Abstract

The monitoring of sub nano-liter pendant liquid droplets, during their evaporation from the cleaved facet of a standard optical fiber, is proposed and demonstrated. The combined reflections of incident light from the two boundaries, between fiber and liquid and between liquid and air, give rise to interference fringes as the fluid evaporates. The analysis of the fringe pattern allows for the reconstruction of the instantaneous size and evaporation rate of the droplets. These, in turn, provide information regarding the properties of the liquid itself, and the surface to which it is applied. The sensor readout is validated against direct video observation of evaporating droplets. Several examples illustrate the potential of the proposed sensor. Evaporation dynamics measurements identify the ethanol contents in binary ethanol-water mixtures with 2% certainty. The evaporation dynamics are modified by the application of a hydrophobic self-assembled monolayer coating to the tip of the fiber. Ten different organic solvents are accurately classified by clustering analysis of their evaporation data, collected using bare and coated fibers. Potential applications of the sensors could include quality control of water, beverages and oils, recognition of flexible fuel blends and fuel dilutions, mobile point-of-care diagnostics, and laboratory analysis of surface treatments.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Langmuir, “The constitution and fundamental properties of solids and liquids. II. Liquids,” J. Am. Chem. Soc.39(9), 1848–1906 (1917).
    [CrossRef]
  2. T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater.5(4), 265–270 (2006).
    [CrossRef] [PubMed]
  3. A. P. Kryukov, V. Y. Levashov, and S. S. Sazhin, “Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models,” Int. J. Heat Mass Transfer47(12-13), 2541–2549 (2004).
    [CrossRef]
  4. H. Yildirim Erbil and R. Alsan Meric, “Evaporation of sessile drops on polymer surfaces: Ellipsoidal cap geometry,” J. Phys. Chem. B101(35), 6867–6873 (1997).
    [CrossRef]
  5. T. A. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. Huang, and V. Rudolph, “Theoretical and experimental analysis of droplet evaporation on solid surfaces,” Chem. Eng. Sci.69(1), 522–529 (2012).
    [CrossRef]
  6. K. Birdi, D. Vu, and A. Winter, “A study of the evaporation rates of small water drops placed on a solid surface,” J. Phys. Chem.93(9), 3702–3703 (1989).
    [CrossRef]
  7. C. Liu and E. Bonaccurso, “Microcantilever sensors for monitoring the evaporation of microdrops of pure liquids and mixtures,” Rev. Sci. Instrum.81(1), 013702 (2010).
    [CrossRef] [PubMed]
  8. P. Innocenzi, L. Malfatti, S. Costacurta, T. Kidchob, M. Piccinini, and A. Marcelli, “Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy,” J. Phys. Chem. A112(29), 6512–6516 (2008).
    [CrossRef] [PubMed]
  9. K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology: Volume 4: Chemical and Environmental Sensing (Kluwer, 2010).
  10. N. D. McMillan, F. Fortune, O. Finlayson, D. D. G. McMillan, D. Townsend, D. Daly, and M. Dalton, “A fiber drop analyzer: A new analytical instrument for the individual, sequential, or collective measurement of the physical and chemical properties of liquids,” Rev. Sci. Instrum.63(6), 3431–3454 (1992).
    [CrossRef]
  11. V. Salazar-Haro, V. Márquez-Cruz, and J. Hernández-Cordero, “Liquids analysis using back reflection single-mode fiber sensors,” Proc. SPIE8011, 80114 (2011).
    [CrossRef]
  12. E. Preter, B. Preložnik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors (Basel)13(11), 15261–15273 (2013).
    [CrossRef] [PubMed]
  13. E. Preter, V. Artal, C. N. Sukenik, D. Donlagic, and A. Zadok, “Fiber optic monitoring of fluid evaporation,” in Optical Sensors (Sensors)2013, Technical Digest (Online) (Optical Society of America, 2013), paper SM3C.5. http://www.opticsinfobase.org/abstract.cfm?URI=Sensors-2013-SM3C.5
  14. S. Uemura, M. Stjernström, J. Sjödahl, and J. Roeraade, “Picoliter droplet formation on thin optical fiber tips,” Langmuir22(24), 10272–10276 (2006).
    [CrossRef] [PubMed]
  15. R. Picknett and R. Bexon, “The evaporation of sessile or pendant drops in still air,” J. Colloid Interface Sci.61(2), 336–350 (1977).
    [CrossRef]
  16. D. H. Shin, S. H. Lee, J.-Y. Jung, and J. Y. Yoo, “Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces,” Microelectron. Eng.86(4-6), 1350–1353 (2009).
    [CrossRef]
  17. C. Liu, E. Bonaccurso, and H.-J. Butt, “Evaporation of sessile water/ethanol drops in a controlled environment,” Phys. Chem. Chem. Phys.10(47), 7150–7157 (2008).
    [CrossRef] [PubMed]
  18. X. Shu, B. A. Gwandu, Y. Liu, L. Zhang, and I. Bennion, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett.26(11), 774–776 (2001).
    [CrossRef] [PubMed]
  19. J. A. Curcio and C. C. Petty, “The near infrared absorption spectrum of liquid water,” JOSA41(5), 302 (1951).
    [CrossRef]
  20. K. Sefiane, L. Tadrist, and M. Douglas, “Experimental study of evaporating water-ethanol mixture sessile drop: influence of concentration,” Int. J. Heat Mass Transfer46(23), 4527–4534 (2003).
    [CrossRef]
  21. R. J. Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions,” Eur Phys J E Soft Matter30(1), 19–26 (2009).
    [CrossRef] [PubMed]
  22. A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev.96(4), 1533–1554 (1996).
    [CrossRef] [PubMed]
  23. I. Bakish, V. Artel, T. Ilovitsh, M. Shubely, Y. Ben-Ezra, A. Zadok, and C. N. Sukenik, “Self-assembled monolayer assisted bonding of Si and InP,” Opt. Mater. Express2(8), 1141–1148 (2012).
    [CrossRef]
  24. M. Schuerenberg, C. Luebbert, H. Eickhoff, M. Kalkum, H. Lehrach, and E. Nordhoff, “Prestructured MALDI-MS sample supports,” Anal. Chem.72(15), 3436–3442 (2000).
    [CrossRef] [PubMed]
  25. L. Snyder, “Classification of the solvent properties of common liquids,” J. Chromatogr. A92(2), 223–230 (1974).
    [CrossRef]
  26. L. Snyder, “Classification of the solvent properties of common liquids,” J. Chromatogr. Sci.26(11), 774–776 (1978).
  27. J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability: Volume 1, M. L. Le Cam and J. Neyman, ed. (University of California Press, Berkeley, Calif, 1967), pp. 281–297.
  28. D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films515(4), 1433–1438 (2006).
    [CrossRef]

2013 (1)

E. Preter, B. Preložnik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors (Basel)13(11), 15261–15273 (2013).
[CrossRef] [PubMed]

2012 (2)

T. A. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. Huang, and V. Rudolph, “Theoretical and experimental analysis of droplet evaporation on solid surfaces,” Chem. Eng. Sci.69(1), 522–529 (2012).
[CrossRef]

I. Bakish, V. Artel, T. Ilovitsh, M. Shubely, Y. Ben-Ezra, A. Zadok, and C. N. Sukenik, “Self-assembled monolayer assisted bonding of Si and InP,” Opt. Mater. Express2(8), 1141–1148 (2012).
[CrossRef]

2011 (1)

V. Salazar-Haro, V. Márquez-Cruz, and J. Hernández-Cordero, “Liquids analysis using back reflection single-mode fiber sensors,” Proc. SPIE8011, 80114 (2011).
[CrossRef]

2010 (1)

C. Liu and E. Bonaccurso, “Microcantilever sensors for monitoring the evaporation of microdrops of pure liquids and mixtures,” Rev. Sci. Instrum.81(1), 013702 (2010).
[CrossRef] [PubMed]

2009 (2)

D. H. Shin, S. H. Lee, J.-Y. Jung, and J. Y. Yoo, “Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces,” Microelectron. Eng.86(4-6), 1350–1353 (2009).
[CrossRef]

R. J. Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions,” Eur Phys J E Soft Matter30(1), 19–26 (2009).
[CrossRef] [PubMed]

2008 (2)

C. Liu, E. Bonaccurso, and H.-J. Butt, “Evaporation of sessile water/ethanol drops in a controlled environment,” Phys. Chem. Chem. Phys.10(47), 7150–7157 (2008).
[CrossRef] [PubMed]

P. Innocenzi, L. Malfatti, S. Costacurta, T. Kidchob, M. Piccinini, and A. Marcelli, “Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy,” J. Phys. Chem. A112(29), 6512–6516 (2008).
[CrossRef] [PubMed]

2006 (3)

T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater.5(4), 265–270 (2006).
[CrossRef] [PubMed]

S. Uemura, M. Stjernström, J. Sjödahl, and J. Roeraade, “Picoliter droplet formation on thin optical fiber tips,” Langmuir22(24), 10272–10276 (2006).
[CrossRef] [PubMed]

D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films515(4), 1433–1438 (2006).
[CrossRef]

2004 (1)

A. P. Kryukov, V. Y. Levashov, and S. S. Sazhin, “Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models,” Int. J. Heat Mass Transfer47(12-13), 2541–2549 (2004).
[CrossRef]

2003 (1)

K. Sefiane, L. Tadrist, and M. Douglas, “Experimental study of evaporating water-ethanol mixture sessile drop: influence of concentration,” Int. J. Heat Mass Transfer46(23), 4527–4534 (2003).
[CrossRef]

2001 (1)

2000 (1)

M. Schuerenberg, C. Luebbert, H. Eickhoff, M. Kalkum, H. Lehrach, and E. Nordhoff, “Prestructured MALDI-MS sample supports,” Anal. Chem.72(15), 3436–3442 (2000).
[CrossRef] [PubMed]

1997 (1)

H. Yildirim Erbil and R. Alsan Meric, “Evaporation of sessile drops on polymer surfaces: Ellipsoidal cap geometry,” J. Phys. Chem. B101(35), 6867–6873 (1997).
[CrossRef]

1996 (1)

A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev.96(4), 1533–1554 (1996).
[CrossRef] [PubMed]

1992 (1)

N. D. McMillan, F. Fortune, O. Finlayson, D. D. G. McMillan, D. Townsend, D. Daly, and M. Dalton, “A fiber drop analyzer: A new analytical instrument for the individual, sequential, or collective measurement of the physical and chemical properties of liquids,” Rev. Sci. Instrum.63(6), 3431–3454 (1992).
[CrossRef]

1989 (1)

K. Birdi, D. Vu, and A. Winter, “A study of the evaporation rates of small water drops placed on a solid surface,” J. Phys. Chem.93(9), 3702–3703 (1989).
[CrossRef]

1978 (1)

L. Snyder, “Classification of the solvent properties of common liquids,” J. Chromatogr. Sci.26(11), 774–776 (1978).

1977 (1)

R. Picknett and R. Bexon, “The evaporation of sessile or pendant drops in still air,” J. Colloid Interface Sci.61(2), 336–350 (1977).
[CrossRef]

1974 (1)

L. Snyder, “Classification of the solvent properties of common liquids,” J. Chromatogr. A92(2), 223–230 (1974).
[CrossRef]

1951 (1)

J. A. Curcio and C. C. Petty, “The near infrared absorption spectrum of liquid water,” JOSA41(5), 302 (1951).
[CrossRef]

1917 (1)

I. Langmuir, “The constitution and fundamental properties of solids and liquids. II. Liquids,” J. Am. Chem. Soc.39(9), 1848–1906 (1917).
[CrossRef]

Alsan Meric, R.

H. Yildirim Erbil and R. Alsan Meric, “Evaporation of sessile drops on polymer surfaces: Ellipsoidal cap geometry,” J. Phys. Chem. B101(35), 6867–6873 (1997).
[CrossRef]

Artel, V.

E. Preter, B. Preložnik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors (Basel)13(11), 15261–15273 (2013).
[CrossRef] [PubMed]

I. Bakish, V. Artel, T. Ilovitsh, M. Shubely, Y. Ben-Ezra, A. Zadok, and C. N. Sukenik, “Self-assembled monolayer assisted bonding of Si and InP,” Opt. Mater. Express2(8), 1141–1148 (2012).
[CrossRef]

Bakish, I.

Ben-Ezra, Y.

Bennion, I.

Bexon, R.

R. Picknett and R. Bexon, “The evaporation of sessile or pendant drops in still air,” J. Colloid Interface Sci.61(2), 336–350 (1977).
[CrossRef]

Bigioni, T. P.

T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater.5(4), 265–270 (2006).
[CrossRef] [PubMed]

Birdi, K.

K. Birdi, D. Vu, and A. Winter, “A study of the evaporation rates of small water drops placed on a solid surface,” J. Phys. Chem.93(9), 3702–3703 (1989).
[CrossRef]

Bonaccurso, E.

C. Liu and E. Bonaccurso, “Microcantilever sensors for monitoring the evaporation of microdrops of pure liquids and mixtures,” Rev. Sci. Instrum.81(1), 013702 (2010).
[CrossRef] [PubMed]

C. Liu, E. Bonaccurso, and H.-J. Butt, “Evaporation of sessile water/ethanol drops in a controlled environment,” Phys. Chem. Chem. Phys.10(47), 7150–7157 (2008).
[CrossRef] [PubMed]

Butt, H.-J.

C. Liu, E. Bonaccurso, and H.-J. Butt, “Evaporation of sessile water/ethanol drops in a controlled environment,” Phys. Chem. Chem. Phys.10(47), 7150–7157 (2008).
[CrossRef] [PubMed]

Corwin, E. I.

T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater.5(4), 265–270 (2006).
[CrossRef] [PubMed]

Costacurta, S.

P. Innocenzi, L. Malfatti, S. Costacurta, T. Kidchob, M. Piccinini, and A. Marcelli, “Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy,” J. Phys. Chem. A112(29), 6512–6516 (2008).
[CrossRef] [PubMed]

Curcio, J. A.

J. A. Curcio and C. C. Petty, “The near infrared absorption spectrum of liquid water,” JOSA41(5), 302 (1951).
[CrossRef]

Dalton, M.

N. D. McMillan, F. Fortune, O. Finlayson, D. D. G. McMillan, D. Townsend, D. Daly, and M. Dalton, “A fiber drop analyzer: A new analytical instrument for the individual, sequential, or collective measurement of the physical and chemical properties of liquids,” Rev. Sci. Instrum.63(6), 3431–3454 (1992).
[CrossRef]

Daly, D.

N. D. McMillan, F. Fortune, O. Finlayson, D. D. G. McMillan, D. Townsend, D. Daly, and M. Dalton, “A fiber drop analyzer: A new analytical instrument for the individual, sequential, or collective measurement of the physical and chemical properties of liquids,” Rev. Sci. Instrum.63(6), 3431–3454 (1992).
[CrossRef]

De Palma, R.

D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films515(4), 1433–1438 (2006).
[CrossRef]

Dehaen, W.

D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films515(4), 1433–1438 (2006).
[CrossRef]

Donlagic, D.

E. Preter, B. Preložnik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors (Basel)13(11), 15261–15273 (2013).
[CrossRef] [PubMed]

Douglas, M.

K. Sefiane, L. Tadrist, and M. Douglas, “Experimental study of evaporating water-ethanol mixture sessile drop: influence of concentration,” Int. J. Heat Mass Transfer46(23), 4527–4534 (2003).
[CrossRef]

Eickhoff, H.

M. Schuerenberg, C. Luebbert, H. Eickhoff, M. Kalkum, H. Lehrach, and E. Nordhoff, “Prestructured MALDI-MS sample supports,” Anal. Chem.72(15), 3436–3442 (2000).
[CrossRef] [PubMed]

Finlayson, O.

N. D. McMillan, F. Fortune, O. Finlayson, D. D. G. McMillan, D. Townsend, D. Daly, and M. Dalton, “A fiber drop analyzer: A new analytical instrument for the individual, sequential, or collective measurement of the physical and chemical properties of liquids,” Rev. Sci. Instrum.63(6), 3431–3454 (1992).
[CrossRef]

Fortune, F.

N. D. McMillan, F. Fortune, O. Finlayson, D. D. G. McMillan, D. Townsend, D. Daly, and M. Dalton, “A fiber drop analyzer: A new analytical instrument for the individual, sequential, or collective measurement of the physical and chemical properties of liquids,” Rev. Sci. Instrum.63(6), 3431–3454 (1992).
[CrossRef]

Gwandu, B. A.

Hampton, M. A.

T. A. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. Huang, and V. Rudolph, “Theoretical and experimental analysis of droplet evaporation on solid surfaces,” Chem. Eng. Sci.69(1), 522–529 (2012).
[CrossRef]

Heremans, P.

D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films515(4), 1433–1438 (2006).
[CrossRef]

Hernández-Cordero, J.

V. Salazar-Haro, V. Márquez-Cruz, and J. Hernández-Cordero, “Liquids analysis using back reflection single-mode fiber sensors,” Proc. SPIE8011, 80114 (2011).
[CrossRef]

Huang, L.

T. A. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. Huang, and V. Rudolph, “Theoretical and experimental analysis of droplet evaporation on solid surfaces,” Chem. Eng. Sci.69(1), 522–529 (2012).
[CrossRef]

Ilovitsh, T.

Innocenzi, P.

P. Innocenzi, L. Malfatti, S. Costacurta, T. Kidchob, M. Piccinini, and A. Marcelli, “Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy,” J. Phys. Chem. A112(29), 6512–6516 (2008).
[CrossRef] [PubMed]

Jaeger, H. M.

T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater.5(4), 265–270 (2006).
[CrossRef] [PubMed]

Janssen, D.

D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films515(4), 1433–1438 (2006).
[CrossRef]

Jung, J.-Y.

D. H. Shin, S. H. Lee, J.-Y. Jung, and J. Y. Yoo, “Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces,” Microelectron. Eng.86(4-6), 1350–1353 (2009).
[CrossRef]

Kalkum, M.

M. Schuerenberg, C. Luebbert, H. Eickhoff, M. Kalkum, H. Lehrach, and E. Nordhoff, “Prestructured MALDI-MS sample supports,” Anal. Chem.72(15), 3436–3442 (2000).
[CrossRef] [PubMed]

Kidchob, T.

P. Innocenzi, L. Malfatti, S. Costacurta, T. Kidchob, M. Piccinini, and A. Marcelli, “Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy,” J. Phys. Chem. A112(29), 6512–6516 (2008).
[CrossRef] [PubMed]

Krüger, J. K.

R. J. Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions,” Eur Phys J E Soft Matter30(1), 19–26 (2009).
[CrossRef] [PubMed]

Kryukov, A. P.

A. P. Kryukov, V. Y. Levashov, and S. S. Sazhin, “Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models,” Int. J. Heat Mass Transfer47(12-13), 2541–2549 (2004).
[CrossRef]

Langmuir, I.

I. Langmuir, “The constitution and fundamental properties of solids and liquids. II. Liquids,” J. Am. Chem. Soc.39(9), 1848–1906 (1917).
[CrossRef]

Lee, S. H.

D. H. Shin, S. H. Lee, J.-Y. Jung, and J. Y. Yoo, “Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces,” Microelectron. Eng.86(4-6), 1350–1353 (2009).
[CrossRef]

Lehrach, H.

M. Schuerenberg, C. Luebbert, H. Eickhoff, M. Kalkum, H. Lehrach, and E. Nordhoff, “Prestructured MALDI-MS sample supports,” Anal. Chem.72(15), 3436–3442 (2000).
[CrossRef] [PubMed]

Levashov, V. Y.

A. P. Kryukov, V. Y. Levashov, and S. S. Sazhin, “Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models,” Int. J. Heat Mass Transfer47(12-13), 2541–2549 (2004).
[CrossRef]

Lin, X. M.

T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater.5(4), 265–270 (2006).
[CrossRef] [PubMed]

Liu, C.

C. Liu and E. Bonaccurso, “Microcantilever sensors for monitoring the evaporation of microdrops of pure liquids and mixtures,” Rev. Sci. Instrum.81(1), 013702 (2010).
[CrossRef] [PubMed]

C. Liu, E. Bonaccurso, and H.-J. Butt, “Evaporation of sessile water/ethanol drops in a controlled environment,” Phys. Chem. Chem. Phys.10(47), 7150–7157 (2008).
[CrossRef] [PubMed]

Liu, Y.

Luebbert, C.

M. Schuerenberg, C. Luebbert, H. Eickhoff, M. Kalkum, H. Lehrach, and E. Nordhoff, “Prestructured MALDI-MS sample supports,” Anal. Chem.72(15), 3436–3442 (2000).
[CrossRef] [PubMed]

Malfatti, L.

P. Innocenzi, L. Malfatti, S. Costacurta, T. Kidchob, M. Piccinini, and A. Marcelli, “Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy,” J. Phys. Chem. A112(29), 6512–6516 (2008).
[CrossRef] [PubMed]

Marcelli, A.

P. Innocenzi, L. Malfatti, S. Costacurta, T. Kidchob, M. Piccinini, and A. Marcelli, “Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy,” J. Phys. Chem. A112(29), 6512–6516 (2008).
[CrossRef] [PubMed]

Márquez-Cruz, V.

V. Salazar-Haro, V. Márquez-Cruz, and J. Hernández-Cordero, “Liquids analysis using back reflection single-mode fiber sensors,” Proc. SPIE8011, 80114 (2011).
[CrossRef]

McMillan, D. D. G.

N. D. McMillan, F. Fortune, O. Finlayson, D. D. G. McMillan, D. Townsend, D. Daly, and M. Dalton, “A fiber drop analyzer: A new analytical instrument for the individual, sequential, or collective measurement of the physical and chemical properties of liquids,” Rev. Sci. Instrum.63(6), 3431–3454 (1992).
[CrossRef]

McMillan, N. D.

N. D. McMillan, F. Fortune, O. Finlayson, D. D. G. McMillan, D. Townsend, D. Daly, and M. Dalton, “A fiber drop analyzer: A new analytical instrument for the individual, sequential, or collective measurement of the physical and chemical properties of liquids,” Rev. Sci. Instrum.63(6), 3431–3454 (1992).
[CrossRef]

Nguyen, A. V.

T. A. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. Huang, and V. Rudolph, “Theoretical and experimental analysis of droplet evaporation on solid surfaces,” Chem. Eng. Sci.69(1), 522–529 (2012).
[CrossRef]

Nguyen, T. A.

T. A. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. Huang, and V. Rudolph, “Theoretical and experimental analysis of droplet evaporation on solid surfaces,” Chem. Eng. Sci.69(1), 522–529 (2012).
[CrossRef]

Nguyen, T. T.

T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater.5(4), 265–270 (2006).
[CrossRef] [PubMed]

Nordhoff, E.

M. Schuerenberg, C. Luebbert, H. Eickhoff, M. Kalkum, H. Lehrach, and E. Nordhoff, “Prestructured MALDI-MS sample supports,” Anal. Chem.72(15), 3436–3442 (2000).
[CrossRef] [PubMed]

Petty, C. C.

J. A. Curcio and C. C. Petty, “The near infrared absorption spectrum of liquid water,” JOSA41(5), 302 (1951).
[CrossRef]

Philipp, M.

R. J. Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions,” Eur Phys J E Soft Matter30(1), 19–26 (2009).
[CrossRef] [PubMed]

Piccinini, M.

P. Innocenzi, L. Malfatti, S. Costacurta, T. Kidchob, M. Piccinini, and A. Marcelli, “Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy,” J. Phys. Chem. A112(29), 6512–6516 (2008).
[CrossRef] [PubMed]

Picknett, R.

R. Picknett and R. Bexon, “The evaporation of sessile or pendant drops in still air,” J. Colloid Interface Sci.61(2), 336–350 (1977).
[CrossRef]

Preložnik, B.

E. Preter, B. Preložnik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors (Basel)13(11), 15261–15273 (2013).
[CrossRef] [PubMed]

Preter, E.

E. Preter, B. Preložnik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors (Basel)13(11), 15261–15273 (2013).
[CrossRef] [PubMed]

Ramos, M. A.

R. J. Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions,” Eur Phys J E Soft Matter30(1), 19–26 (2009).
[CrossRef] [PubMed]

Riobóo, R. J.

R. J. Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions,” Eur Phys J E Soft Matter30(1), 19–26 (2009).
[CrossRef] [PubMed]

Roeraade, J.

S. Uemura, M. Stjernström, J. Sjödahl, and J. Roeraade, “Picoliter droplet formation on thin optical fiber tips,” Langmuir22(24), 10272–10276 (2006).
[CrossRef] [PubMed]

Rudolph, V.

T. A. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. Huang, and V. Rudolph, “Theoretical and experimental analysis of droplet evaporation on solid surfaces,” Chem. Eng. Sci.69(1), 522–529 (2012).
[CrossRef]

Salazar-Haro, V.

V. Salazar-Haro, V. Márquez-Cruz, and J. Hernández-Cordero, “Liquids analysis using back reflection single-mode fiber sensors,” Proc. SPIE8011, 80114 (2011).
[CrossRef]

Sazhin, S. S.

A. P. Kryukov, V. Y. Levashov, and S. S. Sazhin, “Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models,” Int. J. Heat Mass Transfer47(12-13), 2541–2549 (2004).
[CrossRef]

Schuerenberg, M.

M. Schuerenberg, C. Luebbert, H. Eickhoff, M. Kalkum, H. Lehrach, and E. Nordhoff, “Prestructured MALDI-MS sample supports,” Anal. Chem.72(15), 3436–3442 (2000).
[CrossRef] [PubMed]

Sefiane, K.

K. Sefiane, L. Tadrist, and M. Douglas, “Experimental study of evaporating water-ethanol mixture sessile drop: influence of concentration,” Int. J. Heat Mass Transfer46(23), 4527–4534 (2003).
[CrossRef]

Shin, D. H.

D. H. Shin, S. H. Lee, J.-Y. Jung, and J. Y. Yoo, “Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces,” Microelectron. Eng.86(4-6), 1350–1353 (2009).
[CrossRef]

Shu, X.

Shubely, M.

Sjödahl, J.

S. Uemura, M. Stjernström, J. Sjödahl, and J. Roeraade, “Picoliter droplet formation on thin optical fiber tips,” Langmuir22(24), 10272–10276 (2006).
[CrossRef] [PubMed]

Snyder, L.

L. Snyder, “Classification of the solvent properties of common liquids,” J. Chromatogr. Sci.26(11), 774–776 (1978).

L. Snyder, “Classification of the solvent properties of common liquids,” J. Chromatogr. A92(2), 223–230 (1974).
[CrossRef]

Stjernström, M.

S. Uemura, M. Stjernström, J. Sjödahl, and J. Roeraade, “Picoliter droplet formation on thin optical fiber tips,” Langmuir22(24), 10272–10276 (2006).
[CrossRef] [PubMed]

Sukenik, C. N.

E. Preter, B. Preložnik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors (Basel)13(11), 15261–15273 (2013).
[CrossRef] [PubMed]

I. Bakish, V. Artel, T. Ilovitsh, M. Shubely, Y. Ben-Ezra, A. Zadok, and C. N. Sukenik, “Self-assembled monolayer assisted bonding of Si and InP,” Opt. Mater. Express2(8), 1141–1148 (2012).
[CrossRef]

Tadrist, L.

K. Sefiane, L. Tadrist, and M. Douglas, “Experimental study of evaporating water-ethanol mixture sessile drop: influence of concentration,” Int. J. Heat Mass Transfer46(23), 4527–4534 (2003).
[CrossRef]

Townsend, D.

N. D. McMillan, F. Fortune, O. Finlayson, D. D. G. McMillan, D. Townsend, D. Daly, and M. Dalton, “A fiber drop analyzer: A new analytical instrument for the individual, sequential, or collective measurement of the physical and chemical properties of liquids,” Rev. Sci. Instrum.63(6), 3431–3454 (1992).
[CrossRef]

Uemura, S.

S. Uemura, M. Stjernström, J. Sjödahl, and J. Roeraade, “Picoliter droplet formation on thin optical fiber tips,” Langmuir22(24), 10272–10276 (2006).
[CrossRef] [PubMed]

Ulman, A.

A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev.96(4), 1533–1554 (1996).
[CrossRef] [PubMed]

Verlaak, S.

D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films515(4), 1433–1438 (2006).
[CrossRef]

Vu, D.

K. Birdi, D. Vu, and A. Winter, “A study of the evaporation rates of small water drops placed on a solid surface,” J. Phys. Chem.93(9), 3702–3703 (1989).
[CrossRef]

Winter, A.

K. Birdi, D. Vu, and A. Winter, “A study of the evaporation rates of small water drops placed on a solid surface,” J. Phys. Chem.93(9), 3702–3703 (1989).
[CrossRef]

Witten, T. A.

T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater.5(4), 265–270 (2006).
[CrossRef] [PubMed]

Xu, Z. P.

T. A. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. Huang, and V. Rudolph, “Theoretical and experimental analysis of droplet evaporation on solid surfaces,” Chem. Eng. Sci.69(1), 522–529 (2012).
[CrossRef]

Yildirim Erbil, H.

H. Yildirim Erbil and R. Alsan Meric, “Evaporation of sessile drops on polymer surfaces: Ellipsoidal cap geometry,” J. Phys. Chem. B101(35), 6867–6873 (1997).
[CrossRef]

Yoo, J. Y.

D. H. Shin, S. H. Lee, J.-Y. Jung, and J. Y. Yoo, “Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces,” Microelectron. Eng.86(4-6), 1350–1353 (2009).
[CrossRef]

Zadok, A.

E. Preter, B. Preložnik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors (Basel)13(11), 15261–15273 (2013).
[CrossRef] [PubMed]

I. Bakish, V. Artel, T. Ilovitsh, M. Shubely, Y. Ben-Ezra, A. Zadok, and C. N. Sukenik, “Self-assembled monolayer assisted bonding of Si and InP,” Opt. Mater. Express2(8), 1141–1148 (2012).
[CrossRef]

Zhang, L.

Anal. Chem. (1)

M. Schuerenberg, C. Luebbert, H. Eickhoff, M. Kalkum, H. Lehrach, and E. Nordhoff, “Prestructured MALDI-MS sample supports,” Anal. Chem.72(15), 3436–3442 (2000).
[CrossRef] [PubMed]

Chem. Eng. Sci. (1)

T. A. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. Huang, and V. Rudolph, “Theoretical and experimental analysis of droplet evaporation on solid surfaces,” Chem. Eng. Sci.69(1), 522–529 (2012).
[CrossRef]

Chem. Rev. (1)

A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev.96(4), 1533–1554 (1996).
[CrossRef] [PubMed]

Eur Phys J E Soft Matter (1)

R. J. Riobóo, M. Philipp, M. A. Ramos, and J. K. Krüger, “Concentration and temperature dependence of the refractive index of ethanol-water mixtures: Influence of intermolecular interactions,” Eur Phys J E Soft Matter30(1), 19–26 (2009).
[CrossRef] [PubMed]

Int. J. Heat Mass Transfer (2)

K. Sefiane, L. Tadrist, and M. Douglas, “Experimental study of evaporating water-ethanol mixture sessile drop: influence of concentration,” Int. J. Heat Mass Transfer46(23), 4527–4534 (2003).
[CrossRef]

A. P. Kryukov, V. Y. Levashov, and S. S. Sazhin, “Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models,” Int. J. Heat Mass Transfer47(12-13), 2541–2549 (2004).
[CrossRef]

J. Am. Chem. Soc. (1)

I. Langmuir, “The constitution and fundamental properties of solids and liquids. II. Liquids,” J. Am. Chem. Soc.39(9), 1848–1906 (1917).
[CrossRef]

J. Chromatogr. A (1)

L. Snyder, “Classification of the solvent properties of common liquids,” J. Chromatogr. A92(2), 223–230 (1974).
[CrossRef]

J. Chromatogr. Sci. (1)

L. Snyder, “Classification of the solvent properties of common liquids,” J. Chromatogr. Sci.26(11), 774–776 (1978).

J. Colloid Interface Sci. (1)

R. Picknett and R. Bexon, “The evaporation of sessile or pendant drops in still air,” J. Colloid Interface Sci.61(2), 336–350 (1977).
[CrossRef]

J. Phys. Chem. (1)

K. Birdi, D. Vu, and A. Winter, “A study of the evaporation rates of small water drops placed on a solid surface,” J. Phys. Chem.93(9), 3702–3703 (1989).
[CrossRef]

J. Phys. Chem. A (1)

P. Innocenzi, L. Malfatti, S. Costacurta, T. Kidchob, M. Piccinini, and A. Marcelli, “Evaporation of ethanol and ethanol-water mixtures studied by time-resolved infrared spectroscopy,” J. Phys. Chem. A112(29), 6512–6516 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

H. Yildirim Erbil and R. Alsan Meric, “Evaporation of sessile drops on polymer surfaces: Ellipsoidal cap geometry,” J. Phys. Chem. B101(35), 6867–6873 (1997).
[CrossRef]

JOSA (1)

J. A. Curcio and C. C. Petty, “The near infrared absorption spectrum of liquid water,” JOSA41(5), 302 (1951).
[CrossRef]

Langmuir (1)

S. Uemura, M. Stjernström, J. Sjödahl, and J. Roeraade, “Picoliter droplet formation on thin optical fiber tips,” Langmuir22(24), 10272–10276 (2006).
[CrossRef] [PubMed]

Microelectron. Eng. (1)

D. H. Shin, S. H. Lee, J.-Y. Jung, and J. Y. Yoo, “Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces,” Microelectron. Eng.86(4-6), 1350–1353 (2009).
[CrossRef]

Nat. Mater. (1)

T. P. Bigioni, X. M. Lin, T. T. Nguyen, E. I. Corwin, T. A. Witten, and H. M. Jaeger, “Kinetically driven self assembly of highly ordered nanoparticle monolayers,” Nat. Mater.5(4), 265–270 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

C. Liu, E. Bonaccurso, and H.-J. Butt, “Evaporation of sessile water/ethanol drops in a controlled environment,” Phys. Chem. Chem. Phys.10(47), 7150–7157 (2008).
[CrossRef] [PubMed]

Proc. SPIE (1)

V. Salazar-Haro, V. Márquez-Cruz, and J. Hernández-Cordero, “Liquids analysis using back reflection single-mode fiber sensors,” Proc. SPIE8011, 80114 (2011).
[CrossRef]

Rev. Sci. Instrum. (2)

N. D. McMillan, F. Fortune, O. Finlayson, D. D. G. McMillan, D. Townsend, D. Daly, and M. Dalton, “A fiber drop analyzer: A new analytical instrument for the individual, sequential, or collective measurement of the physical and chemical properties of liquids,” Rev. Sci. Instrum.63(6), 3431–3454 (1992).
[CrossRef]

C. Liu and E. Bonaccurso, “Microcantilever sensors for monitoring the evaporation of microdrops of pure liquids and mixtures,” Rev. Sci. Instrum.81(1), 013702 (2010).
[CrossRef] [PubMed]

Sensors (Basel) (1)

E. Preter, B. Preložnik, V. Artel, C. N. Sukenik, D. Donlagic, and A. Zadok, “Monitoring the evaporation of fluids from fiber-optic micro-cell cavities,” Sensors (Basel)13(11), 15261–15273 (2013).
[CrossRef] [PubMed]

Thin Solid Films (1)

D. Janssen, R. De Palma, S. Verlaak, P. Heremans, and W. Dehaen, “Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide,” Thin Solid Films515(4), 1433–1438 (2006).
[CrossRef]

Other (3)

J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability: Volume 1, M. L. Le Cam and J. Neyman, ed. (University of California Press, Berkeley, Calif, 1967), pp. 281–297.

E. Preter, V. Artal, C. N. Sukenik, D. Donlagic, and A. Zadok, “Fiber optic monitoring of fluid evaporation,” in Optical Sensors (Sensors)2013, Technical Digest (Online) (Optical Society of America, 2013), paper SM3C.5. http://www.opticsinfobase.org/abstract.cfm?URI=Sensors-2013-SM3C.5

K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology: Volume 4: Chemical and Environmental Sensing (Kluwer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Illustration of a pendant droplet of length L on the facet of a standard fiber of cladding radius r. Light is reflected at the boundaries between fiber and liquid, and between liquid and air. The contact angle of the liquid droplet is denoted by θ.

Fig. 2
Fig. 2

(a) Image frames of the tip of a cleaved fiber with a pendent water droplet, captured during droplet evaporation within a contact angle goniometer. (b) Reflected optical power versus time, obtained during evaporation, showing interference fringes. Note that the detector readout is displayed on an arbitrary linear scale. The reflected power at the beginning and the end of the evaporation process is nonzero. (c) Droplet thickness as a function of time, reconstructed using image processing (red dots) and analysis of reflected power (blue curve).

Fig. 3
Fig. 3

Reconstructed dimensions of doubly-distilled, evaporating water droplets as a function of time. (a) Droplet volume V; (b) Third root of the volume squared V2/3.

Fig. 4
Fig. 4

(a) Accumulated change in the lengths of water droplets as a function of time, recorded during evaporation from a fiber tip sensor at different ambient temperatures. (b) Rates of evaporation of water droplets from a fiber tip sensor at a fixed temperature, estimated using different power levels of the interrogating light.

Fig. 5
Fig. 5

Accumulated change in droplet lengths during evaporation of water-ethanol mixtures, measured using the fiber-tip sensor. Black: pure distilled water. Red: pure ethanol. Mid-tones: see legend

Fig. 6
Fig. 6

(a) Illustration of the instantaneous length of a 1:1 water-ethanol mixture droplet, with the three-phase notation. (b) Evaporation rates of different mixtures, measured during phase 1 and phase 3, and the evaporation rate of pure water, compared with [20].

Fig. 7
Fig. 7

Rates of evaporation in the first phase as function of the relative water concentration in water-ethanol mixtures. Black: linear fit. Blue: experimental data.

Fig. 8
Fig. 8

(a) An OTS molecule. (b) Goniometer image of a reference fiber tip immersed in water. (c) Corresponding image of an OTS-coated fiber. (d) Only a fraction of a droplet remains on the tip of the coated fiber when removed from the water. (e) Reflected optical power as a function of time, collected during evaporation of water from the OTS-coated fiber tip. The evaporation time is short and no interference fringes are observed.

Fig. 9
Fig. 9

(a) Reflected optical power collected during acetone evaporation from a bare fiber (blue) and an OTS coated fiber (red). The markers specify the extremum points for the fringe counting. (b) The accumulative droplet length changes as a function of time, calculated from the fringe patterns of panel (a).

Fig. 10
Fig. 10

Droplet length change as a function of time for ten different organic solvents, reconstructed based on evaporation from a bare fiber tip (red) and an OTS-coated tip (black).

Fig. 11
Fig. 11

(a) The droplet sizes of different organic solvents, reconstructed by firnge analysis during evaporation from a bare fiber tip (green), and from a coated fiber tip (yellow). (b) The difference in droplet lengths between the two experiments as a function of the polarity index of the solvent, with a parabolic fitting.

Fig. 12
Fig. 12

Recognition of ten organic solvents based on a clustering analysis of their evaporation data. (a) using a bare fiber. Individual clusters are difficult to distinguish. (b) using an OTS-coated fiber tip. Clusters are clearly recognized.

Fig. 13
Fig. 13

Recognition of ten organic solvents based on a combined clustering analysis of their evaporation data, using an OTS-coated fiber tip and a bare fiber tip

Metrics