Abstract

The electro-optic Kerr effect in cubic blue phase liquid crystals comprises two components with different characteristic response times: one attributed to the primary (purely electro-optic) effect and another attributed to the secondary, or indirect (photoelastic) effect. Through simultaneous measurement of the polarized reflection spectrum and transmitted phase, we show that the contribution of the secondary electro-optic effect can be as large as 20% of the total change in refractive index, and that it is suppressed in the polymer-stabilized blue phase. Our results show the importance of stabilizing the lattice structure to realize blue-phase devices with fast response.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Wright and N. D. Mermin, “Crystalline liquids: the blue phases,” Rev. Mod. Phys.61, 385–432 (1989).
    [CrossRef]
  2. T. Seideman, “The liquid-crystalline blue phases,” Reports on Progress in Physics53, 659–706 (1990).
    [CrossRef]
  3. H. S. Kitzerow, “The effect of electric fields on blue phases,” Mol. Cryst. Liq. Cryst.202, 51–83 (1991).
    [CrossRef]
  4. H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bond.128, 99–117 (2008).
    [CrossRef]
  5. G. P. Alexander and D. Marenduzzo, “Cubic blue phases in electric fields,” Europhys. Lett.81, 66004 (2008).
    [CrossRef]
  6. J.-i. Fukuda and S. Zumer, “Novel defect structures in a strongly confined liquid-crystalline blue phase,” Phys. Rev. Lett.104, 017801 (2010).
    [CrossRef] [PubMed]
  7. J.-i. Fukuda and S. Zumer, “Quasi-two-dimensional skyrmion lattices in a chiral nematic liquid crystal,” Nature Communications2, 246 (2011).
    [CrossRef] [PubMed]
  8. A. Tiribocchi, G. Gonnella, D. Marenduzzo, E. Orlandini, and F. Salvadore, “Bistable defect structures in blue phase devices,” Phys. Rev. Lett.107, 237803 (2011).
    [CrossRef] [PubMed]
  9. W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nature Mater.1, 111–113 (2002).
    [CrossRef]
  10. H. J. Coles and M. N. Pivnenko, “Liquid crystal ’blue phases’ with a wide temperature range,” Nature436, 997–1000 (2005).
    [CrossRef] [PubMed]
  11. H.-Y. Chen, J.-Y. Chiou, and K.-X. Yang, “Reversible and fast shift in reflection band of a cubic blue phase in a vertical electric field,” Appl. Phys. Lett.99, 181119 (2011).
    [CrossRef]
  12. S. Yabu, Y. Tanaka, K. Tagashira, H. Yoshida, A. Fujii, H. Kikuchi, and M. Ozaki, “Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals,” Opt. Lett.36, 3578–3580 (2011).
    [CrossRef] [PubMed]
  13. G. Heppke, “Electric field induced variation of the refractive index in cholesteric blue phases,” Mol. Cryst. Liq. Cryst. Lett.2, 59–65 (1985).
  14. P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst.116, 197–206 (1985).
    [CrossRef]
  15. H. Choi, H. Higuchi, and H. Kikuchi, “Electrooptic response of liquid crystalline blue phases with different chiral pitches,” Soft Matter7, 4252–4256 (2011).
    [CrossRef]
  16. S. Yabu, H. Yoshida, G. Lim, K. Kaneko, Y. Okumura, N. Uehara, H. Kikuchi, and M. Ozaki, “Dual frequency operation of a blue phase liquid crystal,” Opt. Mater. Express1, 1577–1584 (2011).
    [CrossRef]
  17. H. Gleeson, R. Simon, and H. J. Coles, “Electric field effects and two frequency colour switching in the cholesteric and blue phases of Nematic/Cholesteric mixtures,” Mol. Cryst. Liq. Cryst.129, 37–52 (1985).
    [CrossRef]
  18. H.-S. Kitzerow, P. P. Crooker, S. L. Kwok, J. Xu, and G. Heppke, “Dynamics of blue-phase selective reflections in an electric field,” Phys. Rev. A42, 3442–3448 (1990).
    [CrossRef] [PubMed]
  19. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1984), 1.
  20. V. E. Dmitrienko, “Electro-optic effects in blue phases,” Liq. Cryst.5, 847–851 (1989).
    [CrossRef]
  21. F. Porsch, H. Stegemeyer, and K. Hiltrop, “Electric field-induced birefringence in liquid-crystalline blue phases,” Z. Naturforsch.39a, 475–480 (1984).
  22. K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol.6, 318–322 (2010).
    [CrossRef]
  23. U. Singh and P. H. Keyes, “Measurement of the kerr effect in cholesteric blue phases,” Liq. Cryst.8, 851–860 (1990).
    [CrossRef]
  24. H. J. Coles and H. F. Gleeson, “Electric field induced phase transitions and colour switching in the blue phases of chiral nematic liquid crystals,” Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics167, 213–225 (1989).
    [CrossRef]
  25. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nature Mater.1, 64–68 (2002).
    [CrossRef]
  26. H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-stabilized cholesteric blue phases,” Appl. Phys. Express2, 121501 (2009).
    [CrossRef]
  27. E. Karatairi, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E81, 041703 (2010).
    [CrossRef]
  28. J.-M. Wong, J.-Y. Hwang, and L.-C. Chien, “Electrically reconfigurable and thermally sensitive optical properties of gold nanorods dispersed liquid crystal blue phase,” Soft. Mat.7, 7656–7659 (2011).
    [CrossRef]
  29. A. Yoshizawa, Y. Kogawa, K. Kobayashi, Y. Takanishi, and J. Yamamoto, “A binaphthyl derivative with a wide temperature range of a blue phase,” J. Mater. Chem19, 5759–5764 (2009).
    [CrossRef]
  30. Y. Kogawa, T. Hirose, and A. Yoshizawa, “Biphenyl derivative stabilizing blue phases,” J. Mater. Chem21, 19132–19137 (2011).
    [CrossRef]
  31. S. Shibayama, H. Higuchi, Y. Okumura, and H. Kikuchi, “Dendron-stabilized liquid crystalline blue phases with an enlarged controllable range of the photonic band for tunable photonic devices,” Adv. Funct. Mater.23, 2387–2396 (2013).
    [CrossRef]
  32. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in nanostructured chiral Liquid]Crystal composites over a wide temperature range,” Adv. Mater.17, 2311–2315 (2005).
    [CrossRef]
  33. H. Yoshida, S. Yabu, H. Tone, H. Kikuchi, and M. Ozaki, “Electro-optics of cubic and tetragonal blue phase liquid crystals investigated by two-beam interference microscopy,” Appl. Phys. Express6, 062603 (2013).
    [CrossRef]
  34. R. M. Hornreich and S. Shtrikman, “Dynamic response of a helicoidal cholesteric phase to an applied field,” Phys. Rev. A44, R3430–R3433 (1991).
    [CrossRef] [PubMed]
  35. J.-i. Fukuda, M. Yoneya, and H. Yokoyama, “Simulation of cholesteric blue phases using a Landau–-de Gennes theory: Effect of an applied electric field,”Phys. Rev. E80, 031706 (2009).
    [CrossRef]
  36. A. Tiribocchi, G. Gonnella, D. Marenduzzo, and E. Orlandini, “Switching dynamics in cholesteric blue phases,” Soft Matter7, 3295–3306 (2011).
    [CrossRef]
  37. J.-i. Fukuda and S. Zumer, “Field-induced dynamics and structures in a cholesteric-blue-phase cell,” Phys. Rev. E87, 042506 (2013).
    [CrossRef]
  38. H.-S. Kitzerow, P. P. Crooker, J. Rand, J. Xu, and G. Heppke, “Electrostriction dynamics of blue phase II crystallites,” Journal de Physique II2, 279–284 (1992).
    [CrossRef]
  39. J. Yan, Y. Chen, S.-T. Wu, S.-H. Liu, K.-L. Cheng, and J.-W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” Journal of Applied Physics111, 063103 (2012).
    [CrossRef]
  40. J.-i. Fukuda, “Stabilization of blue phases by the variation of elastic constants,” Phys. Rev. E85, 020701 (2012).
    [CrossRef]

2013 (3)

S. Shibayama, H. Higuchi, Y. Okumura, and H. Kikuchi, “Dendron-stabilized liquid crystalline blue phases with an enlarged controllable range of the photonic band for tunable photonic devices,” Adv. Funct. Mater.23, 2387–2396 (2013).
[CrossRef]

H. Yoshida, S. Yabu, H. Tone, H. Kikuchi, and M. Ozaki, “Electro-optics of cubic and tetragonal blue phase liquid crystals investigated by two-beam interference microscopy,” Appl. Phys. Express6, 062603 (2013).
[CrossRef]

J.-i. Fukuda and S. Zumer, “Field-induced dynamics and structures in a cholesteric-blue-phase cell,” Phys. Rev. E87, 042506 (2013).
[CrossRef]

2012 (2)

J. Yan, Y. Chen, S.-T. Wu, S.-H. Liu, K.-L. Cheng, and J.-W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” Journal of Applied Physics111, 063103 (2012).
[CrossRef]

J.-i. Fukuda, “Stabilization of blue phases by the variation of elastic constants,” Phys. Rev. E85, 020701 (2012).
[CrossRef]

2011 (9)

J.-i. Fukuda and S. Zumer, “Quasi-two-dimensional skyrmion lattices in a chiral nematic liquid crystal,” Nature Communications2, 246 (2011).
[CrossRef] [PubMed]

A. Tiribocchi, G. Gonnella, D. Marenduzzo, E. Orlandini, and F. Salvadore, “Bistable defect structures in blue phase devices,” Phys. Rev. Lett.107, 237803 (2011).
[CrossRef] [PubMed]

H.-Y. Chen, J.-Y. Chiou, and K.-X. Yang, “Reversible and fast shift in reflection band of a cubic blue phase in a vertical electric field,” Appl. Phys. Lett.99, 181119 (2011).
[CrossRef]

H. Choi, H. Higuchi, and H. Kikuchi, “Electrooptic response of liquid crystalline blue phases with different chiral pitches,” Soft Matter7, 4252–4256 (2011).
[CrossRef]

S. Yabu, Y. Tanaka, K. Tagashira, H. Yoshida, A. Fujii, H. Kikuchi, and M. Ozaki, “Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals,” Opt. Lett.36, 3578–3580 (2011).
[CrossRef] [PubMed]

S. Yabu, H. Yoshida, G. Lim, K. Kaneko, Y. Okumura, N. Uehara, H. Kikuchi, and M. Ozaki, “Dual frequency operation of a blue phase liquid crystal,” Opt. Mater. Express1, 1577–1584 (2011).
[CrossRef]

Y. Kogawa, T. Hirose, and A. Yoshizawa, “Biphenyl derivative stabilizing blue phases,” J. Mater. Chem21, 19132–19137 (2011).
[CrossRef]

A. Tiribocchi, G. Gonnella, D. Marenduzzo, and E. Orlandini, “Switching dynamics in cholesteric blue phases,” Soft Matter7, 3295–3306 (2011).
[CrossRef]

J.-M. Wong, J.-Y. Hwang, and L.-C. Chien, “Electrically reconfigurable and thermally sensitive optical properties of gold nanorods dispersed liquid crystal blue phase,” Soft. Mat.7, 7656–7659 (2011).
[CrossRef]

2010 (3)

K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol.6, 318–322 (2010).
[CrossRef]

E. Karatairi, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E81, 041703 (2010).
[CrossRef]

J.-i. Fukuda and S. Zumer, “Novel defect structures in a strongly confined liquid-crystalline blue phase,” Phys. Rev. Lett.104, 017801 (2010).
[CrossRef] [PubMed]

2009 (2)

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-stabilized cholesteric blue phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

A. Yoshizawa, Y. Kogawa, K. Kobayashi, Y. Takanishi, and J. Yamamoto, “A binaphthyl derivative with a wide temperature range of a blue phase,” J. Mater. Chem19, 5759–5764 (2009).
[CrossRef]

2008 (2)

H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bond.128, 99–117 (2008).
[CrossRef]

G. P. Alexander and D. Marenduzzo, “Cubic blue phases in electric fields,” Europhys. Lett.81, 66004 (2008).
[CrossRef]

2005 (2)

H. J. Coles and M. N. Pivnenko, “Liquid crystal ’blue phases’ with a wide temperature range,” Nature436, 997–1000 (2005).
[CrossRef] [PubMed]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in nanostructured chiral Liquid]Crystal composites over a wide temperature range,” Adv. Mater.17, 2311–2315 (2005).
[CrossRef]

2002 (2)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nature Mater.1, 64–68 (2002).
[CrossRef]

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nature Mater.1, 111–113 (2002).
[CrossRef]

1992 (1)

H.-S. Kitzerow, P. P. Crooker, J. Rand, J. Xu, and G. Heppke, “Electrostriction dynamics of blue phase II crystallites,” Journal de Physique II2, 279–284 (1992).
[CrossRef]

1991 (2)

H. S. Kitzerow, “The effect of electric fields on blue phases,” Mol. Cryst. Liq. Cryst.202, 51–83 (1991).
[CrossRef]

R. M. Hornreich and S. Shtrikman, “Dynamic response of a helicoidal cholesteric phase to an applied field,” Phys. Rev. A44, R3430–R3433 (1991).
[CrossRef] [PubMed]

1990 (3)

U. Singh and P. H. Keyes, “Measurement of the kerr effect in cholesteric blue phases,” Liq. Cryst.8, 851–860 (1990).
[CrossRef]

H.-S. Kitzerow, P. P. Crooker, S. L. Kwok, J. Xu, and G. Heppke, “Dynamics of blue-phase selective reflections in an electric field,” Phys. Rev. A42, 3442–3448 (1990).
[CrossRef] [PubMed]

T. Seideman, “The liquid-crystalline blue phases,” Reports on Progress in Physics53, 659–706 (1990).
[CrossRef]

1989 (3)

D. C. Wright and N. D. Mermin, “Crystalline liquids: the blue phases,” Rev. Mod. Phys.61, 385–432 (1989).
[CrossRef]

V. E. Dmitrienko, “Electro-optic effects in blue phases,” Liq. Cryst.5, 847–851 (1989).
[CrossRef]

H. J. Coles and H. F. Gleeson, “Electric field induced phase transitions and colour switching in the blue phases of chiral nematic liquid crystals,” Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics167, 213–225 (1989).
[CrossRef]

1985 (3)

H. Gleeson, R. Simon, and H. J. Coles, “Electric field effects and two frequency colour switching in the cholesteric and blue phases of Nematic/Cholesteric mixtures,” Mol. Cryst. Liq. Cryst.129, 37–52 (1985).
[CrossRef]

G. Heppke, “Electric field induced variation of the refractive index in cholesteric blue phases,” Mol. Cryst. Liq. Cryst. Lett.2, 59–65 (1985).

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst.116, 197–206 (1985).
[CrossRef]

1984 (1)

F. Porsch, H. Stegemeyer, and K. Hiltrop, “Electric field-induced birefringence in liquid-crystalline blue phases,” Z. Naturforsch.39a, 475–480 (1984).

Alexander, G. P.

G. P. Alexander and D. Marenduzzo, “Cubic blue phases in electric fields,” Europhys. Lett.81, 66004 (2008).
[CrossRef]

Cao, W.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nature Mater.1, 111–113 (2002).
[CrossRef]

Chen, H.-Y.

H.-Y. Chen, J.-Y. Chiou, and K.-X. Yang, “Reversible and fast shift in reflection band of a cubic blue phase in a vertical electric field,” Appl. Phys. Lett.99, 181119 (2011).
[CrossRef]

Chen, K.-M.

K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol.6, 318–322 (2010).
[CrossRef]

Chen, Y.

J. Yan, Y. Chen, S.-T. Wu, S.-H. Liu, K.-L. Cheng, and J.-W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” Journal of Applied Physics111, 063103 (2012).
[CrossRef]

Cheng, K.-L.

J. Yan, Y. Chen, S.-T. Wu, S.-H. Liu, K.-L. Cheng, and J.-W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” Journal of Applied Physics111, 063103 (2012).
[CrossRef]

Chien, L.-C.

J.-M. Wong, J.-Y. Hwang, and L.-C. Chien, “Electrically reconfigurable and thermally sensitive optical properties of gold nanorods dispersed liquid crystal blue phase,” Soft. Mat.7, 7656–7659 (2011).
[CrossRef]

Chiou, J.-Y.

H.-Y. Chen, J.-Y. Chiou, and K.-X. Yang, “Reversible and fast shift in reflection band of a cubic blue phase in a vertical electric field,” Appl. Phys. Lett.99, 181119 (2011).
[CrossRef]

Choi, H.

H. Choi, H. Higuchi, and H. Kikuchi, “Electrooptic response of liquid crystalline blue phases with different chiral pitches,” Soft Matter7, 4252–4256 (2011).
[CrossRef]

Coles, H. J.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ’blue phases’ with a wide temperature range,” Nature436, 997–1000 (2005).
[CrossRef] [PubMed]

H. J. Coles and H. F. Gleeson, “Electric field induced phase transitions and colour switching in the blue phases of chiral nematic liquid crystals,” Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics167, 213–225 (1989).
[CrossRef]

H. Gleeson, R. Simon, and H. J. Coles, “Electric field effects and two frequency colour switching in the cholesteric and blue phases of Nematic/Cholesteric mixtures,” Mol. Cryst. Liq. Cryst.129, 37–52 (1985).
[CrossRef]

Cordoyiannis, G.

E. Karatairi, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E81, 041703 (2010).
[CrossRef]

Crooker, P. P.

H.-S. Kitzerow, P. P. Crooker, J. Rand, J. Xu, and G. Heppke, “Electrostriction dynamics of blue phase II crystallites,” Journal de Physique II2, 279–284 (1992).
[CrossRef]

H.-S. Kitzerow, P. P. Crooker, S. L. Kwok, J. Xu, and G. Heppke, “Dynamics of blue-phase selective reflections in an electric field,” Phys. Rev. A42, 3442–3448 (1990).
[CrossRef] [PubMed]

Dmitrienko, V. E.

V. E. Dmitrienko, “Electro-optic effects in blue phases,” Liq. Cryst.5, 847–851 (1989).
[CrossRef]

Fujii, A.

S. Yabu, Y. Tanaka, K. Tagashira, H. Yoshida, A. Fujii, H. Kikuchi, and M. Ozaki, “Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals,” Opt. Lett.36, 3578–3580 (2011).
[CrossRef] [PubMed]

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-stabilized cholesteric blue phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

Fukuda, J.-i.

J.-i. Fukuda and S. Zumer, “Field-induced dynamics and structures in a cholesteric-blue-phase cell,” Phys. Rev. E87, 042506 (2013).
[CrossRef]

J.-i. Fukuda, “Stabilization of blue phases by the variation of elastic constants,” Phys. Rev. E85, 020701 (2012).
[CrossRef]

J.-i. Fukuda and S. Zumer, “Quasi-two-dimensional skyrmion lattices in a chiral nematic liquid crystal,” Nature Communications2, 246 (2011).
[CrossRef] [PubMed]

J.-i. Fukuda and S. Zumer, “Novel defect structures in a strongly confined liquid-crystalline blue phase,” Phys. Rev. Lett.104, 017801 (2010).
[CrossRef] [PubMed]

J.-i. Fukuda, M. Yoneya, and H. Yokoyama, “Simulation of cholesteric blue phases using a Landau–-de Gennes theory: Effect of an applied electric field,”Phys. Rev. E80, 031706 (2009).
[CrossRef]

Gauza, S.

K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol.6, 318–322 (2010).
[CrossRef]

Gerber, P. R.

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst.116, 197–206 (1985).
[CrossRef]

Gleeson, H.

H. Gleeson, R. Simon, and H. J. Coles, “Electric field effects and two frequency colour switching in the cholesteric and blue phases of Nematic/Cholesteric mixtures,” Mol. Cryst. Liq. Cryst.129, 37–52 (1985).
[CrossRef]

Gleeson, H. F.

H. J. Coles and H. F. Gleeson, “Electric field induced phase transitions and colour switching in the blue phases of chiral nematic liquid crystals,” Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics167, 213–225 (1989).
[CrossRef]

Glorieux, C.

E. Karatairi, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E81, 041703 (2010).
[CrossRef]

Gonnella, G.

A. Tiribocchi, G. Gonnella, D. Marenduzzo, E. Orlandini, and F. Salvadore, “Bistable defect structures in blue phase devices,” Phys. Rev. Lett.107, 237803 (2011).
[CrossRef] [PubMed]

A. Tiribocchi, G. Gonnella, D. Marenduzzo, and E. Orlandini, “Switching dynamics in cholesteric blue phases,” Soft Matter7, 3295–3306 (2011).
[CrossRef]

Haseba, Y.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in nanostructured chiral Liquid]Crystal composites over a wide temperature range,” Adv. Mater.17, 2311–2315 (2005).
[CrossRef]

Heppke, G.

H.-S. Kitzerow, P. P. Crooker, J. Rand, J. Xu, and G. Heppke, “Electrostriction dynamics of blue phase II crystallites,” Journal de Physique II2, 279–284 (1992).
[CrossRef]

H.-S. Kitzerow, P. P. Crooker, S. L. Kwok, J. Xu, and G. Heppke, “Dynamics of blue-phase selective reflections in an electric field,” Phys. Rev. A42, 3442–3448 (1990).
[CrossRef] [PubMed]

G. Heppke, “Electric field induced variation of the refractive index in cholesteric blue phases,” Mol. Cryst. Liq. Cryst. Lett.2, 59–65 (1985).

Higuchi, H.

S. Shibayama, H. Higuchi, Y. Okumura, and H. Kikuchi, “Dendron-stabilized liquid crystalline blue phases with an enlarged controllable range of the photonic band for tunable photonic devices,” Adv. Funct. Mater.23, 2387–2396 (2013).
[CrossRef]

H. Choi, H. Higuchi, and H. Kikuchi, “Electrooptic response of liquid crystalline blue phases with different chiral pitches,” Soft Matter7, 4252–4256 (2011).
[CrossRef]

Hiltrop, K.

F. Porsch, H. Stegemeyer, and K. Hiltrop, “Electric field-induced birefringence in liquid-crystalline blue phases,” Z. Naturforsch.39a, 475–480 (1984).

Hirose, T.

Y. Kogawa, T. Hirose, and A. Yoshizawa, “Biphenyl derivative stabilizing blue phases,” J. Mater. Chem21, 19132–19137 (2011).
[CrossRef]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nature Mater.1, 64–68 (2002).
[CrossRef]

Hornreich, R. M.

R. M. Hornreich and S. Shtrikman, “Dynamic response of a helicoidal cholesteric phase to an applied field,” Phys. Rev. A44, R3430–R3433 (1991).
[CrossRef] [PubMed]

Hwang, J.-Y.

J.-M. Wong, J.-Y. Hwang, and L.-C. Chien, “Electrically reconfigurable and thermally sensitive optical properties of gold nanorods dispersed liquid crystal blue phase,” Soft. Mat.7, 7656–7659 (2011).
[CrossRef]

Kajiyama, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in nanostructured chiral Liquid]Crystal composites over a wide temperature range,” Adv. Mater.17, 2311–2315 (2005).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nature Mater.1, 64–68 (2002).
[CrossRef]

Kaneko, K.

Karatairi, E.

E. Karatairi, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E81, 041703 (2010).
[CrossRef]

Kawamoto, K.

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-stabilized cholesteric blue phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

Keyes, P. H.

U. Singh and P. H. Keyes, “Measurement of the kerr effect in cholesteric blue phases,” Liq. Cryst.8, 851–860 (1990).
[CrossRef]

Kikuchi, H.

H. Yoshida, S. Yabu, H. Tone, H. Kikuchi, and M. Ozaki, “Electro-optics of cubic and tetragonal blue phase liquid crystals investigated by two-beam interference microscopy,” Appl. Phys. Express6, 062603 (2013).
[CrossRef]

S. Shibayama, H. Higuchi, Y. Okumura, and H. Kikuchi, “Dendron-stabilized liquid crystalline blue phases with an enlarged controllable range of the photonic band for tunable photonic devices,” Adv. Funct. Mater.23, 2387–2396 (2013).
[CrossRef]

S. Yabu, H. Yoshida, G. Lim, K. Kaneko, Y. Okumura, N. Uehara, H. Kikuchi, and M. Ozaki, “Dual frequency operation of a blue phase liquid crystal,” Opt. Mater. Express1, 1577–1584 (2011).
[CrossRef]

S. Yabu, Y. Tanaka, K. Tagashira, H. Yoshida, A. Fujii, H. Kikuchi, and M. Ozaki, “Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals,” Opt. Lett.36, 3578–3580 (2011).
[CrossRef] [PubMed]

H. Choi, H. Higuchi, and H. Kikuchi, “Electrooptic response of liquid crystalline blue phases with different chiral pitches,” Soft Matter7, 4252–4256 (2011).
[CrossRef]

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-stabilized cholesteric blue phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bond.128, 99–117 (2008).
[CrossRef]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in nanostructured chiral Liquid]Crystal composites over a wide temperature range,” Adv. Mater.17, 2311–2315 (2005).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nature Mater.1, 64–68 (2002).
[CrossRef]

Kitzerow, H. S.

H. S. Kitzerow, “The effect of electric fields on blue phases,” Mol. Cryst. Liq. Cryst.202, 51–83 (1991).
[CrossRef]

Kitzerow, H.-S.

H.-S. Kitzerow, P. P. Crooker, J. Rand, J. Xu, and G. Heppke, “Electrostriction dynamics of blue phase II crystallites,” Journal de Physique II2, 279–284 (1992).
[CrossRef]

H.-S. Kitzerow, P. P. Crooker, S. L. Kwok, J. Xu, and G. Heppke, “Dynamics of blue-phase selective reflections in an electric field,” Phys. Rev. A42, 3442–3448 (1990).
[CrossRef] [PubMed]

Kobayashi, K.

A. Yoshizawa, Y. Kogawa, K. Kobayashi, Y. Takanishi, and J. Yamamoto, “A binaphthyl derivative with a wide temperature range of a blue phase,” J. Mater. Chem19, 5759–5764 (2009).
[CrossRef]

Kogawa, Y.

Y. Kogawa, T. Hirose, and A. Yoshizawa, “Biphenyl derivative stabilizing blue phases,” J. Mater. Chem21, 19132–19137 (2011).
[CrossRef]

A. Yoshizawa, Y. Kogawa, K. Kobayashi, Y. Takanishi, and J. Yamamoto, “A binaphthyl derivative with a wide temperature range of a blue phase,” J. Mater. Chem19, 5759–5764 (2009).
[CrossRef]

Kralj, S.

E. Karatairi, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E81, 041703 (2010).
[CrossRef]

Kubo, H.

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-stabilized cholesteric blue phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

Kuwabata, S.

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-stabilized cholesteric blue phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

Kwok, S. L.

H.-S. Kitzerow, P. P. Crooker, S. L. Kwok, J. Xu, and G. Heppke, “Dynamics of blue-phase selective reflections in an electric field,” Phys. Rev. A42, 3442–3448 (1990).
[CrossRef] [PubMed]

Lim, G.

Liu, S.-H.

J. Yan, Y. Chen, S.-T. Wu, S.-H. Liu, K.-L. Cheng, and J.-W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” Journal of Applied Physics111, 063103 (2012).
[CrossRef]

Marenduzzo, D.

A. Tiribocchi, G. Gonnella, D. Marenduzzo, and E. Orlandini, “Switching dynamics in cholesteric blue phases,” Soft Matter7, 3295–3306 (2011).
[CrossRef]

A. Tiribocchi, G. Gonnella, D. Marenduzzo, E. Orlandini, and F. Salvadore, “Bistable defect structures in blue phase devices,” Phys. Rev. Lett.107, 237803 (2011).
[CrossRef] [PubMed]

G. P. Alexander and D. Marenduzzo, “Cubic blue phases in electric fields,” Europhys. Lett.81, 66004 (2008).
[CrossRef]

Mermin, N. D.

D. C. Wright and N. D. Mermin, “Crystalline liquids: the blue phases,” Rev. Mod. Phys.61, 385–432 (1989).
[CrossRef]

Munoz, A.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nature Mater.1, 111–113 (2002).
[CrossRef]

Nagamura, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in nanostructured chiral Liquid]Crystal composites over a wide temperature range,” Adv. Mater.17, 2311–2315 (2005).
[CrossRef]

Nounesis, G.

E. Karatairi, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E81, 041703 (2010).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1984), 1.

Okumura, Y.

S. Shibayama, H. Higuchi, Y. Okumura, and H. Kikuchi, “Dendron-stabilized liquid crystalline blue phases with an enlarged controllable range of the photonic band for tunable photonic devices,” Adv. Funct. Mater.23, 2387–2396 (2013).
[CrossRef]

S. Yabu, H. Yoshida, G. Lim, K. Kaneko, Y. Okumura, N. Uehara, H. Kikuchi, and M. Ozaki, “Dual frequency operation of a blue phase liquid crystal,” Opt. Mater. Express1, 1577–1584 (2011).
[CrossRef]

Orlandini, E.

A. Tiribocchi, G. Gonnella, D. Marenduzzo, E. Orlandini, and F. Salvadore, “Bistable defect structures in blue phase devices,” Phys. Rev. Lett.107, 237803 (2011).
[CrossRef] [PubMed]

A. Tiribocchi, G. Gonnella, D. Marenduzzo, and E. Orlandini, “Switching dynamics in cholesteric blue phases,” Soft Matter7, 3295–3306 (2011).
[CrossRef]

Ozaki, M.

H. Yoshida, S. Yabu, H. Tone, H. Kikuchi, and M. Ozaki, “Electro-optics of cubic and tetragonal blue phase liquid crystals investigated by two-beam interference microscopy,” Appl. Phys. Express6, 062603 (2013).
[CrossRef]

S. Yabu, H. Yoshida, G. Lim, K. Kaneko, Y. Okumura, N. Uehara, H. Kikuchi, and M. Ozaki, “Dual frequency operation of a blue phase liquid crystal,” Opt. Mater. Express1, 1577–1584 (2011).
[CrossRef]

S. Yabu, Y. Tanaka, K. Tagashira, H. Yoshida, A. Fujii, H. Kikuchi, and M. Ozaki, “Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals,” Opt. Lett.36, 3578–3580 (2011).
[CrossRef] [PubMed]

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-stabilized cholesteric blue phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

Palffy-Muhoray, P.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nature Mater.1, 111–113 (2002).
[CrossRef]

Pivnenko, M. N.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ’blue phases’ with a wide temperature range,” Nature436, 997–1000 (2005).
[CrossRef] [PubMed]

Porsch, F.

F. Porsch, H. Stegemeyer, and K. Hiltrop, “Electric field-induced birefringence in liquid-crystalline blue phases,” Z. Naturforsch.39a, 475–480 (1984).

Rand, J.

H.-S. Kitzerow, P. P. Crooker, J. Rand, J. Xu, and G. Heppke, “Electrostriction dynamics of blue phase II crystallites,” Journal de Physique II2, 279–284 (1992).
[CrossRef]

Salvadore, F.

A. Tiribocchi, G. Gonnella, D. Marenduzzo, E. Orlandini, and F. Salvadore, “Bistable defect structures in blue phase devices,” Phys. Rev. Lett.107, 237803 (2011).
[CrossRef] [PubMed]

Seideman, T.

T. Seideman, “The liquid-crystalline blue phases,” Reports on Progress in Physics53, 659–706 (1990).
[CrossRef]

Shibayama, S.

S. Shibayama, H. Higuchi, Y. Okumura, and H. Kikuchi, “Dendron-stabilized liquid crystalline blue phases with an enlarged controllable range of the photonic band for tunable photonic devices,” Adv. Funct. Mater.23, 2387–2396 (2013).
[CrossRef]

Shiu, J.-W.

J. Yan, Y. Chen, S.-T. Wu, S.-H. Liu, K.-L. Cheng, and J.-W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” Journal of Applied Physics111, 063103 (2012).
[CrossRef]

Shtrikman, S.

R. M. Hornreich and S. Shtrikman, “Dynamic response of a helicoidal cholesteric phase to an applied field,” Phys. Rev. A44, R3430–R3433 (1991).
[CrossRef] [PubMed]

Simon, R.

H. Gleeson, R. Simon, and H. J. Coles, “Electric field effects and two frequency colour switching in the cholesteric and blue phases of Nematic/Cholesteric mixtures,” Mol. Cryst. Liq. Cryst.129, 37–52 (1985).
[CrossRef]

Singh, U.

U. Singh and P. H. Keyes, “Measurement of the kerr effect in cholesteric blue phases,” Liq. Cryst.8, 851–860 (1990).
[CrossRef]

Stegemeyer, H.

F. Porsch, H. Stegemeyer, and K. Hiltrop, “Electric field-induced birefringence in liquid-crystalline blue phases,” Z. Naturforsch.39a, 475–480 (1984).

Tagashira, K.

Taheri, B.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nature Mater.1, 111–113 (2002).
[CrossRef]

Takanishi, Y.

A. Yoshizawa, Y. Kogawa, K. Kobayashi, Y. Takanishi, and J. Yamamoto, “A binaphthyl derivative with a wide temperature range of a blue phase,” J. Mater. Chem19, 5759–5764 (2009).
[CrossRef]

Tanaka, Y.

S. Yabu, Y. Tanaka, K. Tagashira, H. Yoshida, A. Fujii, H. Kikuchi, and M. Ozaki, “Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals,” Opt. Lett.36, 3578–3580 (2011).
[CrossRef] [PubMed]

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-stabilized cholesteric blue phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

Thoen, J.

E. Karatairi, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E81, 041703 (2010).
[CrossRef]

Tiribocchi, A.

A. Tiribocchi, G. Gonnella, D. Marenduzzo, E. Orlandini, and F. Salvadore, “Bistable defect structures in blue phase devices,” Phys. Rev. Lett.107, 237803 (2011).
[CrossRef] [PubMed]

A. Tiribocchi, G. Gonnella, D. Marenduzzo, and E. Orlandini, “Switching dynamics in cholesteric blue phases,” Soft Matter7, 3295–3306 (2011).
[CrossRef]

Tone, H.

H. Yoshida, S. Yabu, H. Tone, H. Kikuchi, and M. Ozaki, “Electro-optics of cubic and tetragonal blue phase liquid crystals investigated by two-beam interference microscopy,” Appl. Phys. Express6, 062603 (2013).
[CrossRef]

Tsuda, T.

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-stabilized cholesteric blue phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

Tzitzios, V.

E. Karatairi, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E81, 041703 (2010).
[CrossRef]

Uehara, N.

Wong, J.-M.

J.-M. Wong, J.-Y. Hwang, and L.-C. Chien, “Electrically reconfigurable and thermally sensitive optical properties of gold nanorods dispersed liquid crystal blue phase,” Soft. Mat.7, 7656–7659 (2011).
[CrossRef]

Wright, D. C.

D. C. Wright and N. D. Mermin, “Crystalline liquids: the blue phases,” Rev. Mod. Phys.61, 385–432 (1989).
[CrossRef]

Wu, S.-T.

J. Yan, Y. Chen, S.-T. Wu, S.-H. Liu, K.-L. Cheng, and J.-W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” Journal of Applied Physics111, 063103 (2012).
[CrossRef]

K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol.6, 318–322 (2010).
[CrossRef]

Xianyu, H.

K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol.6, 318–322 (2010).
[CrossRef]

Xu, J.

H.-S. Kitzerow, P. P. Crooker, J. Rand, J. Xu, and G. Heppke, “Electrostriction dynamics of blue phase II crystallites,” Journal de Physique II2, 279–284 (1992).
[CrossRef]

H.-S. Kitzerow, P. P. Crooker, S. L. Kwok, J. Xu, and G. Heppke, “Dynamics of blue-phase selective reflections in an electric field,” Phys. Rev. A42, 3442–3448 (1990).
[CrossRef] [PubMed]

Yabu, S.

Yamamoto, J.

A. Yoshizawa, Y. Kogawa, K. Kobayashi, Y. Takanishi, and J. Yamamoto, “A binaphthyl derivative with a wide temperature range of a blue phase,” J. Mater. Chem19, 5759–5764 (2009).
[CrossRef]

Yan, J.

J. Yan, Y. Chen, S.-T. Wu, S.-H. Liu, K.-L. Cheng, and J.-W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” Journal of Applied Physics111, 063103 (2012).
[CrossRef]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nature Mater.1, 64–68 (2002).
[CrossRef]

Yang, K.-X.

H.-Y. Chen, J.-Y. Chiou, and K.-X. Yang, “Reversible and fast shift in reflection band of a cubic blue phase in a vertical electric field,” Appl. Phys. Lett.99, 181119 (2011).
[CrossRef]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nature Mater.1, 64–68 (2002).
[CrossRef]

Yokoyama, H.

J.-i. Fukuda, M. Yoneya, and H. Yokoyama, “Simulation of cholesteric blue phases using a Landau–-de Gennes theory: Effect of an applied electric field,”Phys. Rev. E80, 031706 (2009).
[CrossRef]

Yoneya, M.

J.-i. Fukuda, M. Yoneya, and H. Yokoyama, “Simulation of cholesteric blue phases using a Landau–-de Gennes theory: Effect of an applied electric field,”Phys. Rev. E80, 031706 (2009).
[CrossRef]

Yoshida, H.

H. Yoshida, S. Yabu, H. Tone, H. Kikuchi, and M. Ozaki, “Electro-optics of cubic and tetragonal blue phase liquid crystals investigated by two-beam interference microscopy,” Appl. Phys. Express6, 062603 (2013).
[CrossRef]

S. Yabu, H. Yoshida, G. Lim, K. Kaneko, Y. Okumura, N. Uehara, H. Kikuchi, and M. Ozaki, “Dual frequency operation of a blue phase liquid crystal,” Opt. Mater. Express1, 1577–1584 (2011).
[CrossRef]

S. Yabu, Y. Tanaka, K. Tagashira, H. Yoshida, A. Fujii, H. Kikuchi, and M. Ozaki, “Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals,” Opt. Lett.36, 3578–3580 (2011).
[CrossRef] [PubMed]

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-stabilized cholesteric blue phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

Yoshizawa, A.

Y. Kogawa, T. Hirose, and A. Yoshizawa, “Biphenyl derivative stabilizing blue phases,” J. Mater. Chem21, 19132–19137 (2011).
[CrossRef]

A. Yoshizawa, Y. Kogawa, K. Kobayashi, Y. Takanishi, and J. Yamamoto, “A binaphthyl derivative with a wide temperature range of a blue phase,” J. Mater. Chem19, 5759–5764 (2009).
[CrossRef]

Zumer, S.

J.-i. Fukuda and S. Zumer, “Field-induced dynamics and structures in a cholesteric-blue-phase cell,” Phys. Rev. E87, 042506 (2013).
[CrossRef]

J.-i. Fukuda and S. Zumer, “Quasi-two-dimensional skyrmion lattices in a chiral nematic liquid crystal,” Nature Communications2, 246 (2011).
[CrossRef] [PubMed]

J.-i. Fukuda and S. Zumer, “Novel defect structures in a strongly confined liquid-crystalline blue phase,” Phys. Rev. Lett.104, 017801 (2010).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

S. Shibayama, H. Higuchi, Y. Okumura, and H. Kikuchi, “Dendron-stabilized liquid crystalline blue phases with an enlarged controllable range of the photonic band for tunable photonic devices,” Adv. Funct. Mater.23, 2387–2396 (2013).
[CrossRef]

Adv. Mater. (1)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic kerr effect in nanostructured chiral Liquid]Crystal composites over a wide temperature range,” Adv. Mater.17, 2311–2315 (2005).
[CrossRef]

Appl. Phys. Express (2)

H. Yoshida, S. Yabu, H. Tone, H. Kikuchi, and M. Ozaki, “Electro-optics of cubic and tetragonal blue phase liquid crystals investigated by two-beam interference microscopy,” Appl. Phys. Express6, 062603 (2013).
[CrossRef]

H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, and M. Ozaki, “Nanoparticle-stabilized cholesteric blue phases,” Appl. Phys. Express2, 121501 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

H.-Y. Chen, J.-Y. Chiou, and K.-X. Yang, “Reversible and fast shift in reflection band of a cubic blue phase in a vertical electric field,” Appl. Phys. Lett.99, 181119 (2011).
[CrossRef]

Europhys. Lett. (1)

G. P. Alexander and D. Marenduzzo, “Cubic blue phases in electric fields,” Europhys. Lett.81, 66004 (2008).
[CrossRef]

J. Disp. Technol. (1)

K.-M. Chen, S. Gauza, H. Xianyu, and S.-T. Wu, “Hysteresis effects in blue-phase liquid crystals,” J. Disp. Technol.6, 318–322 (2010).
[CrossRef]

J. Mater. Chem (2)

A. Yoshizawa, Y. Kogawa, K. Kobayashi, Y. Takanishi, and J. Yamamoto, “A binaphthyl derivative with a wide temperature range of a blue phase,” J. Mater. Chem19, 5759–5764 (2009).
[CrossRef]

Y. Kogawa, T. Hirose, and A. Yoshizawa, “Biphenyl derivative stabilizing blue phases,” J. Mater. Chem21, 19132–19137 (2011).
[CrossRef]

Journal de Physique II (1)

H.-S. Kitzerow, P. P. Crooker, J. Rand, J. Xu, and G. Heppke, “Electrostriction dynamics of blue phase II crystallites,” Journal de Physique II2, 279–284 (1992).
[CrossRef]

Journal of Applied Physics (1)

J. Yan, Y. Chen, S.-T. Wu, S.-H. Liu, K.-L. Cheng, and J.-W. Shiu, “Dynamic response of a polymer-stabilized blue-phase liquid crystal,” Journal of Applied Physics111, 063103 (2012).
[CrossRef]

Liq. Cryst. (2)

U. Singh and P. H. Keyes, “Measurement of the kerr effect in cholesteric blue phases,” Liq. Cryst.8, 851–860 (1990).
[CrossRef]

V. E. Dmitrienko, “Electro-optic effects in blue phases,” Liq. Cryst.5, 847–851 (1989).
[CrossRef]

Mol. Cryst. Liq. Cryst. (3)

H. Gleeson, R. Simon, and H. J. Coles, “Electric field effects and two frequency colour switching in the cholesteric and blue phases of Nematic/Cholesteric mixtures,” Mol. Cryst. Liq. Cryst.129, 37–52 (1985).
[CrossRef]

H. S. Kitzerow, “The effect of electric fields on blue phases,” Mol. Cryst. Liq. Cryst.202, 51–83 (1991).
[CrossRef]

P. R. Gerber, “Electro-optical effects of a small-pitch blue-phase system,” Mol. Cryst. Liq. Cryst.116, 197–206 (1985).
[CrossRef]

Mol. Cryst. Liq. Cryst. Lett. (1)

G. Heppke, “Electric field induced variation of the refractive index in cholesteric blue phases,” Mol. Cryst. Liq. Cryst. Lett.2, 59–65 (1985).

Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics (1)

H. J. Coles and H. F. Gleeson, “Electric field induced phase transitions and colour switching in the blue phases of chiral nematic liquid crystals,” Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics167, 213–225 (1989).
[CrossRef]

Nature (1)

H. J. Coles and M. N. Pivnenko, “Liquid crystal ’blue phases’ with a wide temperature range,” Nature436, 997–1000 (2005).
[CrossRef] [PubMed]

Nature Communications (1)

J.-i. Fukuda and S. Zumer, “Quasi-two-dimensional skyrmion lattices in a chiral nematic liquid crystal,” Nature Communications2, 246 (2011).
[CrossRef] [PubMed]

Nature Mater. (2)

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nature Mater.1, 111–113 (2002).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nature Mater.1, 64–68 (2002).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. A (2)

H.-S. Kitzerow, P. P. Crooker, S. L. Kwok, J. Xu, and G. Heppke, “Dynamics of blue-phase selective reflections in an electric field,” Phys. Rev. A42, 3442–3448 (1990).
[CrossRef] [PubMed]

R. M. Hornreich and S. Shtrikman, “Dynamic response of a helicoidal cholesteric phase to an applied field,” Phys. Rev. A44, R3430–R3433 (1991).
[CrossRef] [PubMed]

Phys. Rev. E (3)

E. Karatairi, V. Tzitzios, G. Nounesis, G. Cordoyiannis, J. Thoen, C. Glorieux, and S. Kralj, “Nanoparticle-induced widening of the temperature range of liquid-crystalline blue phases,” Phys. Rev. E81, 041703 (2010).
[CrossRef]

J.-i. Fukuda and S. Zumer, “Field-induced dynamics and structures in a cholesteric-blue-phase cell,” Phys. Rev. E87, 042506 (2013).
[CrossRef]

J.-i. Fukuda, “Stabilization of blue phases by the variation of elastic constants,” Phys. Rev. E85, 020701 (2012).
[CrossRef]

Phys. Rev. Lett. (2)

A. Tiribocchi, G. Gonnella, D. Marenduzzo, E. Orlandini, and F. Salvadore, “Bistable defect structures in blue phase devices,” Phys. Rev. Lett.107, 237803 (2011).
[CrossRef] [PubMed]

J.-i. Fukuda and S. Zumer, “Novel defect structures in a strongly confined liquid-crystalline blue phase,” Phys. Rev. Lett.104, 017801 (2010).
[CrossRef] [PubMed]

Reports on Progress in Physics (1)

T. Seideman, “The liquid-crystalline blue phases,” Reports on Progress in Physics53, 659–706 (1990).
[CrossRef]

Rev. Mod. Phys. (1)

D. C. Wright and N. D. Mermin, “Crystalline liquids: the blue phases,” Rev. Mod. Phys.61, 385–432 (1989).
[CrossRef]

Soft Matter (2)

A. Tiribocchi, G. Gonnella, D. Marenduzzo, and E. Orlandini, “Switching dynamics in cholesteric blue phases,” Soft Matter7, 3295–3306 (2011).
[CrossRef]

H. Choi, H. Higuchi, and H. Kikuchi, “Electrooptic response of liquid crystalline blue phases with different chiral pitches,” Soft Matter7, 4252–4256 (2011).
[CrossRef]

Soft. Mat. (1)

J.-M. Wong, J.-Y. Hwang, and L.-C. Chien, “Electrically reconfigurable and thermally sensitive optical properties of gold nanorods dispersed liquid crystal blue phase,” Soft. Mat.7, 7656–7659 (2011).
[CrossRef]

Struct. Bond. (1)

H. Kikuchi, “Liquid crystalline blue phases,” Struct. Bond.128, 99–117 (2008).
[CrossRef]

Z. Naturforsch. (1)

F. Porsch, H. Stegemeyer, and K. Hiltrop, “Electric field-induced birefringence in liquid-crystalline blue phases,” Z. Naturforsch.39a, 475–480 (1984).

Other (2)

J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1984), 1.

J.-i. Fukuda, M. Yoneya, and H. Yokoyama, “Simulation of cholesteric blue phases using a Landau–-de Gennes theory: Effect of an applied electric field,”Phys. Rev. E80, 031706 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Structure of body-centered BP I, which is characterized by a doubly twisted cylindrical structure, (b) local reorientation of shortly correlated nematic domains, giving rise to the electro-optic Kerr effect, and (c) electrostriction of the lattice.

Fig. 2
Fig. 2

(a) Transient response of Bragg wavelength and change in refractive index for BP I sample, and (b) applied field dependence of the time constant of the slow response fitted to an exponential function, slow change in refractive index and ratio of the slow change to the total change in refractive index.

Fig. 3
Fig. 3

Coupling coefficient obtained for various applied electric field intensities.

Fig. 4
Fig. 4

(a) Transient response of Bragg wavelength and change in refractive index for PSBP, and (b) change in refractive index measured by interferometry and spectroscopy.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S BP = 1 V BP V BP 1 2 ( 3 cos 2 θ 1 ) d V u = d ( E ) d 0 d 0 .
f = 1 2 κ 1 ( S BP c u ) 2 + 1 2 κ 2 u 2 1 2 ε 0 Δ ε S BP E 2 .
η 1 d S BP d t = κ 1 ( S BP c u ) + 1 2 ε 0 Δ ε E 2 , η 2 d u d t = c κ 1 ( S BP c u ) + κ 2 u .
δ n slow ( t ) = A δ n exp ( t / τ u ) + C δ n , u ( t ) = A u exp ( t / τ u ) + C u ,
c = δ n slow Δ n LC u = 3 A δ n Δ n LC C u .

Metrics