Abstract

Glass with embedded spherical silver nanoparticles of ~15 nm in radius contained in a layer with thickness of ~20 µm was irradiated using a nanosecond (36 ns) pulsed laser at 532 nm. Laser irradiation led to the formation of a thin surface film containing uniformly distributed nanoparticles - with an increase in the overall average nanoparticle size. Increasing the applied number of pulses to the sample resulted in the increase of the average size of the nanoparticles from 15 nm to 35 – 70 nm in radius, and narrowing of the surface plasmon band compared to the absorption spectra of the original glass sample. The influence of the applied number of laser pulses on the optical and structural properties of such a recipient nanocomposite was investigated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
    [CrossRef]
  2. F. Gonella and P. Mazzoldi, Handbook of Nanostructured Materials and Nanotechnology (Academic Press, 2000).
  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  4. V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).
  5. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  6. R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
    [CrossRef] [PubMed]
  7. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
    [CrossRef] [PubMed]
  8. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
    [CrossRef]
  9. A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
    [CrossRef]
  10. F. Hallerman, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
    [CrossRef]
  11. C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett.97(26), 261101 (2010).
    [CrossRef]
  12. A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
    [CrossRef]
  13. M. A. Tyrk, W. A. Gillespie, G. Seifert, and A. Abdolvand, “Picosecond pulsed laser induced optical dichroism in glass with embedded metallic nanoparticles,” Opt. Express21(19), 21823–21828 (2013).
    [CrossRef] [PubMed]
  14. A. Stalmashonak, G. Seifert, and A. Abdolvand, Ultra-short Pulsed Laser Engineered Metal-Glass Nanocomposite (SpringerBriefs in Physics, Springer, 2013).
  15. A. L. Stepanov, D. E. Hole, A. A. Bukharaev, P. D. Townsend, and N. I. Nurgazizov, “Reduction of the size of the implanted silver nanoparticles in float glass during excimer laser annealing,” Appl. Surf. Sci.136(4), 298–305 (1998).
    [CrossRef]
  16. F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund., “Interaction of high-power laser light with silver nanocluster composite glasses,” Appl. Phys. Lett.69(20), 3101–3103 (1996).
    [CrossRef]
  17. A. L. Stepanov, D. E. Hole, and P. D. Townsend, “Modification of size distribution of ion implanted silver nanoparticles in sodium silicate glass using laser and thermal annealing,” Nucl. Instrum. Meth. B149(1-2), 89–98 (1999).
    [CrossRef]
  18. A. L. Stepanov and V. N. Popok, “Nanosecond pulse laser and furnace annealing of silver nanoparticles formed by implantation in silicate glass,” Surf. Coat. Tech.185(1), 30–37 (2004).
    [CrossRef]
  19. K.-J. Berg, A. Berger, and H. Hoffmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion exchange – their concentration and size depth profile,” Z. Phys. D20(1-4), 309–311 (1991).
    [CrossRef]
  20. S. G. Tomlin, “Optical reflection and transmission formula for thin films,” J. Phys. D Appl. Phys.1(12), 1667–1671 (1968).
    [CrossRef]
  21. D. J. Sanders, “Temperature distributions produced by scanning Gaussian laser beams,” Appl. Opt.23(1), 30 (1984).
    [CrossRef] [PubMed]
  22. G. Baffou and H. Rigneault, “Femtosecond-pulsed heating of gold nanoparticles,” Phys. Rev. B84(3), 035415 (2011).
    [CrossRef]
  23. J. H. Yao, K. R. Elder, H. Guo, and M. Grant, “Theory and simulation of Ostwald ripening,” Phys. Rev. B Condens. Matter47(21), 14110–14125 (1993).
    [CrossRef] [PubMed]
  24. G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104(13), 136805 (2010).
    [CrossRef] [PubMed]
  25. C. Y. Tai and W. H. Yu, “The contribution of nonlocal electro-opto-thermal interaction to single molecule nonlinear Raman enhancement,” Opt. Express21(21), 25026–25034 (2013).
    [CrossRef] [PubMed]

2013 (2)

2011 (2)

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

G. Baffou and H. Rigneault, “Femtosecond-pulsed heating of gold nanoparticles,” Phys. Rev. B84(3), 035415 (2011).
[CrossRef]

2010 (2)

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104(13), 136805 (2010).
[CrossRef] [PubMed]

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett.97(26), 261101 (2010).
[CrossRef]

2008 (1)

F. Hallerman, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

2005 (2)

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

2004 (1)

A. L. Stepanov and V. N. Popok, “Nanosecond pulse laser and furnace annealing of silver nanoparticles formed by implantation in silicate glass,” Surf. Coat. Tech.185(1), 30–37 (2004).
[CrossRef]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

2002 (1)

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

1999 (1)

A. L. Stepanov, D. E. Hole, and P. D. Townsend, “Modification of size distribution of ion implanted silver nanoparticles in sodium silicate glass using laser and thermal annealing,” Nucl. Instrum. Meth. B149(1-2), 89–98 (1999).
[CrossRef]

1998 (2)

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

A. L. Stepanov, D. E. Hole, A. A. Bukharaev, P. D. Townsend, and N. I. Nurgazizov, “Reduction of the size of the implanted silver nanoparticles in float glass during excimer laser annealing,” Appl. Surf. Sci.136(4), 298–305 (1998).
[CrossRef]

1996 (1)

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund., “Interaction of high-power laser light with silver nanocluster composite glasses,” Appl. Phys. Lett.69(20), 3101–3103 (1996).
[CrossRef]

1993 (1)

J. H. Yao, K. R. Elder, H. Guo, and M. Grant, “Theory and simulation of Ostwald ripening,” Phys. Rev. B Condens. Matter47(21), 14110–14125 (1993).
[CrossRef] [PubMed]

1991 (1)

K.-J. Berg, A. Berger, and H. Hoffmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion exchange – their concentration and size depth profile,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

1984 (1)

1968 (1)

S. G. Tomlin, “Optical reflection and transmission formula for thin films,” J. Phys. D Appl. Phys.1(12), 1667–1671 (1968).
[CrossRef]

Abdolvand, A.

M. A. Tyrk, W. A. Gillespie, G. Seifert, and A. Abdolvand, “Picosecond pulsed laser induced optical dichroism in glass with embedded metallic nanoparticles,” Opt. Express21(19), 21823–21828 (2013).
[CrossRef] [PubMed]

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

Arnold, G. W.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund., “Interaction of high-power laser light with silver nanocluster composite glasses,” Appl. Phys. Lett.69(20), 3101–3103 (1996).
[CrossRef]

Baffou, G.

G. Baffou and H. Rigneault, “Femtosecond-pulsed heating of gold nanoparticles,” Phys. Rev. B84(3), 035415 (2011).
[CrossRef]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104(13), 136805 (2010).
[CrossRef] [PubMed]

Battaglin, G.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund., “Interaction of high-power laser light with silver nanocluster composite glasses,” Appl. Phys. Lett.69(20), 3101–3103 (1996).
[CrossRef]

Beresna, M.

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett.97(26), 261101 (2010).
[CrossRef]

Berg, K.-J.

K.-J. Berg, A. Berger, and H. Hoffmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion exchange – their concentration and size depth profile,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

Berger, A.

K.-J. Berg, A. Berger, and H. Hoffmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion exchange – their concentration and size depth profile,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

Bertoncello, R.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund., “Interaction of high-power laser light with silver nanocluster composite glasses,” Appl. Phys. Lett.69(20), 3101–3103 (1996).
[CrossRef]

Bukharaev, A. A.

A. L. Stepanov, D. E. Hole, A. A. Bukharaev, P. D. Townsend, and N. I. Nurgazizov, “Reduction of the size of the implanted silver nanoparticles in float glass during excimer laser annealing,” Appl. Surf. Sci.136(4), 298–305 (1998).
[CrossRef]

Calvelli, P.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund., “Interaction of high-power laser light with silver nanocluster composite glasses,” Appl. Phys. Lett.69(20), 3101–3103 (1996).
[CrossRef]

Cao, Y. C.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Cattaruzza, E.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund., “Interaction of high-power laser light with silver nanocluster composite glasses,” Appl. Phys. Lett.69(20), 3101–3103 (1996).
[CrossRef]

Chakraborty, P.

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

Corbari, C.

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett.97(26), 261101 (2010).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Elder, K. R.

J. H. Yao, K. R. Elder, H. Guo, and M. Grant, “Theory and simulation of Ostwald ripening,” Phys. Rev. B Condens. Matter47(21), 14110–14125 (1993).
[CrossRef] [PubMed]

Fahr, S.

F. Hallerman, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

Gillespie, W. A.

Girard, C.

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104(13), 136805 (2010).
[CrossRef] [PubMed]

Gonella, F.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund., “Interaction of high-power laser light with silver nanocluster composite glasses,” Appl. Phys. Lett.69(20), 3101–3103 (1996).
[CrossRef]

Gösele, U.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

Graener, H.

F. Hallerman, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

Grant, M.

J. H. Yao, K. R. Elder, H. Guo, and M. Grant, “Theory and simulation of Ostwald ripening,” Phys. Rev. B Condens. Matter47(21), 14110–14125 (1993).
[CrossRef] [PubMed]

Gudiksen, M. S.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Guo, H.

J. H. Yao, K. R. Elder, H. Guo, and M. Grant, “Theory and simulation of Ostwald ripening,” Phys. Rev. B Condens. Matter47(21), 14110–14125 (1993).
[CrossRef] [PubMed]

Haglund, R. F.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund., “Interaction of high-power laser light with silver nanocluster composite glasses,” Appl. Phys. Lett.69(20), 3101–3103 (1996).
[CrossRef]

Hallerman, F.

F. Hallerman, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

Hao, E.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Hoffmeister, H.

K.-J. Berg, A. Berger, and H. Hoffmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion exchange – their concentration and size depth profile,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

Hole, D. E.

A. L. Stepanov, D. E. Hole, and P. D. Townsend, “Modification of size distribution of ion implanted silver nanoparticles in sodium silicate glass using laser and thermal annealing,” Nucl. Instrum. Meth. B149(1-2), 89–98 (1999).
[CrossRef]

A. L. Stepanov, D. E. Hole, A. A. Bukharaev, P. D. Townsend, and N. I. Nurgazizov, “Reduction of the size of the implanted silver nanoparticles in float glass during excimer laser annealing,” Appl. Surf. Sci.136(4), 298–305 (1998).
[CrossRef]

Jin, R.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Kazansky, P. G.

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett.97(26), 261101 (2010).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Lauhon, L. J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Lederer, F.

F. Hallerman, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

Lieber, C. M.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Mattei, G.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund., “Interaction of high-power laser light with silver nanocluster composite glasses,” Appl. Phys. Lett.69(20), 3101–3103 (1996).
[CrossRef]

Matthias, S.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

Mazzoldi, P.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund., “Interaction of high-power laser light with silver nanocluster composite glasses,” Appl. Phys. Lett.69(20), 3101–3103 (1996).
[CrossRef]

Métraux, G. S.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Mirkin, C. A.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Nurgazizov, N. I.

A. L. Stepanov, D. E. Hole, A. A. Bukharaev, P. D. Townsend, and N. I. Nurgazizov, “Reduction of the size of the implanted silver nanoparticles in float glass during excimer laser annealing,” Appl. Surf. Sci.136(4), 298–305 (1998).
[CrossRef]

Plessen, G.

F. Hallerman, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

Podlipensky, A.

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

Polloni, R.

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund., “Interaction of high-power laser light with silver nanocluster composite glasses,” Appl. Phys. Lett.69(20), 3101–3103 (1996).
[CrossRef]

Popok, V. N.

A. L. Stepanov and V. N. Popok, “Nanosecond pulse laser and furnace annealing of silver nanoparticles formed by implantation in silicate glass,” Surf. Coat. Tech.185(1), 30–37 (2004).
[CrossRef]

Quidant, R.

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104(13), 136805 (2010).
[CrossRef] [PubMed]

Rigneault, H.

G. Baffou and H. Rigneault, “Femtosecond-pulsed heating of gold nanoparticles,” Phys. Rev. B84(3), 035415 (2011).
[CrossRef]

Rockstuhl, C.

F. Hallerman, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

Sanders, D. J.

Schatz, G. C.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Seifert, G.

M. A. Tyrk, W. A. Gillespie, G. Seifert, and A. Abdolvand, “Picosecond pulsed laser induced optical dichroism in glass with embedded metallic nanoparticles,” Opt. Express21(19), 21823–21828 (2013).
[CrossRef] [PubMed]

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

F. Hallerman, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

Smith, D. C.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Stalmashonak, A.

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

Stepanov, A. L.

A. L. Stepanov and V. N. Popok, “Nanosecond pulse laser and furnace annealing of silver nanoparticles formed by implantation in silicate glass,” Surf. Coat. Tech.185(1), 30–37 (2004).
[CrossRef]

A. L. Stepanov, D. E. Hole, and P. D. Townsend, “Modification of size distribution of ion implanted silver nanoparticles in sodium silicate glass using laser and thermal annealing,” Nucl. Instrum. Meth. B149(1-2), 89–98 (1999).
[CrossRef]

A. L. Stepanov, D. E. Hole, A. A. Bukharaev, P. D. Townsend, and N. I. Nurgazizov, “Reduction of the size of the implanted silver nanoparticles in float glass during excimer laser annealing,” Appl. Surf. Sci.136(4), 298–305 (1998).
[CrossRef]

Syrowatka, F.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

Tai, C. Y.

Tomlin, S. G.

S. G. Tomlin, “Optical reflection and transmission formula for thin films,” J. Phys. D Appl. Phys.1(12), 1667–1671 (1968).
[CrossRef]

Townsend, P. D.

A. L. Stepanov, D. E. Hole, and P. D. Townsend, “Modification of size distribution of ion implanted silver nanoparticles in sodium silicate glass using laser and thermal annealing,” Nucl. Instrum. Meth. B149(1-2), 89–98 (1999).
[CrossRef]

A. L. Stepanov, D. E. Hole, A. A. Bukharaev, P. D. Townsend, and N. I. Nurgazizov, “Reduction of the size of the implanted silver nanoparticles in float glass during excimer laser annealing,” Appl. Surf. Sci.136(4), 298–305 (1998).
[CrossRef]

Tyrk, M. A.

Wackerow, S.

F. Hallerman, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

Wang, J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Yao, J. H.

J. H. Yao, K. R. Elder, H. Guo, and M. Grant, “Theory and simulation of Ostwald ripening,” Phys. Rev. B Condens. Matter47(21), 14110–14125 (1993).
[CrossRef] [PubMed]

Yu, W. H.

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Adv. Mater. (1)

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett.97(26), 261101 (2010).
[CrossRef]

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund., “Interaction of high-power laser light with silver nanocluster composite glasses,” Appl. Phys. Lett.69(20), 3101–3103 (1996).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

A. L. Stepanov, D. E. Hole, A. A. Bukharaev, P. D. Townsend, and N. I. Nurgazizov, “Reduction of the size of the implanted silver nanoparticles in float glass during excimer laser annealing,” Appl. Surf. Sci.136(4), 298–305 (1998).
[CrossRef]

J. Mater. Sci. (1)

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

J. Phys. D Appl. Phys. (1)

S. G. Tomlin, “Optical reflection and transmission formula for thin films,” J. Phys. D Appl. Phys.1(12), 1667–1671 (1968).
[CrossRef]

Nature (2)

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Nucl. Instrum. Meth. B (1)

A. L. Stepanov, D. E. Hole, and P. D. Townsend, “Modification of size distribution of ion implanted silver nanoparticles in sodium silicate glass using laser and thermal annealing,” Nucl. Instrum. Meth. B149(1-2), 89–98 (1999).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

G. Baffou and H. Rigneault, “Femtosecond-pulsed heating of gold nanoparticles,” Phys. Rev. B84(3), 035415 (2011).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

J. H. Yao, K. R. Elder, H. Guo, and M. Grant, “Theory and simulation of Ostwald ripening,” Phys. Rev. B Condens. Matter47(21), 14110–14125 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104(13), 136805 (2010).
[CrossRef] [PubMed]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

F. Hallerman, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci.205(12), 2844–2861 (2008).
[CrossRef]

Surf. Coat. Tech. (1)

A. L. Stepanov and V. N. Popok, “Nanosecond pulse laser and furnace annealing of silver nanoparticles formed by implantation in silicate glass,” Surf. Coat. Tech.185(1), 30–37 (2004).
[CrossRef]

Z. Phys. D (1)

K.-J. Berg, A. Berger, and H. Hoffmeister, “Small silver particles in glass-surface layers produced by sodium-silver ion exchange – their concentration and size depth profile,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

Other (4)

A. Stalmashonak, G. Seifert, and A. Abdolvand, Ultra-short Pulsed Laser Engineered Metal-Glass Nanocomposite (SpringerBriefs in Physics, Springer, 2013).

F. Gonella and P. Mazzoldi, Handbook of Nanostructured Materials and Nanotechnology (Academic Press, 2000).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) SEM image of the glass with embedded spherical silver nanoparticles of ~30 nm mean diameter, before irradiation. The nanoparticle-containing layer is 20-30 nm beneath the surface of the glass. (b) A thin slice showing the cross-section of the nanoparticle-containing layer. The volume-filling factor of the layer reduces to zero within 20 microns and has an exponential profile with the maximum just beneath the surface of the sample. The red arrow indicates the sample surface.

Fig. 2
Fig. 2

Photograph of all six exposed areas, which were irradiated at (a) 100, (b) 200, (c) 300, (d) 400, (e) 500 and (f) 600 pulses per spot. In these images the silver film at the surface can be clearly seen against the background of silver nanoparticle embedded glass, which appears yellow in colour.

Fig. 3
Fig. 3

SEM images of glass embedded with silver nanoparticles after irradiation at (a) 100, (b) 200, (c) 300, (d) 400, (e) 500 and (f) 600 pulses per spot.

Fig. 4
Fig. 4

(a) Measured absorption spectra of glass embedded with silver nanoparticles before irradiation (black line) and the six areas after irradiation, at a constant fluence of ~1.5 J/cm2, with varying number of pulses from 100 to 600 pulses per spot. (b) Plot displaying the increase in particle size with increasing number of pulses per spot.

Fig. 5
Fig. 5

A 12 mm × 20 mm sample produced for aesthetic purposes. The image demonstrates the visual effects of the nanosecond pulsed laser processing of the nanocomposite. The background and silver outline are processed at the laser energy fluence of 0.3 and 1.1 J/cm2, and the number of pulses per spot of 150 and 750, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α(z)= α 0 exp( 2z l ),
T(z)= I(z) I 0 =exp[ α 0 l 2 [ exp( 2z l )1 ] ],
I(x,y,z,t)= I 0 (t)exp( 2 x 2 ω 0 2 2 y 2 ω 0 2 )T(z).
ΔT(x,y,z)= α(z) ρ C p I(x,y,z,t) dt= α(z) ρ C p F(x,y)T(z),
F(x,y)= F 0 exp( 2 x 2 ω 0 2 2 y 2 ω 0 2 ),
ΔT(x,y,z)= α 0 exp( 2z l ) ρ C p (1 R Ag )F(x,y)exp[ α 0 l 2 [ exp( 2z l )1 ] ].

Metrics