Abstract

Thermo-mechanical and -optical properties of Y3Al5O12 (YAG), YVO4, and GdVO4 were evaluated with less than 2% of evaluation error. Measured thermal expansion coefficient for YAG, [100]-YVO4, [001]-YVO4, [001]-GdVO4, and [001]-GdVO4 were 6.13, 1.76, 8.24, 1.19, and 7.26 × 10−6/K at room temperature. Temperature coefficients of refractive index for YAG, YVO4 in ordinary and extraordinary polarization, and GdVO4 in ordinary and extraordinary polarization at room temperature for the wavelength of 1.06 μm were 12.1, 15.5, 8.41, 15.2, and 9.92 × 10−6/K, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics,” Opt. Mater. Express1(5), 1040–1050 (2011).
    [CrossRef]
  2. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express19(10), 9378–9384 (2011).
    [CrossRef] [PubMed]
  3. R. Bhandari and T. Taira, “Megawatt level UV output from [110] Cr⁴⁺:YAG passively Q-switched microchip laser,” Opt. Express19(23), 22510–22514 (2011).
    [CrossRef] [PubMed]
  4. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express14(22), 10528–10536 (2006).
    [CrossRef] [PubMed]
  5. Y. Sato and T. Taira, “Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials,” Opt. Mater. Express2(8), 1076–1087 (2012).
    [CrossRef]
  6. P. A. Loiko, K. V. Yumashev, V. N. Matrosov, and N. V. Kuleshov, “Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals,” Appl. Opt.52(4), 698–705 (2013).
    [CrossRef] [PubMed]
  7. Z. Huang, J. Feng, and W. Pan, “Theoretical investigations of the physical properties of zircon-type YVO4,” J. Solid State Chem.185, 42–48 (2012).
    [CrossRef]
  8. X. Xu, Z. Zhao, H. Wang, P. Song, G. Zhou, J. Xu, and P. Deng, “Spectroscopic and thermal properties of Cr,Yb:YAG crystal,” J. Cryst. Growth262(1-4), 317–321 (2004).
    [CrossRef]
  9. K. Wu, L. Hao, H. Zhang, H. Yu, Y. Wang, J. Wang, X. Tian, Z. Zhou, J. Liu, and R. I. Boughton, “Lu3Ga5O12 crystal: exploration of new laser host material for the ytterbium ion,” J. Opt. Soc. Am. B29(9), 2320 (2012).
    [CrossRef]
  10. Private communications
  11. A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin, 1981), p. 320.
  12. W. Koechner, Solid-State Laser Engineering 6th ed. (Springer Science + Business Media, Inc., New York, 2006), p. 55.
  13. Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” CLEO’07, paper JWA87 (2007).
  14. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon Press, 1975) sec. 4.7.
  15. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett.16(24), 1955–1957 (1991).
    [CrossRef] [PubMed]
  16. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
    [CrossRef]
  17. P. R. Stoddart, P. E. Ngoepe, P. M. Mjwara, J. D. Comins, and G. A. Saunders, “Hightemperature elastic constants of yttrium aluminum garne,” J. Appl. Phys.73(11), 7298–7301 (1993).
    [CrossRef]
  18. D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications,” Opt. Mater. Express1(3), 434–450 (2011).
    [CrossRef]
  19. H. C. Liang, K. Y. Lin, Y. C. Lee, and Y. F. Chen, “Precise measurement of group refractive indices and temperature dependence of refractive index for Nd-doped yttrium orthovanadate by intracavity spontaneous mode locking,” Opt. Lett.36(19), 3741–3743 (2011).
    [CrossRef] [PubMed]
  20. H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B19(1), 18–27 (2002).
  21. N. R. Reddy and K. S. Murthy, “Thermal expansion of yttrium vanadate,” J. Mater. Sci. Lett.2(4), 139–140 (1983).
    [CrossRef]
  22. X. Peng, A. Asundi, Y. Chen, and Z. Xiong, “Study of the mechanical properties of Nd:YVO4 crystal by use of laser interferometry and finite-element analysis,” Appl. Opt.40(9), 1396–1403 (2001).
    [CrossRef] [PubMed]
  23. C. V. V. Reddy, P. Kistaiah, and K. S. Murthy, “X-ray studies on the thermal expansion of gadolinium vanadate,” J. Phys. D Appl. Phys.18(6), L27–L30 (1985).
    [CrossRef]
  24. J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiment and modeling,” J. Appl. Phys.108(12), 123108 (2010).
    [CrossRef]
  25. T. M. Pollak, W. Wing, R. J. Grasso, E. P. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” J. Quant. Electron.18(2), 159–163 (1982).
    [CrossRef]
  26. D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt.49(4), 644–647 (2010).
    [CrossRef] [PubMed]
  27. R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express18(2), 1553–1568 (2010).
    [CrossRef] [PubMed]
  28. H. Y. Shen, X. L. Meng, G. Zhang, J. J. Qin, W. Liu, L. Zhu, C. H. Huang, L. X. Huang, and M. Wei, “Sellmeier’s equation and the expression of the thermal refractive-index coefficient for a Nd0.007Gd0.993VO4 crystal,” Appl. Opt.43(4), 955–960 (2004).
    [CrossRef] [PubMed]
  29. W. Koechner, Solid-State Laser Engineering 6th ed. (Springer Science + Business Media, Inc., 2006), chap. 7.

2013 (1)

2012 (3)

2011 (5)

2010 (3)

2006 (1)

2005 (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

2004 (2)

2002 (1)

2001 (1)

1993 (1)

P. R. Stoddart, P. E. Ngoepe, P. M. Mjwara, J. D. Comins, and G. A. Saunders, “Hightemperature elastic constants of yttrium aluminum garne,” J. Appl. Phys.73(11), 7298–7301 (1993).
[CrossRef]

1991 (1)

1985 (1)

C. V. V. Reddy, P. Kistaiah, and K. S. Murthy, “X-ray studies on the thermal expansion of gadolinium vanadate,” J. Phys. D Appl. Phys.18(6), L27–L30 (1985).
[CrossRef]

1983 (1)

N. R. Reddy and K. S. Murthy, “Thermal expansion of yttrium vanadate,” J. Mater. Sci. Lett.2(4), 139–140 (1983).
[CrossRef]

1982 (1)

T. M. Pollak, W. Wing, R. J. Grasso, E. P. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” J. Quant. Electron.18(2), 159–163 (1982).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

Antipov, O.

Asundi, A.

Bhandari, R.

Boughton, R. I.

Chen, Y.

Chen, Y. F.

Chicklis, E. P.

T. M. Pollak, W. Wing, R. J. Grasso, E. P. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” J. Quant. Electron.18(2), 159–163 (1982).
[CrossRef]

Comins, J. D.

P. R. Stoddart, P. E. Ngoepe, P. M. Mjwara, J. D. Comins, and G. A. Saunders, “Hightemperature elastic constants of yttrium aluminum garne,” J. Appl. Phys.73(11), 7298–7301 (1993).
[CrossRef]

Currin, K. M.

Deng, P.

X. Xu, Z. Zhao, H. Wang, P. Song, G. Zhou, J. Xu, and P. Deng, “Spectroscopic and thermal properties of Cr,Yb:YAG crystal,” J. Cryst. Growth262(1-4), 317–321 (2004).
[CrossRef]

Doualan, J. L.

Fan, T. Y.

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications,” Opt. Mater. Express1(3), 434–450 (2011).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

Feng, J.

Z. Huang, J. Feng, and W. Pan, “Theoretical investigations of the physical properties of zircon-type YVO4,” J. Solid State Chem.185, 42–48 (2012).
[CrossRef]

Fournier, D.

J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiment and modeling,” J. Appl. Phys.108(12), 123108 (2010).
[CrossRef]

Goldner, P.

J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiment and modeling,” J. Appl. Phys.108(12), 123108 (2010).
[CrossRef]

Grasso, R. J.

T. M. Pollak, W. Wing, R. J. Grasso, E. P. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” J. Quant. Electron.18(2), 159–163 (1982).
[CrossRef]

Hao, L.

Hu, X.

Huang, C. H.

Huang, L. X.

Huang, Z.

Z. Huang, J. Feng, and W. Pan, “Theoretical investigations of the physical properties of zircon-type YVO4,” J. Solid State Chem.185, 42–48 (2012).
[CrossRef]

Ivakin, E.

Jenssen, H.

T. M. Pollak, W. Wing, R. J. Grasso, E. P. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” J. Quant. Electron.18(2), 159–163 (1982).
[CrossRef]

Jiang, M.

Kistaiah, P.

C. V. V. Reddy, P. Kistaiah, and K. S. Murthy, “X-ray studies on the thermal expansion of gadolinium vanadate,” J. Phys. D Appl. Phys.18(6), L27–L30 (1985).
[CrossRef]

Kobayashi, T.

Kuleshov, N. V.

Lee, J. J.

Lee, Y. C.

Liang, H. C.

Lin, K. Y.

Liu, J.

Liu, W.

Loiko, P. A.

Matrosov, V. N.

Meng, X.

Meng, X. L.

Miller, D.

Mjwara, P. M.

P. R. Stoddart, P. E. Ngoepe, P. M. Mjwara, J. D. Comins, and G. A. Saunders, “Hightemperature elastic constants of yttrium aluminum garne,” J. Appl. Phys.73(11), 7298–7301 (1993).
[CrossRef]

Moncorgé, R.

Mukai, A.

Murthy, K. S.

C. V. V. Reddy, P. Kistaiah, and K. S. Murthy, “X-ray studies on the thermal expansion of gadolinium vanadate,” J. Phys. D Appl. Phys.18(6), L27–L30 (1985).
[CrossRef]

N. R. Reddy and K. S. Murthy, “Thermal expansion of yttrium vanadate,” J. Mater. Sci. Lett.2(4), 139–140 (1983).
[CrossRef]

Ngoepe, P. E.

P. R. Stoddart, P. E. Ngoepe, P. M. Mjwara, J. D. Comins, and G. A. Saunders, “Hightemperature elastic constants of yttrium aluminum garne,” J. Appl. Phys.73(11), 7298–7301 (1993).
[CrossRef]

Northridge, J. M.

Nozawa, Y.

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

Pan, W.

Z. Huang, J. Feng, and W. Pan, “Theoretical investigations of the physical properties of zircon-type YVO4,” J. Solid State Chem.185, 42–48 (2012).
[CrossRef]

Pavel, N.

Peng, X.

Perlov, D.

Petit, J.

J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiment and modeling,” J. Appl. Phys.108(12), 123108 (2010).
[CrossRef]

Pollak, T. M.

T. M. Pollak, W. Wing, R. J. Grasso, E. P. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” J. Quant. Electron.18(2), 159–163 (1982).
[CrossRef]

Qin, J. J.

Rand, D.

Reddy, C. V. V.

C. V. V. Reddy, P. Kistaiah, and K. S. Murthy, “X-ray studies on the thermal expansion of gadolinium vanadate,” J. Phys. D Appl. Phys.18(6), L27–L30 (1985).
[CrossRef]

Reddy, N. R.

N. R. Reddy and K. S. Murthy, “Thermal expansion of yttrium vanadate,” J. Mater. Sci. Lett.2(4), 139–140 (1983).
[CrossRef]

Ripin, D. J.

D. Rand, D. Miller, D. J. Ripin, and T. Y. Fan, “Cryogenic Yb3+-doped materials for pulsed solid-state laser applications,” Opt. Mater. Express1(3), 434–450 (2011).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

Roger, J.-P.

J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiment and modeling,” J. Appl. Phys.108(12), 123108 (2010).
[CrossRef]

Sato, Y.

Saunders, G. A.

P. R. Stoddart, P. E. Ngoepe, P. M. Mjwara, J. D. Comins, and G. A. Saunders, “Hightemperature elastic constants of yttrium aluminum garne,” J. Appl. Phys.73(11), 7298–7301 (1993).
[CrossRef]

Shao, Z.

Shen, H. Y.

Song, P.

X. Xu, Z. Zhao, H. Wang, P. Song, G. Zhou, J. Xu, and P. Deng, “Spectroscopic and thermal properties of Cr,Yb:YAG crystal,” J. Cryst. Growth262(1-4), 317–321 (2004).
[CrossRef]

Soulard, R.

Stoddart, P. R.

P. R. Stoddart, P. E. Ngoepe, P. M. Mjwara, J. D. Comins, and G. A. Saunders, “Hightemperature elastic constants of yttrium aluminum garne,” J. Appl. Phys.73(11), 7298–7301 (1993).
[CrossRef]

Taira, T.

Tian, X.

Tsunekane, M.

Viana, B.

J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiment and modeling,” J. Appl. Phys.108(12), 123108 (2010).
[CrossRef]

Wang, C.

Wang, H.

X. Xu, Z. Zhao, H. Wang, P. Song, G. Zhou, J. Xu, and P. Deng, “Spectroscopic and thermal properties of Cr,Yb:YAG crystal,” J. Cryst. Growth262(1-4), 317–321 (2004).
[CrossRef]

Wang, J.

Wang, Y.

Wei, M.

Wing, W.

T. M. Pollak, W. Wing, R. J. Grasso, E. P. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” J. Quant. Electron.18(2), 159–163 (1982).
[CrossRef]

Wu, K.

Xiong, Z.

Xu, J.

X. Xu, Z. Zhao, H. Wang, P. Song, G. Zhou, J. Xu, and P. Deng, “Spectroscopic and thermal properties of Cr,Yb:YAG crystal,” J. Cryst. Growth262(1-4), 317–321 (2004).
[CrossRef]

Xu, X.

X. Xu, Z. Zhao, H. Wang, P. Song, G. Zhou, J. Xu, and P. Deng, “Spectroscopic and thermal properties of Cr,Yb:YAG crystal,” J. Cryst. Growth262(1-4), 317–321 (2004).
[CrossRef]

Yu, H.

Yumashev, K. V.

Zelmon, D. E.

Zhang, G.

Zhang, H.

Zhao, Z.

X. Xu, Z. Zhao, H. Wang, P. Song, G. Zhou, J. Xu, and P. Deng, “Spectroscopic and thermal properties of Cr,Yb:YAG crystal,” J. Cryst. Growth262(1-4), 317–321 (2004).
[CrossRef]

Zhou, G.

X. Xu, Z. Zhao, H. Wang, P. Song, G. Zhou, J. Xu, and P. Deng, “Spectroscopic and thermal properties of Cr,Yb:YAG crystal,” J. Cryst. Growth262(1-4), 317–321 (2004).
[CrossRef]

Zhou, Z.

Zhu, L.

Zinoviev, A.

Appl. Opt. (4)

J. Appl. Phys. (3)

J. Petit, B. Viana, P. Goldner, J.-P. Roger, and D. Fournier, “Thermomechanical properties of Yb3+ doped laser crystals: Experiment and modeling,” J. Appl. Phys.108(12), 123108 (2010).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

P. R. Stoddart, P. E. Ngoepe, P. M. Mjwara, J. D. Comins, and G. A. Saunders, “Hightemperature elastic constants of yttrium aluminum garne,” J. Appl. Phys.73(11), 7298–7301 (1993).
[CrossRef]

J. Cryst. Growth (1)

X. Xu, Z. Zhao, H. Wang, P. Song, G. Zhou, J. Xu, and P. Deng, “Spectroscopic and thermal properties of Cr,Yb:YAG crystal,” J. Cryst. Growth262(1-4), 317–321 (2004).
[CrossRef]

J. Mater. Sci. Lett. (1)

N. R. Reddy and K. S. Murthy, “Thermal expansion of yttrium vanadate,” J. Mater. Sci. Lett.2(4), 139–140 (1983).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

C. V. V. Reddy, P. Kistaiah, and K. S. Murthy, “X-ray studies on the thermal expansion of gadolinium vanadate,” J. Phys. D Appl. Phys.18(6), L27–L30 (1985).
[CrossRef]

J. Quant. Electron. (1)

T. M. Pollak, W. Wing, R. J. Grasso, E. P. Chicklis, and H. Jenssen, “CW laser operation of Nd:YLF,” J. Quant. Electron.18(2), 159–163 (1982).
[CrossRef]

J. Solid State Chem. (1)

Z. Huang, J. Feng, and W. Pan, “Theoretical investigations of the physical properties of zircon-type YVO4,” J. Solid State Chem.185, 42–48 (2012).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (3)

Other (6)

W. Koechner, Solid-State Laser Engineering 6th ed. (Springer Science + Business Media, Inc., 2006), chap. 7.

Private communications

A. A. Kaminskii, Laser Crystals (Springer-Verlag, Berlin, 1981), p. 320.

W. Koechner, Solid-State Laser Engineering 6th ed. (Springer Science + Business Media, Inc., New York, 2006), p. 55.

Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” CLEO’07, paper JWA87 (2007).

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon Press, 1975) sec. 4.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of experimental setup for refractive index measurement (a) and the definition of Ap and Amin (b). The incident angle to the prism is equals to the output angle.

Fig. 2
Fig. 2

The concept of multiple reflection. Ein, r, and t are the amplitude of electric field, reflectance, and transmittance of probe light, respectively. |t|4 equals to T0, and |r|2 equals to R.

Fig. 3
Fig. 3

Schematic diagram of experimental setup for evaluation of phase shift Δφ.

Fig. 4
Fig. 4

Thermal expansion coefficients of YAG, YVO4, and GdVO4 single crystals.

Fig. 5
Fig. 5

Refractive indices of YAG, YVO4, and GdVO4 single crystals. (o) and (3) indicate ordinary and extraordinary polarization, respectively.

Fig. 6
Fig. 6

Temperature dependent Tr. (a) 1at.% Nd:YAG, (111)-cut. (b) 1.0at.% YVO4, (100)-cut in ordinary polarization. (c) 1.0at.% GdVO4, (100)-cut in extraordinary polarization.

Fig. 7
Fig. 7

Relation between Δφ/φ and temperature in YAG, YVO4, and GdVO4 single crystals. (a) Δφ/φ at 0.9 μm. (b) Δφ/φ at 1.1 μm. (c) Δφ/φ at 1.3 μm 1.0at.%. (ord) and (ext) indicate ordinary and extraordinary polarization, respectively.

Fig. 8
Fig. 8

Temperature changes of Δφ/φ in Nd:YAG plates. Lines are fitted by the least square method.

Fig. 9
Fig. 9

Temperature dependence of Δν/ν in Nd:YVO4 microchip laser compared with calculated shift based on the value in this work.

Tables (6)

Tables Icon

Table 1 α and dn/dT of YAG, YVO4, and GdVO4 single crystals at room temperature

Tables Icon

Table 2 Parameters in sellmeier equation for YAG, YVO4, and GdVO4 single crystals

Tables Icon

Table 3 α of YAG crystal estimated from Δφ/φ and dn/dT

Tables Icon

Table 4 Parameters for error evaluation

Tables Icon

Table 5 Experimental errors in α and dn/dT of YAG, YVO4, and GdVO4 single crystals

Tables Icon

Table 6 Maximum and minimum values of previously reported α and dn/dT

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

n= sin( A min + A p 2 ) / sin A p 2 ,
δn=δA 2+ n 2 3 n 2 sin 2 A p 2 2ncos A p 2 1 n 2 sin 2 A p 2 / 2sin A p 2 .
T r = T 0 1 + R 2 [ 1 2 R 1 + R 2 cos φ ] 1 .
Δ φ φ = ( 1 n d n d T + α ) Δ T ,
dn dT = λ 4πL Δφ ΔT nα.
δ( dn dT )=n ( 1 ΔT Δφ φ ) 2 [ 2 ( δφ Δφ ) 2 +2 ( δT ΔT ) 2 + ( δλ λ ) 2 + ( δL L ) 2 ]+ α 2 [ ( δα α ) 2 + ( δn n ) 2 ] ,
n 2 ( λ ) = 1 + A λ 2 λ 2 B 2 + C λ 2 λ 2 D 2 ,
n 2 ( λ ) = A + B λ 2 λ 2 C 2 D λ 2 .
α = 1 Δ T Δ φ φ 1 n d n d T ,
δ α 2 = ( 1 Δ T Δ φ φ ) 2 [ 2 ( δ φ Δ φ ) 2 + 2 ( δ T Δ T ) 2 + ( δ λ λ ) 2 + ( δ L L ) 2 ] . + 1 n 2 [ ( δ d n d T ) 2 + ( d n d T ) 2 ( δ n n ) 2 ]
α = α 0.9 μ m + α 1.1 μ m + α 1.3 μ m 3 ,
δ α = ( δ α 0.9 μ m 3 ) 2 + ( δ α 1.1 μ m 3 ) 2 + ( δ α 1.3 μ m 3 ) 2 ,
f= π w p 2 κ η a η h P [ αr( n1 ) l +α n 3 C+ 1 2 dn dT ] 1 ,
n A p = 1 2 cos( A min + A p 2 ) / sin A p 2 1 2 cos A p 2 sin( A min + A p 2 ) / sin 2 A p 2 = 1 n 2 sin 2 A p 2 ncos A p 2 2sin A p 2 ,
n A min = 1 2 cos( A min + A p 2 ) / sin A p 2 = 1 n 2 sin 2 A p 2 2sin A p 2 .
δn= ( n A p ) 2 δ A p 2 + ( n A min ) 2 δ A min 2 = ( n A p ) 2 + ( n A min ) 2 δA = 2+ n 2 3 n 2 sin 2 A p 2 2ncos A p 2 1 n 2 sin 2 A p 2 2sin A p 2 δA .

Metrics