625206 (2006).

Nohara, Y.

Nozaki, J.

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt.11, 0240101–0240107 (2009).
[CrossRef]

Nussbaumer, R.

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater.5, 1623–1629 (2005).
[CrossRef]

Ochi, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 1071103 (2006).
[CrossRef]

Odian, G.

G. Odian, Principles of Polymerization, 4th edition (Wiley, 1994), Chap. 2, p.110.

Ohmori, K.

Omura, K.

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2nanoparticle-polymer composites at 404 nm,” J. Appl. Phys.107, 0231071–0231076 (2010).

Oshima, J.

X. Liu, Y. Tomita, J. Oshima, K. Chikama, K. Matsubara, T. Nakashima, and T. Kawai, “Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%,” Appl. Phys. Lett.95, 2611091–2611093 (2009).

Oyama, S.

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2nanoparticle-photopolymer composite materials,” J. Appl. Phys.103, 1131081–1131086 (2008).
[CrossRef]

Ozawa, M.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 1071103 (2006).
[CrossRef]

Pandey, N.

I. Naydenova, E. Leite, Tz. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanozeolites molecular sieves,” J. Opt.13, 0440191–04401910 (2011).
[CrossRef]

Roper, T.

C.E. Hoyle, T.Y. Lee, and T. Roper, “Thol-enes: Chemistry of the past with promise for the future,” J. Polym. Sci. part A:Polym. Chem.42, 5301–5338 (2004).
[CrossRef]

Sainov, S.

I. Naydenova, E. Leite, Tz. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanozeolites molecular sieves,” J. Opt.13, 0440191–04401910 (2011).
[CrossRef]

Sakhno, O.V.

T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:I. General approach to choice of components of nano composites and their holographic properties,” Opt. Spectrosc.110, 135–142 (2011).
[CrossRef]

T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:II. Mechanism of formation of polymer-nanoparticle bulk periodic structure and effect of parameters of forming field on structure efficiency,” Opt. Spectrosc.110, 143–150 (2011).
[CrossRef]

T.N. Smirnova, O.V. Sakhno, P.V. Yezhov, L.M. Kokhtych, L.V. Goldenberg, and J. Stumpe, “Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method,” Nanotechnology20, 2457071–2457079 (2009).
[CrossRef]

O.V. Sakhno, T.N. Smirnova, L.M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposited,” Mater. Sci. Eng.C28, 28–35 (2008).
[CrossRef]

O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2and TiO2nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology18, 1057041–1057047 (2007).
[CrossRef]

Sánchez, C.

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater.5, 1623–1629 (2005).
[CrossRef]

Schilling, M.

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73, 1337–1339 (1998).
[CrossRef]

Schilling, M.L.

L. Dhar, M.G. Schnoes, H.E. Katz, A. Hale, M.L. Schilling, and A.L. Harris, “Photopolymers for Digital Holographic Data Storage,” in H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage (Springer, 2000).
[CrossRef]

Schnoes, M.G.

L. Dhar, M.G. Schnoes, H.E. Katz, A. Hale, M.L. Schilling, and A.L. Harris, “Photopolymers for Digital Holographic Data Storage,” in H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage (Springer, 2000).
[CrossRef]

Schones, M.G.

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73, 1337–1339 (1998).
[CrossRef]

Scott, T.F.

D.P. Nair, N.B. Cramer, T.F. Scott, C.N. Bowman, and R. Shandas, “Photopolymerizd thiol-ene systems as shape memory polymers,” Polymer51, 4383–4389 (2010).
[CrossRef]

B.D. Fairbanks, T.F. Scott, C.J. Kloxin, K.S. Anseth, and C.N. Bowman, “Thiol-yne photopolymerizations: Novel mechanism, kinetics, and step-growth formation of highly cross-linked networks,” Macromolecules42, 211–217 (2009).
[CrossRef] [PubMed]

Shandas, R.

D.P. Nair, N.B. Cramer, T.F. Scott, C.N. Bowman, and R. Shandas, “Photopolymerizd thiol-ene systems as shape memory polymers,” Polymer51, 4383–4389 (2010).
[CrossRef]

Shepherd, C.K.

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thiol-ene photopolymerization,” Chem. Mater.15, 2477–2484 (2003).
[CrossRef]

Sherif, H.

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE6252, 625206 (2006).

Shin, J.

J.W. Chan, J. Shin, C.E. Hoyle, C.N. Bowman, and A.B. Lowe, “Synthesis, thiol-yne “click” photo polymerization, and physical properties of networks derived from novel multifunctional alkynes,” Macromolecules43, 4937–4942 (2010).
[CrossRef]

Sims, E.A.

B.D. Fairbanks, E.A. Sims, K.S. Anseth, and C.N. Bowman, “Reaction rates and mechanisms for radical, photoinitiated addition of thiols to alkynes, and implications for thiol-yne photopolymerizations and click reactions,” Macromolecules43, 4113–4119 (2010).
[CrossRef]

Smirnova, T.N.

T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:II. Mechanism of formation of polymer-nanoparticle bulk periodic structure and effect of parameters of forming field on structure efficiency,” Opt. Spectrosc.110, 143–150 (2011).
[CrossRef]

T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:I. General approach to choice of components of nano composites and their holographic properties,” Opt. Spectrosc.110, 135–142 (2011).
[CrossRef]

T.N. Smirnova, O.V. Sakhno, P.V. Yezhov, L.M. Kokhtych, L.V. Goldenberg, and J. Stumpe, “Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method,” Nanotechnology20, 2457071–2457079 (2009).
[CrossRef]

O.V. Sakhno, T.N. Smirnova, L.M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposited,” Mater. Sci. Eng.C28, 28–35 (2008).
[CrossRef]

Smironova, T.N.

O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2and TiO2nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology18, 1057041–1057047 (2007).
[CrossRef]

Stanbury, J.W.

J.A. Carioscia, H. Lu, J.W. Stanbury, and C.N. Bowman, “Thiol-ene oligomers as dental restrative materials,” Dent. Mater.21, 1137–1143 (2005).
[CrossRef] [PubMed]

Stumpe, J.

T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:I. General approach to choice of components of nano composites and their holographic properties,” Opt. Spectrosc.110, 135–142 (2011).
[CrossRef]

T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:II. Mechanism of formation of polymer-nanoparticle bulk periodic structure and effect of parameters of forming field on structure efficiency,” Opt. Spectrosc.110, 143–150 (2011).
[CrossRef]

T.N. Smirnova, O.V. Sakhno, P.V. Yezhov, L.M. Kokhtych, L.V. Goldenberg, and J. Stumpe, “Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method,” Nanotechnology20, 2457071–2457079 (2009).
[CrossRef]

O.V. Sakhno, T.N. Smirnova, L.M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposited,” Mater. Sci. Eng.C28, 28–35 (2008).
[CrossRef]

O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2and TiO2nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology18, 1057041–1057047 (2007).
[CrossRef]

Sutherland, R.L.

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer47, 4411–4420 (2006).
[CrossRef]

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thiol-ene photopolymerization,” Chem. Mater.15, 2477–2484 (2003).
[CrossRef]

Suzuki, N.

Tago, A.

Takahashi, H.

H. Takahashi, J. Yamauchi, and Y. Tomita, “Characterization of silica-nanoparticle-dispersed photopolymer films that include Poly(methyl methacrylate) as host binder material,” Jpn. J. Appl. Phys.44, L1008–L1010 (2005),
[CrossRef]

Takayama, S.

Tanaka, A.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 1071103 (2006).
[CrossRef]

Tanaka, K.

Toal, V.

M. Moothanchery, I. Naydenova, S. Mintova, and V. Toal, “Nanozeolites doped photopolymer layers with reduced shrinkage,” Opt. Express19, 25786–25791 (2011).
[CrossRef]

I. Naydenova, E. Leite, Tz. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanozeolites molecular sieves,” J. Opt.13, 0440191–04401910 (2011).
[CrossRef]

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE6252, 625206 (2006).

Tokuyama, K.

Tomita, Y.

K. Momose, S. Takayama, E. Hata, and Y. Tomita, “Shift-multiplexed holographic digital data page storage in a nanoparticle-(thiol-ene) polymer composite film,” Opt. Lett.37, 2250–2252 (2012).
[CrossRef] [PubMed]

E. Hata, K. Mitsube, K. Momose, and Y. Tomita, Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization,” Opt. Mater. Express1, 207–222 (2011).
[CrossRef]

E. Hata and Y. Tomita, “Stoichiometric thiol-to-ene ratio dependences of refractive index modulation and shrinkage of volume gratings recorded in photopolymerizable nanoparticle-polymer composites based onstepgrowth polymerization,” Opt. Mater. Express1, 1113–1120 (2011).
[CrossRef]

E. Hata and Y. Tomita, “Order-of-magnitude polymerization-shrinkage suppression of volume gratings recorded in nanoparticle-polymer composites,” Opt. Lett.35, 396–398 (2010).
[CrossRef] [PubMed]

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2nanoparticle-polymer composites at 404 nm,” J. Appl. Phys.107, 0231071–0231076 (2010).

X. Liu, Y. Tomita, J. Oshima, K. Chikama, K. Matsubara, T. Nakashima, and T. Kawai, “Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%,” Appl. Phys. Lett.95, 2611091–2611093 (2009).

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt.11, 0240101–0240107 (2009).
[CrossRef]

Y. Tomita, T. Nakamura, and A. Tago, “Improved thermal stability of volume holograms recorded in nanoparticle-polymer composite films,” Opt. Lett.33, 1750–1752 (2008).
[CrossRef] [PubMed]

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2nanoparticle-photopolymer composite materials,” J. Appl. Phys.103, 1131081–1131086 (2008).
[CrossRef]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14, 12712–12719 (2006).
[CrossRef] [PubMed]

Y. Tomita, K. Chikama, Y. Nohara, N. Suzuki, K. Furushima, and Y. Endoh, “Two-dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film,” Opt. Lett.31, 1402–1404 (2006).
[CrossRef] [PubMed]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 1071103 (2006).
[CrossRef]

N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, “Highly transparent ZrO2nanoparticle-dispersed acrylate photopolymers for volume holographic recording,” Opt. Express14, 12712–12719 (2006).
[CrossRef] [PubMed]

H. Takahashi, J. Yamauchi, and Y. Tomita, “Characterization of silica-nanoparticle-dispersed photopolymer films that include Poly(methyl methacrylate) as host binder material,” Jpn. J. Appl. Phys.44, L1008–L1010 (2005),
[CrossRef]

Y. Tomita, N. Suzuki, and K. Chikama, “Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers,” Opt. Lett.30, 839–841 (2005).
[CrossRef] [PubMed]

N. Suzuki and Y. Tomita, “Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%,” Appl. Opt.43, 2125–2129 (2004).
[CrossRef] [PubMed]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett.81, 4121–4123 (2002).
[CrossRef]

Y. Tomita, “Holographic Nanoparticle-Photo- polymerComposites, in NalwaH.S. ed. Encyclopedia of Nanoscience and Nanotechnology15 (American ScientificPublishers, Valencia,2011), p. 191.

Tomlin, D.

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thiol-ene photopolymerization,” Chem. Mater.15, 2477–2484 (2003).
[CrossRef]

Tondiglia, V.P.

A.T. Juhhl, J.D. Busbee, J.J. Koval, L.V. Natarajan, V.P. Tondiglia, R.A. Vaia, T.J. Bunning, and P.V. Braun, “Holographically directed aseembly of polymer nanocomposites,” ACS NANO4, 5953–5961 (2010).
[CrossRef]

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer47, 4411–4420 (2006).
[CrossRef]

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thiol-ene photopolymerization,” Chem. Mater.15, 2477–2484 (2003).
[CrossRef]

Vaia, R.A.

A.T. Juhhl, J.D. Busbee, J.J. Koval, L.V. Natarajan, V.P. Tondiglia, R.A. Vaia, T.J. Bunning, and P.V. Braun, “Holographically directed aseembly of polymer nanocomposites,” ACS NANO4, 5953–5961 (2010).
[CrossRef]

van Heesch, C.

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater.5, 1623–1629 (2005).
[CrossRef]

Waldman, D. A.

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol.41, 497–514 (1997).

Watanabe, K.

Wofford, J.M.

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer47, 4411–4420 (2006).
[CrossRef]

Wysocki, T.L.

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73, 1337–1339 (1998).
[CrossRef]

Yagi, S.

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys.40, 1732–1736 (2001).
[CrossRef]

Yamamoto, M.

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys.40, 1732–1736 (2001).
[CrossRef]

Yamauchi, J.

H. Takahashi, J. Yamauchi, and Y. Tomita, “Characterization of silica-nanoparticle-dispersed photopolymer films that include Poly(methyl methacrylate) as host binder material,” Jpn. J. Appl. Phys.44, L1008–L1010 (2005),
[CrossRef]

Yeh, P.

Yezhov, P.V.

T.N. Smirnova, O.V. Sakhno, P.V. Yezhov, L.M. Kokhtych, L.V. Goldenberg, and J. Stumpe, “Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method,” Nanotechnology20, 2457071–2457079 (2009).
[CrossRef]

Yi, X.

Yovcheva, T.

I. Naydenova, E. Leite, Tz. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanozeolites molecular sieves,” J. Opt.13, 0440191–04401910 (2011).
[CrossRef]

ACS NANO (1)

A.T. Juhhl, J.D. Busbee, J.J. Koval, L.V. Natarajan, V.P. Tondiglia, R.A. Vaia, T.J. Bunning, and P.V. Braun, “Holographically directed aseembly of polymer nanocomposites,” ACS NANO4, 5953–5961 (2010).
[CrossRef]

Adv. Funct. Mater. (1)

C. Sánchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, and R. Nussbaumer, “TiO2nanoparticle-photopolymer composites for volume holographic recording,” Adv. Funct. Mater.5, 1623–1629 (2005).
[CrossRef]

Angew. Chem. Int. Ed. (1)

C.E. Hoyle and C.N. Bowman, “Thiol-ene click chemistry,” Angew. Chem. Int. Ed.49, 1540–1573 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

L. Dhar, M.G. Schones, T.L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett.73, 1337–1339 (1998).
[CrossRef]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett.88, 1071103 (2006).
[CrossRef]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett.81, 4121–4123 (2002).
[CrossRef]

X. Liu, Y. Tomita, J. Oshima, K. Chikama, K. Matsubara, T. Nakashima, and T. Kawai, “Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%,” Appl. Phys. Lett.95, 2611091–2611093 (2009).

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J.48, 2909–2947(1969).
[CrossRef]

Chem. Mater. (1)

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thiol-ene photopolymerization,” Chem. Mater.15, 2477–2484 (2003).
[CrossRef]

Dent. Mater. (1)

J.A. Carioscia, H. Lu, J.W. Stanbury, and C.N. Bowman, “Thiol-ene oligomers as dental restrative materials,” Dent. Mater.21, 1137–1143 (2005).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

K. Chikama, K. Mastubara, S. Oyama, and Y. Tomita, “Three-dimensional confocal Raman imaging of volume holograms formed in ZrO2nanoparticle-photopolymer composite materials,” J. Appl. Phys.103, 1131081–1131086 (2008).
[CrossRef]

K. Omura and Y. Tomita, “Photopolymerization kinetics and volume holographic recording in ZrO2nanoparticle-polymer composites at 404 nm,” J. Appl. Phys.107, 0231071–0231076 (2010).

J. Imaging Sci. Technol. (1)

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol.41, 497–514 (1997).

J. Opt. (1)

I. Naydenova, E. Leite, Tz. Babeva, N. Pandey, T. Baron, T. Yovcheva, S. Sainov, S. Martin, S. Mintova, and V. Toal, “Optical properties of photopolymerizable nanocomposites containing nanozeolites molecular sieves,” J. Opt.13, 0440191–04401910 (2011).
[CrossRef]

J. Opt. A:Pure Appl. Opt. (1)

T. Nakamura, J. Nozaki, Y. Tomita, K. Ohmori, and T. Hidaka, “Holographic recording sensitivity enhancement of ZrO2nanoparticle-polymer composites by hydrogen donor and acceptor agents,” J. Opt. A:Pure Appl. Opt.11, 0240101–0240107 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Polym. Sci. Part A: Poly. Chem. (1)

N.B. Cramer and C.N. Bowman, “Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared,” J. Polym. Sci. Part A: Poly. Chem.39, 3311–3319 (2001).
[CrossRef]

J. Polym. Sci. part A:Polym. Chem. (1)

C.E. Hoyle, T.Y. Lee, and T. Roper, “Thol-enes: Chemistry of the past with promise for the future,” J. Polym. Sci. part A:Polym. Chem.42, 5301–5338 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (2)

H. Takahashi, J. Yamauchi, and Y. Tomita, “Characterization of silica-nanoparticle-dispersed photopolymer films that include Poly(methyl methacrylate) as host binder material,” Jpn. J. Appl. Phys.44, L1008–L1010 (2005),
[CrossRef]

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, “Digital holographic memory using two-dimensional modulation code,” Jpn. J. Appl. Phys.40, 1732–1736 (2001).
[CrossRef]

Macromolecules (3)

B.D. Fairbanks, T.F. Scott, C.J. Kloxin, K.S. Anseth, and C.N. Bowman, “Thiol-yne photopolymerizations: Novel mechanism, kinetics, and step-growth formation of highly cross-linked networks,” Macromolecules42, 211–217 (2009).
[CrossRef] [PubMed]

B.D. Fairbanks, E.A. Sims, K.S. Anseth, and C.N. Bowman, “Reaction rates and mechanisms for radical, photoinitiated addition of thiols to alkynes, and implications for thiol-yne photopolymerizations and click reactions,” Macromolecules43, 4113–4119 (2010).
[CrossRef]

J.W. Chan, J. Shin, C.E. Hoyle, C.N. Bowman, and A.B. Lowe, “Synthesis, thiol-yne “click” photo polymerization, and physical properties of networks derived from novel multifunctional alkynes,” Macromolecules43, 4937–4942 (2010).
[CrossRef]

Mater. Sci. Eng. (1)

O.V. Sakhno, T.N. Smirnova, L.M. Goldenberg, and J. Stumpe, “Holographic patterning of luminescent photopolymer nanocomposited,” Mater. Sci. Eng.C28, 28–35 (2008).
[CrossRef]

Nanotechnology (2)

T.N. Smirnova, O.V. Sakhno, P.V. Yezhov, L.M. Kokhtych, L.V. Goldenberg, and J. Stumpe, “Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method,” Nanotechnology20, 2457071–2457079 (2009).
[CrossRef]

O.V. Sakhno, L.M. Goldenberg, J. Stumpe, and T.N. Smironova, “Surface modified ZrO2and TiO2nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms,” Nanotechnology18, 1057041–1057047 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. Express (2)

Opt. Spectrosc. (2)

T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:I. General approach to choice of components of nano composites and their holographic properties,” Opt. Spectrosc.110, 135–142 (2011).
[CrossRef]

T.N. Smirnova, L.M. Kokhtich, O.V. Sakhno, and J. Stumpe, “Holographic nanocomposites for recording polymer-nanoparticle periodic structures:II. Mechanism of formation of polymer-nanoparticle bulk periodic structure and effect of parameters of forming field on structure efficiency,” Opt. Spectrosc.110, 143–150 (2011).
[CrossRef]

Polymer (2)

L.V. Natarajan, D.P. Brown, J.M. Wofford, V.P. Tondiglia, R.L. Sutherland, P.F. Lloyd, and T.J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer47, 4411–4420 (2006).
[CrossRef]

D.P. Nair, N.B. Cramer, T.F. Scott, C.N. Bowman, and R. Shandas, “Photopolymerizd thiol-ene systems as shape memory polymers,” Polymer51, 4383–4389 (2010).
[CrossRef]

Proc. SPIE (1)

I. Naydenova, H. Sherif, S. Mintova, S. Martin, and V. Toal, “Holographic recording in nanoparticle-doped photopolymer,” Proc. SPIE6252, 625206 (2006).

Other (4)

Y. Tomita, “Holographic Nanoparticle-Photo- polymerComposites, in NalwaH.S. ed. Encyclopedia of Nanoscience and Nanotechnology15 (American ScientificPublishers, Valencia,2011), p. 191.

L. Dhar, M.G. Schnoes, H.E. Katz, A. Hale, M.L. Schilling, and A.L. Harris, “Photopolymers for Digital Holographic Data Storage,” in H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage (Springer, 2000).
[CrossRef]

G. Odian, Principles of Polymerization, 4th edition (Wiley, 1994), Chap. 2, p.110.

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic Press, London, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Radical-mediated step-growth polymerization mechanisms of (a) thiol-ene and (b) thiol-yne photopolymerization reactions [31].

Fig. 2
Fig. 2

Chemical structures of thiol-yne monomers used in this study. (a) trithiol and (b) diyne.

Fig. 3
Fig. 3

Spectral dependences of absorption coefficients (αs) for samples I and II before and after curing under green LED exposure.

Fig. 4
Fig. 4

Parametric dependences of thiol and yne functional group conversions without nanoparticle dispersion. The solid line corresponds to stoichiometric functional group conversion.

Fig. 5
Fig. 5

Parametric dependences of thiol and yne functional group conversions for (a) sample I and (b) sample II at various concentrations of nanoparticles. The solid lines correspond to stoichiometric functional group conversion.

Fig. 6
Fig. 6

Parametric dependences of thiol and yne functional group conversions for sample I with 25 vol.% SiO2 nanoparticle dispersion at NVP concentrations of 15, 20, 25 and 30 wt.%. The solid line corresponds to stoichiometric functional group conversion.

Fig. 7
Fig. 7

Temporal traces of early thiol and yne functional group conversions for the stoichiometric thiol-yne monomer formulation (black), the stoichiometric thiol-yne formulation without SiO2 nanoparticles and with 15 wt.% NVP (blue) and the stoichiometric thiol-yne formulation with 25 vol.% SiO2 nanoparticles and 15 wt.% NVP (red). The solid and dotted curves correspond to thiol and yne functional group conversions, respectively.

Fig. 8
Fig. 8

Parametric dependences of thiol and yne functional group conversions and their polymerization rates (Rps) for the stoichiometric thiol-yne monomer formulation (black), the stoichiometric thiol-yne formulation without SiO2 nanoparticles and with 15 wt.% NVP (blue) and the stoichiometric thiol-yne formulation with 25 vol.% SiO2 nanoparticles and 15 wt.% NVP (red). The solid and dotted curves correspond to thiol and yne functional group conversions, respectively.

Fig. 9
Fig. 9

Parametric dependences of (a) thiol and (b) yne functional group conversions and their polymerization rates for sample II at various concentrations of HBP nanoparticles.

Fig. 10
Fig. 10

Dependences of (a) Δnsat and (b) S on NVP concentration for sample I with the dispersion of 25 vol.% SiO2 nanoparticles.

Fig. 11
Fig. 11

Dependences of (a) Δnsat and (b) S on nanoparticle concentration for sample I (red) and sample II (blue).

Fig. 12
Fig. 12

Nanoparticle concentration vs. fractional thickness changes (shrinkage) σ measured in % for sample I (red), sample II (blue) and a methacrylate-based NPC sample (black).

Fig. 13
Fig. 13

Thermo-optic coefficients dn/dT at 25 °C and at a wavelength of 546 nm as a function of nanoparticle concentration for uniformly cured film sample I (red), sample II (blue) and a methacrylate-based NPC sample (black).

Fig. 14
Fig. 14

Linear coefficients of thermal expansion αL as a function of nanoparticle concentration for uniformly cured film sample I (red), sample II (blue) and a methacrylate-based NPC sample (black).

Fig. 15
Fig. 15

Holographic recording of a two dimensional digital data page pattern using sample I with the dispersion of 25 vol.% SiO2 nanoparticles: (a) a single input image and (b) a reconstructed image.

Fig. 16
Fig. 16

Shift-multiplexed holographic recording of 80 digital data page patterns using sample I with the dispersion of 25 vol.% SiO2 nanoparticles: (a) SERs and (b) SNRs as a function of stored digital data pages.

Metrics