Abstract

We report a microsecond electro-optic response in an anisotropic-polymer/liquid-crystal composite, which forms a homogeneously mixed structure in the nanoscale range owing to the high miscibility between them. The nanocomposite was fabricated by photopolymerizing a nematic liquid crystal (NLC) mixture doped with a cross-linkable mesogenic monomer at a concentration of 30 wt%. Our system is inherently different from polymer-dispersed liquid crystals in that the LC molecules are almost miscible in the anisotropic polymer matrix and do not form observable domains. When an electric field is applied to such a nanocomposite, the molecular alignment of the polymer matrix is retained, while the non-polymerizable NLC reorients along the electric field, leading to a shift in the birefringence. Furthermore, the reorientation of the NLC molecules in a space sufficiently smaller than the wavelength of visible light results in scattering-free characteristics over the entire visible wavelength range and a short decay response time of 15 μs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. den Boer, Active Matrix Liquid Crystal Displays: Fundamentals and Applications (Elsevier, 2005).
  2. S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).
  3. L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys.44(44), 442002 (2011).
    [CrossRef]
  4. P. Kirsch and M. Bremer, “Nematic liquid crystals for active matrix displays: molecular design and synthesis,” Angew. Chem. Int. Ed.39(23), 4216–4235 (2000).
    [CrossRef]
  5. R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys.43(5), 2029–2037 (1972).
    [CrossRef]
  6. F. Nakano, H. Kawakami, H. Morishita, and M. Sato, “Dynamic properties of twisted nematic liquid Crystal Cells,” Jpn. J. Appl. Phys.19(4), 659–663 (1980).
    [CrossRef]
  7. H.-Y. Chen, W. Lee, and N. A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett.90(3), 033510 (2007).
    [CrossRef]
  8. C.-Y. Huang, H.-C. Pan, and C.-T. Hsieh, “Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys.45(8A), 6392–6394 (2006).
    [CrossRef]
  9. S. E. Hicks, S. P. Hurley, R. S. Zola, and D. Yang, “Polymer stabilized VA mode liquid crystal display,” J. Disp. Tech.7(11), 619–623 (2011).
    [CrossRef]
  10. H. Ren, S. Xu, Y. Liu, and S.-T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express21(7), 7916–7925 (2013).
    [CrossRef] [PubMed]
  11. J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., B, Polym. Phys.52(3), 183–192 (2014).
    [CrossRef]
  12. Y.-C. Yang and D.-K. Yang, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett.98(2), 023502 (2011).
    [CrossRef]
  13. M. Mucha, “Polymer as an important component of blends and composites with liquid crystals,” Prog. Polym. Sci.28(5), 837–873 (2003).
    [CrossRef]
  14. D. Coates, “Polymer-dispersed liquid crystals,” J. Mater. Chem.5(12), 2063–2072 (1995).
    [CrossRef]
  15. S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys.50, 051703 (2011).
  16. R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys.43(5), 2029–2037 (1972).
    [CrossRef]
  17. H. R. Wilson and W. Eck, “Transmission variation using scattering / transparent switching films,” Sol. Energy Mater. Sol. Cells31(2), 197–214 (1993).
    [CrossRef]
  18. S. Matsmoto, M. Houlbert, T. Hayashi, and K. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett.69(8), 1044–1046 (1996).
    [CrossRef]
  19. N. Colthup, Introduction to Infrared and Raman Spectroscopy (Academic Press, 1990).
  20. Y. W. Hui and M. M. Labes, “Structure and order parameter of a nematic lyotropic liquid crystal studied by FTIR spectroscopy,” J. Phys. Chem.90(17), 4064–4067 (1986).
    [CrossRef]

2014 (1)

J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., B, Polym. Phys.52(3), 183–192 (2014).
[CrossRef]

2013 (1)

2011 (4)

S. E. Hicks, S. P. Hurley, R. S. Zola, and D. Yang, “Polymer stabilized VA mode liquid crystal display,” J. Disp. Tech.7(11), 619–623 (2011).
[CrossRef]

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys.50, 051703 (2011).

Y.-C. Yang and D.-K. Yang, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett.98(2), 023502 (2011).
[CrossRef]

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys.44(44), 442002 (2011).
[CrossRef]

2007 (1)

H.-Y. Chen, W. Lee, and N. A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett.90(3), 033510 (2007).
[CrossRef]

2006 (1)

C.-Y. Huang, H.-C. Pan, and C.-T. Hsieh, “Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys.45(8A), 6392–6394 (2006).
[CrossRef]

2003 (1)

M. Mucha, “Polymer as an important component of blends and composites with liquid crystals,” Prog. Polym. Sci.28(5), 837–873 (2003).
[CrossRef]

2000 (1)

P. Kirsch and M. Bremer, “Nematic liquid crystals for active matrix displays: molecular design and synthesis,” Angew. Chem. Int. Ed.39(23), 4216–4235 (2000).
[CrossRef]

1996 (1)

S. Matsmoto, M. Houlbert, T. Hayashi, and K. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett.69(8), 1044–1046 (1996).
[CrossRef]

1995 (1)

D. Coates, “Polymer-dispersed liquid crystals,” J. Mater. Chem.5(12), 2063–2072 (1995).
[CrossRef]

1993 (1)

H. R. Wilson and W. Eck, “Transmission variation using scattering / transparent switching films,” Sol. Energy Mater. Sol. Cells31(2), 197–214 (1993).
[CrossRef]

1986 (1)

Y. W. Hui and M. M. Labes, “Structure and order parameter of a nematic lyotropic liquid crystal studied by FTIR spectroscopy,” J. Phys. Chem.90(17), 4064–4067 (1986).
[CrossRef]

1980 (1)

F. Nakano, H. Kawakami, H. Morishita, and M. Sato, “Dynamic properties of twisted nematic liquid Crystal Cells,” Jpn. J. Appl. Phys.19(4), 659–663 (1980).
[CrossRef]

1972 (2)

R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys.43(5), 2029–2037 (1972).
[CrossRef]

R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys.43(5), 2029–2037 (1972).
[CrossRef]

Araoka, F.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys.50, 051703 (2011).

Aya, S.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys.50, 051703 (2011).

Bremer, M.

P. Kirsch and M. Bremer, “Nematic liquid crystals for active matrix displays: molecular design and synthesis,” Angew. Chem. Int. Ed.39(23), 4216–4235 (2000).
[CrossRef]

Chen, H.-Y.

H.-Y. Chen, W. Lee, and N. A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett.90(3), 033510 (2007).
[CrossRef]

Clark, N. A.

H.-Y. Chen, W. Lee, and N. A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett.90(3), 033510 (2007).
[CrossRef]

Coates, D.

D. Coates, “Polymer-dispersed liquid crystals,” J. Mater. Chem.5(12), 2063–2072 (1995).
[CrossRef]

Eck, W.

H. R. Wilson and W. Eck, “Transmission variation using scattering / transparent switching films,” Sol. Energy Mater. Sol. Cells31(2), 197–214 (1993).
[CrossRef]

Hayashi, T.

S. Matsmoto, M. Houlbert, T. Hayashi, and K. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett.69(8), 1044–1046 (1996).
[CrossRef]

Hegde, G.

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys.44(44), 442002 (2011).
[CrossRef]

Hicks, S. E.

S. E. Hicks, S. P. Hurley, R. S. Zola, and D. Yang, “Polymer stabilized VA mode liquid crystal display,” J. Disp. Tech.7(11), 619–623 (2011).
[CrossRef]

Houlbert, M.

S. Matsmoto, M. Houlbert, T. Hayashi, and K. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett.69(8), 1044–1046 (1996).
[CrossRef]

Hsieh, C.-T.

C.-Y. Huang, H.-C. Pan, and C.-T. Hsieh, “Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys.45(8A), 6392–6394 (2006).
[CrossRef]

Huang, C.-Y.

C.-Y. Huang, H.-C. Pan, and C.-T. Hsieh, “Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys.45(8A), 6392–6394 (2006).
[CrossRef]

Hui, Y. W.

Y. W. Hui and M. M. Labes, “Structure and order parameter of a nematic lyotropic liquid crystal studied by FTIR spectroscopy,” J. Phys. Chem.90(17), 4064–4067 (1986).
[CrossRef]

Hurley, S. P.

S. E. Hicks, S. P. Hurley, R. S. Zola, and D. Yang, “Polymer stabilized VA mode liquid crystal display,” J. Disp. Tech.7(11), 619–623 (2011).
[CrossRef]

Ishikawa, K.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys.50, 051703 (2011).

Kawakami, H.

F. Nakano, H. Kawakami, H. Morishita, and M. Sato, “Dynamic properties of twisted nematic liquid Crystal Cells,” Jpn. J. Appl. Phys.19(4), 659–663 (1980).
[CrossRef]

Kirsch, P.

P. Kirsch and M. Bremer, “Nematic liquid crystals for active matrix displays: molecular design and synthesis,” Angew. Chem. Int. Ed.39(23), 4216–4235 (2000).
[CrossRef]

Kolev, D.

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys.44(44), 442002 (2011).
[CrossRef]

Komitov, L.

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys.44(44), 442002 (2011).
[CrossRef]

Kubodera, K.

S. Matsmoto, M. Houlbert, T. Hayashi, and K. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett.69(8), 1044–1046 (1996).
[CrossRef]

Labes, M. M.

Y. W. Hui and M. M. Labes, “Structure and order parameter of a nematic lyotropic liquid crystal studied by FTIR spectroscopy,” J. Phys. Chem.90(17), 4064–4067 (1986).
[CrossRef]

Le, K. V.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys.50, 051703 (2011).

Lee, W.

H.-Y. Chen, W. Lee, and N. A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett.90(3), 033510 (2007).
[CrossRef]

Liu, Y.

Matsmoto, S.

S. Matsmoto, M. Houlbert, T. Hayashi, and K. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett.69(8), 1044–1046 (1996).
[CrossRef]

Morishita, H.

F. Nakano, H. Kawakami, H. Morishita, and M. Sato, “Dynamic properties of twisted nematic liquid Crystal Cells,” Jpn. J. Appl. Phys.19(4), 659–663 (1980).
[CrossRef]

Mucha, M.

M. Mucha, “Polymer as an important component of blends and composites with liquid crystals,” Prog. Polym. Sci.28(5), 837–873 (2003).
[CrossRef]

Nakano, F.

F. Nakano, H. Kawakami, H. Morishita, and M. Sato, “Dynamic properties of twisted nematic liquid Crystal Cells,” Jpn. J. Appl. Phys.19(4), 659–663 (1980).
[CrossRef]

Pan, H.-C.

C.-Y. Huang, H.-C. Pan, and C.-T. Hsieh, “Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys.45(8A), 6392–6394 (2006).
[CrossRef]

Rafuse, M. J.

R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys.43(5), 2029–2037 (1972).
[CrossRef]

R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys.43(5), 2029–2037 (1972).
[CrossRef]

Ren, H.

Sato, M.

F. Nakano, H. Kawakami, H. Morishita, and M. Sato, “Dynamic properties of twisted nematic liquid Crystal Cells,” Jpn. J. Appl. Phys.19(4), 659–663 (1980).
[CrossRef]

Soref, R. A.

R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys.43(5), 2029–2037 (1972).
[CrossRef]

R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys.43(5), 2029–2037 (1972).
[CrossRef]

Sun, J.

J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., B, Polym. Phys.52(3), 183–192 (2014).
[CrossRef]

Takezoe, H.

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys.50, 051703 (2011).

Wilson, H. R.

H. R. Wilson and W. Eck, “Transmission variation using scattering / transparent switching films,” Sol. Energy Mater. Sol. Cells31(2), 197–214 (1993).
[CrossRef]

Wu, S.-T.

J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., B, Polym. Phys.52(3), 183–192 (2014).
[CrossRef]

H. Ren, S. Xu, Y. Liu, and S.-T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express21(7), 7916–7925 (2013).
[CrossRef] [PubMed]

Xu, S.

Yang, D.

S. E. Hicks, S. P. Hurley, R. S. Zola, and D. Yang, “Polymer stabilized VA mode liquid crystal display,” J. Disp. Tech.7(11), 619–623 (2011).
[CrossRef]

Yang, D.-K.

Y.-C. Yang and D.-K. Yang, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett.98(2), 023502 (2011).
[CrossRef]

Yang, Y.-C.

Y.-C. Yang and D.-K. Yang, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett.98(2), 023502 (2011).
[CrossRef]

Zola, R. S.

S. E. Hicks, S. P. Hurley, R. S. Zola, and D. Yang, “Polymer stabilized VA mode liquid crystal display,” J. Disp. Tech.7(11), 619–623 (2011).
[CrossRef]

Angew. Chem. Int. Ed. (1)

P. Kirsch and M. Bremer, “Nematic liquid crystals for active matrix displays: molecular design and synthesis,” Angew. Chem. Int. Ed.39(23), 4216–4235 (2000).
[CrossRef]

Appl. Phys. Lett. (3)

H.-Y. Chen, W. Lee, and N. A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Appl. Phys. Lett.90(3), 033510 (2007).
[CrossRef]

Y.-C. Yang and D.-K. Yang, “Electro-optic Kerr effect in polymer-stabilized isotropic liquid crystals,” Appl. Phys. Lett.98(2), 023502 (2011).
[CrossRef]

S. Matsmoto, M. Houlbert, T. Hayashi, and K. Kubodera, “Fine droplets of liquid crystals in a transparent polymer and their response to an electric field,” Appl. Phys. Lett.69(8), 1044–1046 (1996).
[CrossRef]

J. Appl. Phys. (2)

R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys.43(5), 2029–2037 (1972).
[CrossRef]

R. A. Soref and M. J. Rafuse, “Electrically controlled birefringence of thin nematic films,” J. Appl. Phys.43(5), 2029–2037 (1972).
[CrossRef]

J. Disp. Tech. (1)

S. E. Hicks, S. P. Hurley, R. S. Zola, and D. Yang, “Polymer stabilized VA mode liquid crystal display,” J. Disp. Tech.7(11), 619–623 (2011).
[CrossRef]

J. Mater. Chem. (1)

D. Coates, “Polymer-dispersed liquid crystals,” J. Mater. Chem.5(12), 2063–2072 (1995).
[CrossRef]

J. Phys. Chem. (1)

Y. W. Hui and M. M. Labes, “Structure and order parameter of a nematic lyotropic liquid crystal studied by FTIR spectroscopy,” J. Phys. Chem.90(17), 4064–4067 (1986).
[CrossRef]

J. Phys. D Appl. Phys. (1)

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys.44(44), 442002 (2011).
[CrossRef]

J. Polym. Sci., B, Polym. Phys. (1)

J. Sun and S.-T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., B, Polym. Phys.52(3), 183–192 (2014).
[CrossRef]

Jpn. J. Appl. Phys. (3)

S. Aya, K. V. Le, F. Araoka, K. Ishikawa, and H. Takezoe, “Nanosize-induced optically isotropic nematic phase,” Jpn. J. Appl. Phys.50, 051703 (2011).

C.-Y. Huang, H.-C. Pan, and C.-T. Hsieh, “Electrooptical properties of carbon-nanotube-doped twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys.45(8A), 6392–6394 (2006).
[CrossRef]

F. Nakano, H. Kawakami, H. Morishita, and M. Sato, “Dynamic properties of twisted nematic liquid Crystal Cells,” Jpn. J. Appl. Phys.19(4), 659–663 (1980).
[CrossRef]

Opt. Express (1)

Prog. Polym. Sci. (1)

M. Mucha, “Polymer as an important component of blends and composites with liquid crystals,” Prog. Polym. Sci.28(5), 837–873 (2003).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

H. R. Wilson and W. Eck, “Transmission variation using scattering / transparent switching films,” Sol. Energy Mater. Sol. Cells31(2), 197–214 (1993).
[CrossRef]

Other (3)

W. den Boer, Active Matrix Liquid Crystal Displays: Fundamentals and Applications (Elsevier, 2005).

S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).

N. Colthup, Introduction to Infrared and Raman Spectroscopy (Academic Press, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Electric-field dependence of birefringence in the sample (a)before and (b)after polymerization.

Fig. 2
Fig. 2

Field-intensity dependence of the (a) rise and (b) decay times in the samples before and after polymerization.

Fig. 3
Fig. 3

The SEM image of the polymer structure using (a) cross-linkable mesogenic monomer of 30 wt% and (b) cross-linkable isotropic monomer of 30 wt%.

Fig. 4
Fig. 4

The field-intensity dependence of transmission spectra for an unpolarized light in the polymer/LC composite materials using (a) the mesogenic monomer and (b) the isotropic monomer.

Fig. 5
Fig. 5

(a) Absorption spectra in BL011 and BL011(70 wt%) + RM257(30 wt%) parallel and perpendicular to the rubbing direction, (b) field-intensity dependence of absorption spectra in the samples before and after polymerization, and (c) field-intensity dependence of absorbance at 1495 and 1511 cm−1.

Fig. 6
Fig. 6

Schematic of the electro-optic effect in the miscible polymer/LC nanocomposite.

Fig. 7
Fig. 7

Fredericks transition of the NLC molecules between two anchoring walls

Fig. 8
Fig. 8

Demonstration of an optical amplitude modulator. Transient transmission curves of a He-Ne laser obtained from samples (a)before and (b)after polymerization between crossed polarizers being driven by a 10 kHz sine wave.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S = A | | A A | | + 2 A ,
K 2 φ ( z ) z 2 = K ( π ξ ) 2 φ ( z ) ,

Metrics