Abstract

We demonstrate an innovative process to fabricate uniformly shaped plasmonic nanoparticles. Laser interference lithography, nano-imprint lithography and a lift-off process are employed for the controlled production of periodically arranged nanoparticles on large areas. Round and elliptic silver particles with diameters of about 200 nm on an area of 5×5cm2 are investigated. Measurements of resonant absorption by the metal particles are in agreement with data computer-simulated by rigorous coupled wave analysis. We observe that the plasmonic resonance of elliptic particles depends on the polarization of incident light and that porosity of the metal influences the plasmonic band.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, 2007).
  2. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
    [CrossRef] [PubMed]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  4. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  5. M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys.44(28), 283001 (2011).
    [CrossRef]
  6. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B17(11), 1906–1913 (2000).
    [CrossRef]
  7. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
    [CrossRef] [PubMed]
  8. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
    [CrossRef] [PubMed]
  9. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002).
    [CrossRef]
  10. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  11. J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with beta-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells94(12), 2395–2398 (2010).
    [CrossRef]
  12. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.)135(8), 1839–1854 (2010).
    [CrossRef] [PubMed]
  13. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024001 (2012).
  14. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
    [CrossRef]
  15. Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovoltaics Res. Appl.online,1-11 (2011).
  16. M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topic, and J. Krc, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
    [CrossRef] [PubMed]
  17. Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology21(23), 235201 (2010).
    [CrossRef] [PubMed]
  18. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012).
    [CrossRef] [PubMed]
  19. K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull.36(06), 461–467 (2011).
    [CrossRef]
  20. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
    [CrossRef] [PubMed]
  21. T. Nishino, N. Fujii, H. Miyake, T. Yukawa, J. Sakamoto, R. Suzuki, H. Kawata, and Y. Hirai, “Metal liftoff process using solvent soluble resist by UV-NIL,” J. Photopolym. Sci. Technol.23(1), 87–90 (2010).
    [CrossRef]
  22. Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20(10), 11466–11477 (2012).
    [CrossRef] [PubMed]
  23. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci.164(1-4), 111–117 (2000).
    [CrossRef]
  24. A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng.98, 293–296 (2012).
    [CrossRef]
  25. A. Gombert, J. Mick, W. Hoßfeld, M. Niggemann, B. Bläsi, C. Bühler, and P. Nitz, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
    [CrossRef]
  26. H. Hauser, B. Michl, S. Schwarzkopf, V. Kübler, C. Müller, M. Hermle, and B. Bläsi, “Honeycomb texturing of Silicon via nanoimprint lithography for solar cell applications,” IEEE Journal of Photovoltaics2(2), 114–122 (2012).
    [CrossRef]
  27. S. Jüchter, H. Hauser, C. Wellens, M. Peters, J. C. Goldschmidt, U. T. Schwarz, and B. Bläsi, “Preparation of periodically arranged metallic nanostructures using nanoimprint lithography,” Proceedings of the SPIE Photonics Europe - Photonics for Solar Energy Systems (2012).
    [CrossRef]
  28. C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys.126(19), 194702 (2007).
    [CrossRef] [PubMed]
  29. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
    [CrossRef]
  30. Web page of temicon GmbH, www.temicon.com .
  31. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
    [CrossRef]
  32. “Processing guidelines: mr-UVcur06,” (Micro Resist Technology).
  33. G. S. Oehrlein, “Reactive-Ion Etching,” Phys. Today39(10), 26–33 (1986).
    [CrossRef]
  34. J. D. Jackson, Classical Electrodynamics (Wiley India Pvt. Limited, 1962).
  35. R. Petit and L. C. Botten, Electromagnetic Theory of Gratings (Springer-Verlag, 1980).
  36. P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization,” J. Mod. Opt.45(7), 1357–1374 (1998).
    [CrossRef]
  37. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
  38. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik416(7), 636–664 (1935).
    [CrossRef]
  39. E. D. Palik, Handbook of Optical Constants of Solids, Volumes I, II, and III: Subject Index and Contributor Index (Elsevier Science & Tech, 1985).
  40. N. P. Hylton, X. F. Li, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, (2013).

2012 (7)

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
[CrossRef] [PubMed]

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024001 (2012).

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

Y. Nishijima, L. Rosa, and S. Juodkazis, “Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting,” Opt. Express20(10), 11466–11477 (2012).
[CrossRef] [PubMed]

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng.98, 293–296 (2012).
[CrossRef]

H. Hauser, B. Michl, S. Schwarzkopf, V. Kübler, C. Müller, M. Hermle, and B. Bläsi, “Honeycomb texturing of Silicon via nanoimprint lithography for solar cell applications,” IEEE Journal of Photovoltaics2(2), 114–122 (2012).
[CrossRef]

2011 (4)

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topic, and J. Krc, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
[CrossRef] [PubMed]

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull.36(06), 461–467 (2011).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys.44(28), 283001 (2011).
[CrossRef]

2010 (5)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

T. Nishino, N. Fujii, H. Miyake, T. Yukawa, J. Sakamoto, R. Suzuki, H. Kawata, and Y. Hirai, “Metal liftoff process using solvent soluble resist by UV-NIL,” J. Photopolym. Sci. Technol.23(1), 87–90 (2010).
[CrossRef]

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with beta-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells94(12), 2395–2398 (2010).
[CrossRef]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.)135(8), 1839–1854 (2010).
[CrossRef] [PubMed]

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology21(23), 235201 (2010).
[CrossRef] [PubMed]

2007 (2)

C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys.126(19), 194702 (2007).
[CrossRef] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

2004 (1)

A. Gombert, J. Mick, W. Hoßfeld, M. Niggemann, B. Bläsi, C. Bühler, and P. Nitz, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

2002 (2)

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002).
[CrossRef]

2000 (3)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B17(11), 1906–1913 (2000).
[CrossRef]

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci.164(1-4), 111–117 (2000).
[CrossRef]

1998 (1)

P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization,” J. Mod. Opt.45(7), 1357–1374 (1998).
[CrossRef]

1995 (1)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

1986 (1)

G. S. Oehrlein, “Reactive-Ion Etching,” Phys. Today39(10), 26–33 (1986).
[CrossRef]

1981 (1)

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik416(7), 636–664 (1935).
[CrossRef]

Akimov, Y. A.

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology21(23), 235201 (2010).
[CrossRef] [PubMed]

Alexander, D. T. L.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Atwater, H. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024001 (2012).

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Ballif, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Banerjee, D.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.)135(8), 1839–1854 (2010).
[CrossRef] [PubMed]

Basch, A.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull.36(06), 461–467 (2011).
[CrossRef]

Battaglia, C.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Beck, F.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull.36(06), 461–467 (2011).
[CrossRef]

Bläsi, B.

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng.98, 293–296 (2012).
[CrossRef]

H. Hauser, B. Michl, S. Schwarzkopf, V. Kübler, C. Müller, M. Hermle, and B. Bläsi, “Honeycomb texturing of Silicon via nanoimprint lithography for solar cell applications,” IEEE Journal of Photovoltaics2(2), 114–122 (2012).
[CrossRef]

A. Gombert, J. Mick, W. Hoßfeld, M. Niggemann, B. Bläsi, C. Bühler, and P. Nitz, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

Boccard, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik416(7), 636–664 (1935).
[CrossRef]

Bühler, C.

A. Gombert, J. Mick, W. Hoßfeld, M. Niggemann, B. Bläsi, C. Bühler, and P. Nitz, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

Cantoni, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Carcenac, F.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci.164(1-4), 111–117 (2000).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull.36(06), 461–467 (2011).
[CrossRef]

Charrière, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Chen, X.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.)135(8), 1839–1854 (2010).
[CrossRef] [PubMed]

Chen, Y.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci.164(1-4), 111–117 (2000).
[CrossRef]

Couraud, L.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci.164(1-4), 111–117 (2000).
[CrossRef]

Cui, Y.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

de Wild, J.

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with beta-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells94(12), 2395–2398 (2010).
[CrossRef]

Despeisse, M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Escarré, J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Ferry, V. E.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024001 (2012).

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Fujii, N.

T. Nishino, N. Fujii, H. Miyake, T. Yukawa, J. Sakamoto, R. Suzuki, H. Kawata, and Y. Hirai, “Metal liftoff process using solvent soluble resist by UV-NIL,” J. Photopolym. Sci. Technol.23(1), 87–90 (2010).
[CrossRef]

Garcia, M. A.

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys.44(28), 283001 (2011).
[CrossRef]

Gaylord, T. K.

Gombert, A.

A. Gombert, J. Mick, W. Hoßfeld, M. Niggemann, B. Bläsi, C. Bühler, and P. Nitz, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

Green, M. A.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

Haug, F.-J.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Hauser, H.

H. Hauser, B. Michl, S. Schwarzkopf, V. Kübler, C. Müller, M. Hermle, and B. Bläsi, “Honeycomb texturing of Silicon via nanoimprint lithography for solar cell applications,” IEEE Journal of Photovoltaics2(2), 114–122 (2012).
[CrossRef]

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng.98, 293–296 (2012).
[CrossRef]

Hermle, M.

H. Hauser, B. Michl, S. Schwarzkopf, V. Kübler, C. Müller, M. Hermle, and B. Bläsi, “Honeycomb texturing of Silicon via nanoimprint lithography for solar cell applications,” IEEE Journal of Photovoltaics2(2), 114–122 (2012).
[CrossRef]

Hirai, Y.

T. Nishino, N. Fujii, H. Miyake, T. Yukawa, J. Sakamoto, R. Suzuki, H. Kawata, and Y. Hirai, “Metal liftoff process using solvent soluble resist by UV-NIL,” J. Photopolym. Sci. Technol.23(1), 87–90 (2010).
[CrossRef]

Höhn, O.

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng.98, 293–296 (2012).
[CrossRef]

Hoßfeld, W.

A. Gombert, J. Mick, W. Hoßfeld, M. Niggemann, B. Bläsi, C. Bühler, and P. Nitz, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

Hsu, C.-M.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Juodkazis, S.

Jurek, M. P.

P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization,” J. Mod. Opt.45(7), 1357–1374 (1998).
[CrossRef]

Kasemo, B.

C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys.126(19), 194702 (2007).
[CrossRef] [PubMed]

Kawata, H.

T. Nishino, N. Fujii, H. Miyake, T. Yukawa, J. Sakamoto, R. Suzuki, H. Kawata, and Y. Hirai, “Metal liftoff process using solvent soluble resist by UV-NIL,” J. Photopolym. Sci. Technol.23(1), 87–90 (2010).
[CrossRef]

Keevers, M. J.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002).
[CrossRef]

Klenk, R.

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topic, and J. Krc, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
[CrossRef] [PubMed]

Koh, W. S.

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology21(23), 235201 (2010).
[CrossRef] [PubMed]

Krc, J.

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topic, and J. Krc, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
[CrossRef] [PubMed]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Kübler, V.

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng.98, 293–296 (2012).
[CrossRef]

H. Hauser, B. Michl, S. Schwarzkopf, V. Kübler, C. Müller, M. Hermle, and B. Bläsi, “Honeycomb texturing of Silicon via nanoimprint lithography for solar cell applications,” IEEE Journal of Photovoltaics2(2), 114–122 (2012).
[CrossRef]

Lalanne, P.

P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization,” J. Mod. Opt.45(7), 1357–1374 (1998).
[CrossRef]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Langhammer, C.

C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys.126(19), 194702 (2007).
[CrossRef] [PubMed]

Lare, M. C.

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Launois, H.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci.164(1-4), 111–117 (2000).
[CrossRef]

Lebib, A.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci.164(1-4), 111–117 (2000).
[CrossRef]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Lee, J.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull.36(06), 461–467 (2011).
[CrossRef]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
[CrossRef] [PubMed]

Liu, X.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.)135(8), 1839–1854 (2010).
[CrossRef] [PubMed]

Liu, Y.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.)135(8), 1839–1854 (2010).
[CrossRef] [PubMed]

Love, J. C.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
[CrossRef]

Lux-Steiner, M. Ch.

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topic, and J. Krc, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002).
[CrossRef]

Manin-Ferlazzo, L.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci.164(1-4), 111–117 (2000).
[CrossRef]

McKinley, A.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull.36(06), 461–467 (2011).
[CrossRef]

McPeak, K. M.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
[CrossRef] [PubMed]

Meijerink, A.

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with beta-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells94(12), 2395–2398 (2010).
[CrossRef]

Mejias, M.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci.164(1-4), 111–117 (2000).
[CrossRef]

Mertz, J.

Michl, B.

H. Hauser, B. Michl, S. Schwarzkopf, V. Kübler, C. Müller, M. Hermle, and B. Bläsi, “Honeycomb texturing of Silicon via nanoimprint lithography for solar cell applications,” IEEE Journal of Photovoltaics2(2), 114–122 (2012).
[CrossRef]

Mick, J.

A. Gombert, J. Mick, W. Hoßfeld, M. Niggemann, B. Bläsi, C. Bühler, and P. Nitz, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

Miyake, H.

T. Nishino, N. Fujii, H. Miyake, T. Yukawa, J. Sakamoto, R. Suzuki, H. Kawata, and Y. Hirai, “Metal liftoff process using solvent soluble resist by UV-NIL,” J. Photopolym. Sci. Technol.23(1), 87–90 (2010).
[CrossRef]

Moharam, M. G.

Mokkapati, S.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull.36(06), 461–467 (2011).
[CrossRef]

Müller, C.

H. Hauser, B. Michl, S. Schwarzkopf, V. Kübler, C. Müller, M. Hermle, and B. Bläsi, “Honeycomb texturing of Silicon via nanoimprint lithography for solar cell applications,” IEEE Journal of Photovoltaics2(2), 114–122 (2012).
[CrossRef]

Nagpal, P.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
[CrossRef] [PubMed]

Niggemann, M.

A. Gombert, J. Mick, W. Hoßfeld, M. Niggemann, B. Bläsi, C. Bühler, and P. Nitz, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

Nishijima, Y.

Nishino, T.

T. Nishino, N. Fujii, H. Miyake, T. Yukawa, J. Sakamoto, R. Suzuki, H. Kawata, and Y. Hirai, “Metal liftoff process using solvent soluble resist by UV-NIL,” J. Photopolym. Sci. Technol.23(1), 87–90 (2010).
[CrossRef]

Nitz, P.

A. Gombert, J. Mick, W. Hoßfeld, M. Niggemann, B. Bläsi, C. Bühler, and P. Nitz, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

Norris, D. J.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
[CrossRef] [PubMed]

Odom, T. W.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
[CrossRef]

Oehrlein, G. S.

G. S. Oehrlein, “Reactive-Ion Etching,” Phys. Today39(10), 26–33 (1986).
[CrossRef]

Oh, S.-H.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
[CrossRef] [PubMed]

Ouyang, Z.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovoltaics Res. Appl.online,1-11 (2011).

Paul, K. E.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
[CrossRef]

Pepin, A.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci.164(1-4), 111–117 (2000).
[CrossRef]

Pillai, S.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovoltaics Res. Appl.online,1-11 (2011).

Polman, A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024001 (2012).

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Rath, J. K.

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with beta-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells94(12), 2395–2398 (2010).
[CrossRef]

Rosa, L.

Sakamoto, J.

T. Nishino, N. Fujii, H. Miyake, T. Yukawa, J. Sakamoto, R. Suzuki, H. Kawata, and Y. Hirai, “Metal liftoff process using solvent soluble resist by UV-NIL,” J. Photopolym. Sci. Technol.23(1), 87–90 (2010).
[CrossRef]

Santbergen, R.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Schmid, M.

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topic, and J. Krc, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
[CrossRef] [PubMed]

Schropp, R. E. I.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024001 (2012).

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with beta-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells94(12), 2395–2398 (2010).
[CrossRef]

Schwarzkopf, S.

H. Hauser, B. Michl, S. Schwarzkopf, V. Kübler, C. Müller, M. Hermle, and B. Bläsi, “Honeycomb texturing of Silicon via nanoimprint lithography for solar cell applications,” IEEE Journal of Photovoltaics2(2), 114–122 (2012).
[CrossRef]

Smets, A. H. M.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

Söderström, K.

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Spinelli, P.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024001 (2012).

Suzuki, R.

T. Nishino, N. Fujii, H. Miyake, T. Yukawa, J. Sakamoto, R. Suzuki, H. Kawata, and Y. Hirai, “Metal liftoff process using solvent soluble resist by UV-NIL,” J. Photopolym. Sci. Technol.23(1), 87–90 (2010).
[CrossRef]

Tan, H.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

Tao, Y.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovoltaics Res. Appl.online,1-11 (2011).

Topic, M.

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topic, and J. Krc, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
[CrossRef] [PubMed]

van de Groep, J.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024001 (2012).

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

van Lare, M.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024001 (2012).

van Sark, W. G. J. H. M.

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with beta-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells94(12), 2395–2398 (2010).
[CrossRef]

Varlamov, S.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovoltaics Res. Appl.online,1-11 (2011).

Verschuuren, M. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024001 (2012).

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

Vieu, C.

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci.164(1-4), 111–117 (2000).
[CrossRef]

Walk, C.

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng.98, 293–296 (2012).
[CrossRef]

Wang, E.-C.

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull.36(06), 461–467 (2011).
[CrossRef]

Wang, F.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.)135(8), 1839–1854 (2010).
[CrossRef] [PubMed]

Whitesides, G. M.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

Wolf, A. J.

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng.98, 293–296 (2012).
[CrossRef]

Wolfe, D. B.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
[CrossRef]

Wong, J.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovoltaics Res. Appl.online,1-11 (2011).

Yukawa, T.

T. Nishino, N. Fujii, H. Miyake, T. Yukawa, J. Sakamoto, R. Suzuki, H. Kawata, and Y. Hirai, “Metal liftoff process using solvent soluble resist by UV-NIL,” J. Photopolym. Sci. Technol.23(1), 87–90 (2010).
[CrossRef]

Zeman, M.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

Zhao, X.

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovoltaics Res. Appl.online,1-11 (2011).

Zoric, I.

C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys.126(19), 194702 (2007).
[CrossRef] [PubMed]

ACS Nano (1)

C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: Can periodic beat random?” ACS Nano6(3), 2790–2797 (2012).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.)135(8), 1839–1854 (2010).
[CrossRef] [PubMed]

Annalen der Physik (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Annalen der Physik416(7), 636–664 (1935).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58(1), 267–297 (2007).
[CrossRef] [PubMed]

Appl. Surf. Sci. (1)

C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci.164(1-4), 111–117 (2000).
[CrossRef]

IEEE Journal of Photovoltaics (1)

H. Hauser, B. Michl, S. Schwarzkopf, V. Kübler, C. Müller, M. Hermle, and B. Bläsi, “Honeycomb texturing of Silicon via nanoimprint lithography for solar cell applications,” IEEE Journal of Photovoltaics2(2), 114–122 (2012).
[CrossRef]

J. Chem. Phys. (1)

C. Langhammer, B. Kasemo, and I. Zorić, “Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: Absolute cross sections and branching ratios,” J. Chem. Phys.126(19), 194702 (2007).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization,” J. Mod. Opt.45(7), 1357–1374 (1998).
[CrossRef]

J. Opt. (1)

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024001 (2012).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Photopolym. Sci. Technol. (1)

T. Nishino, N. Fujii, H. Miyake, T. Yukawa, J. Sakamoto, R. Suzuki, H. Kawata, and Y. Hirai, “Metal liftoff process using solvent soluble resist by UV-NIL,” J. Photopolym. Sci. Technol.23(1), 87–90 (2010).
[CrossRef]

J. Phys. D Appl. Phys. (1)

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundamentals and applications,” J. Phys. D Appl. Phys.44(28), 283001 (2011).
[CrossRef]

Langmuir (1)

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir18(13), 5314–5320 (2002).
[CrossRef]

Microelectron. Eng. (1)

A. J. Wolf, H. Hauser, V. Kübler, C. Walk, O. Höhn, and B. Bläsi, “Origination of nano- and microstructures on large areas by interference lithography,” Microelectron. Eng.98, 293–296 (2012).
[CrossRef]

MRS Bull. (1)

K. R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, and J. Lee, “Plasmonics and nanophotonics for photovoltaics,” MRS Bull.36(06), 461–467 (2011).
[CrossRef]

Nano Lett. (2)

V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011).
[CrossRef] [PubMed]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett.12(8), 4070–4076 (2012).
[CrossRef] [PubMed]

Nanotechnology (2)

M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topic, and J. Krc, “Modeling plasmonic scattering combined with thin-film optics,” Nanotechnology22(2), 025204 (2011).
[CrossRef] [PubMed]

Y. A. Akimov and W. S. Koh, “Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells,” Nanotechnology21(23), 235201 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Eng. (1)

A. Gombert, J. Mick, W. Hoßfeld, M. Niggemann, B. Bläsi, C. Bühler, and P. Nitz, “Some application cases and related manufacturing techniques for optically functional microstructures on large areas,” Opt. Eng.43(11), 2525–2533 (2004).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B65(19), 193408 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Phys. Today (1)

G. S. Oehrlein, “Reactive-Ion Etching,” Phys. Today39(10), 26–33 (1986).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

Rep. Prog. Phys. (1)

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys.75(3), 036501 (2012).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

J. de Wild, J. K. Rath, A. Meijerink, W. G. J. H. M. van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with beta-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors,” Sol. Energy Mater. Sol. Cells94(12), 2395–2398 (2010).
[CrossRef]

Other (11)

Z. Ouyang, X. Zhao, S. Varlamov, Y. Tao, J. Wong, and S. Pillai, “Nanoparticle-enhanced light trapping in thin-film silicon solar cells,” Prog. Photovoltaics Res. Appl.online,1-11 (2011).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, 2007).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

J. D. Jackson, Classical Electrodynamics (Wiley India Pvt. Limited, 1962).

R. Petit and L. C. Botten, Electromagnetic Theory of Gratings (Springer-Verlag, 1980).

“Processing guidelines: mr-UVcur06,” (Micro Resist Technology).

Web page of temicon GmbH, www.temicon.com .

S. Jüchter, H. Hauser, C. Wellens, M. Peters, J. C. Goldschmidt, U. T. Schwarz, and B. Bläsi, “Preparation of periodically arranged metallic nanostructures using nanoimprint lithography,” Proceedings of the SPIE Photonics Europe - Photonics for Solar Energy Systems (2012).
[CrossRef]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).

E. D. Palik, Handbook of Optical Constants of Solids, Volumes I, II, and III: Subject Index and Contributor Index (Elsevier Science & Tech, 1985).

N. P. Hylton, X. F. Li, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, J. Loo, D. Vercruysse, P. Van Dorpe, H. Sodabanlu, M. Sugiyama, and S. A. Maier, “Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes,” Sci. Rep. 3, (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Overview of the process chain for the fabrication of uniform metal nanoparticles. The master (I) is produced by laser interference lithography and electroplating in order to replicate silicone stamps (II). Resist covering a substrate is structured by nanoimprint lithography with the help of the silicone stamp and UV light (III). After residual layer etching (IV), metallizing (V) and lifting off the resist (VI), only metal nanoparticles remain on the substrate. The grating spacing of the particle arrangement can be adjusted by changing the half-angle θ between the two beams in the laser interference lithography setup (b). The sample is exposed twice and turned by α = 90° or α = 60° in order to obtain a crossed or hexagonal grating.

Fig. 2
Fig. 2

(a) Cross-section of the system simulated by RCWA (not to scale). The back of a glass substrate is structured by cylindrical silver particles. Light is incident from the top along the z-direction, indicated by vector kinc. The electric field of TM-polarized light is defined to point along the minor axis of the ellipse. Region I and III are semi-infinite, non-absorbing, isotropic and homogeneous. The real refractive indices of substrate and region I are equal to avoid reflections at the top surface of the substrate. (b) Rectangular unit cell of elliptic particles arranged in a hexagonal grating. It consists of two particles, which are approximated by N = 5 cuboids.

Fig. 3
Fig. 3

SEM pictures of (a) photoresist structured by LIL, (b) imprinted resist after etching, (c) round silver particles arranged in a crossed grating on glass and (d) elliptic silver particles arranged in a hexagonal grating on silicon. In each case the grating spacing measures 300 nm. The photoresist pillars are arranged in a hexagonal grating on a glass substrate and about 250 nm high. Subsequent to etching the imprinted and cross-linked resist, a structure depth of about 120 nm remains. The round particles on a glass substrate exhibit a diameter of about 200 nm, whereas the axes of the elliptic particles on silicon measure approx. 240 nm and 140 nm. In both cases, the particles have a height of around 15 nm.

Fig. 4
Fig. 4

(a) Absorptance spectra of fabricated (solid line) and simulated (dashed line) round silver nanoparticles with height h = 30 nm arranged in a crossed grating on a 1 mm thick glass substrate. Plasmon resonance is apparent at around λ = 750 nm. (b) Simulated system of round silver particles arranged in a crossed grating. Porosity of silver is not taken into account.

Fig. 5
Fig. 5

(a) Absorptance spectra of fabricated (solid line) and simulated (dashed line) elliptic silver nanoparticles with height h = 15 nm arranged in a hexagonal grating on a 1 mm thick glass substrate. The simulated peaks are blue-shifted in comparison to the experimental data as porosity is not taken into account. (b) Simulated system of elliptic silver particles arranged in a hexagonal grating. (c) Absorptance spectra of the simulated and fabricated particles as shown in Fig. 5 (a), but with the consideration of porosity. The porosity of silver is taken into consideration by Bruggeman’s effective medium theory [38] in the simulations. Simulated as well as measured plasmon resonances occur at around λ = 900 nm or λ = 1200 nm depending on the polarization of incident light. (d) Real and imaginary part of the refractive index of silver [39] without and with consideration of porosity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A=1RT.

Metrics