Abstract

Sub-micrometer inverted domains in Yb3+ doped bulk LiNbO3 crystals are reported by using direct electron beam writing (DEBW) as a tool to reverse the spontaneous polarization in a two dimensional geometry. The effect of electron bombardment within the domain inversion process is analyzed at the micrometer scale by combining spatially resolved confocal Raman, Fluorescence and Second Harmonic Generation (SHG) imaging techniques. The obtained results not only confirms the feasibility of DEBW on the inversion procedure -the linear and nonlinear optical properties of the system remain unaltered after the process, but they also show that the slight structural changes associated with the polarization reversal in LiNbO3 are independent on the employed switching mechanism. The possibility of obtaining complementary non-destructive spectroscopic images of domains is also shown. Together, the results highlight the outstanding opportunities offered by confocal spectroscopy as a non invasive tool to probe the interaction between intrinsic defects and ferroelectric domain reversal structures in LiNbO3. Additionally, they provide valuable information to further decrease the size and distance between adjacent inverted domains in a solid state system in which, IR laser action, self-frequency conversion processes and laser tunability have been demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Assouar, B. Vincent, and H. Moubchir, “Phononic crystals based on LiNbO3 realized using domain inversion by electron-beam irradiation,” IEEE T Ultrason. Ferr.55, 273–278 (2008).
  2. T. Ellenbogen, A. Ganany-Padowicz, and A. Arie, “Nonlinear photonic structures for all-optical deflection,” Opt. Express16(5), 3077–3082 (2008).
    [CrossRef] [PubMed]
  3. M. Krishnamurthi, M. O. Ramirez, S. Denev, V. Gopalan, T. M. Lehecka, J. G. Thomas, and Q. X. Jia, “Two dimensional dynamic focusing of laser light by ferroelectric domain based electro-optic lenses,” Appl. Phys. Lett.90(20), 201106 (2007).
    [CrossRef]
  4. H. X. Li, S. Y. Mu, P. Xu, M. L. Zhong, C. D. Chen, X. P. Hu, W. N. Cui, and S. N. Zhu, “Multicolor Cerenkov conical beams generation by cascaded- chi((2)) processes in radially poled nonlinear photonic crystals,” Appl. Phys. Lett.100(10), 101101 (2012).
    [CrossRef]
  5. M. O. Ramirez, P. Molina, and L. E. Bausa, “Multifunctional solid state lasers based on ferroelectric crystals,” Opt. Mater.34(3), 524–535 (2012).
    [CrossRef]
  6. P. Molina, M. O. Ramirez, J. V. Garcia-Santizo, S. Alvarez-Garcia, R. Pazik, W. Strek, P. J. Deren, and L. E. Bausa, “Micrometric spatial control of rare earth ion emission in LiNbO3: A two-dimensional multicolor array,” Appl. Phys. Lett.95(5), 051103 (2009).
    [CrossRef]
  7. J. V. García-Santizo, P. Molina, M. O. Ramírez, K. Lemanski, W. Strek, P. J. Dereń, and L. E. Bausá, “Rare earth doped ring-shaped luminescent micro-composites on patterned ferroelectrics,” Opt. Express18(17), 18269–18277 (2010).
    [CrossRef] [PubMed]
  8. E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous Emission and Nonlinear Response Enhancement by Silver Nanoparticles in a Nd³⁺-Doped Periodically Poled LiNbO₃ Laser Crystal,” Adv. Mater.25(6), 910–915 (2013).
    [CrossRef] [PubMed]
  9. P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective Plasmon Enhancement of the 1.08 μm Nd3+ Laser Stark Transition by Tailoring Ag Nanoparticles Chains on a PPLN Y-cut,” Nano Lett.13(10), 4931–4936 (2013).
    [CrossRef] [PubMed]
  10. E. Montoya, J. A. Sanz-Garcia, J. Capmany, L. E. Bausa, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys.87(9), 4056–4062 (2000).
    [CrossRef]
  11. J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+ doped aperiodically poled lithium niobate,” Appl. Phys. Lett.78(2), 144–146 (2001).
    [CrossRef]
  12. L. Mateos, L. E. Bausa, and M. O. Ramirez, “Two dimensional ferroelectric domain patterns in Yb3+optically active LiNbO3 fabricated by direct electron beam writing,” Appl. Phys. Lett.102(4), 042910 (2013).
    [CrossRef]
  13. L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express20(28), 29940–29948 (2012).
    [CrossRef] [PubMed]
  14. G. Stone, B. Knorr, V. Gopalan, and V. Dierolf, “Frequency shift of Raman modes due to an applied electric field and domain inversion in LiNbO3,” Phys. Rev. B84(13), 134303 (2011).
    [CrossRef]
  15. L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two-dimensional nonlinear Photonic Crystal with Strong χ(3) Response in the UV Spectral Region,” Adv. Funct. Mater.24(11), 1509–1518 (2014).
    [CrossRef]
  16. M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett.90(10), 107601 (2003).
    [CrossRef] [PubMed]
  17. W. D. Johnston and I. P. Kaminow, “Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3,” Phys. Rev.168(3), 1045–1054 (1968).
    [CrossRef]
  18. R. Hammoum, M. D. Fontana, P. Bourson, and V. Y. Shur, “Characterization of PPLN-microstructures by means of Raman spectroscopy,” Appl. Phys., A Mater. Sci. Process.91(1), 65–67 (2008).
    [CrossRef]
  19. V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998).
    [CrossRef]
  20. P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
    [CrossRef]
  21. V. Y. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev, and D. K. Kuznetsov, “Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals,” J. Appl. Phys.110(5), 052013 (2011).
    [CrossRef]
  22. J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004).
    [CrossRef]
  23. A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997).
    [CrossRef]
  24. R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter12(23), 5053–5059 (2000).
    [CrossRef]
  25. G. Stone, D. Lee, H. Xu, S. R. Phillpot, and V. Dierolf, “Local probing of the interaction between intrinsic defects and ferroelectric domain walls in lithium niobate,” Appl. Phys. Lett.102(4), 042905 (2013).
    [CrossRef]
  26. G. Stone and V. Dierolf, “Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate,” Opt. Lett.37(6), 1032–1034 (2012).
    [CrossRef] [PubMed]
  27. A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett.67(25), 3735–3737 (1995).
    [CrossRef]
  28. V. Dierolf, C. Sandmann, S. Kim, V. Gopalan, and K. Polgar, “Ferroelectric domain imaging by defect-luminescence microscopy,” J. Appl. Phys.93(4), 2295–2297 (2003).
    [CrossRef]
  29. P. Molina, D. Sarkar, M. O. Ramirez, J. G. Sole, L. E. Bausa, B. J. Garcia, and J. E. M. Santiuste, “Nd3+ ion shift under domain inversion by electron beam writing in LiNbO3,” Appl. Phys. Lett.90(14), 141901 (2007).
    [CrossRef]
  30. P. Molina, M. O. Ramirez, J. Garcia Sole, L. E. Bausa, and B. J. Garcia, “Selective rearrangement of Nd3+ centers in LiNbO3 under ferroelectric domain inversion by electron beam writing,” Phys. Rev. B78(1), 014114 (2008).
    [CrossRef]
  31. E. Montoya, F. Agullo-Rueda, S. Manotas, J. G. Sole, and L. E. Bausa, “Electron-phonon coupling in Yb3+: LiNbO3 laser crystal,” J. Lumin.94-95, 701–705 (2001).
    [CrossRef]
  32. S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett.73(13), 1814–1816 (1998).
    [CrossRef]
  33. M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature419(6909), 818–820 (2002).
    [CrossRef] [PubMed]
  34. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1 Pt 1), 493–508 (2002).
    [CrossRef] [PubMed]
  35. Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics304(1), 99–103 (2004).
    [CrossRef]
  36. S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron.45(11), 1465–1472 (2009).
    [CrossRef]
  37. X. Deng and X. Chen, “Domain wall characterization in ferroelectrics by using localized nonlinearities,” Opt. Express18(15), 15597–15602 (2010).
    [CrossRef] [PubMed]
  38. N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett.100(22), 221103 (2012).
    [CrossRef]
  39. T. Kampfe, P. Reichenbach, M. Schroder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B89(3), 035314 (2014).
    [CrossRef]
  40. L. Mateos, P. Molina, L. E. Bausa, and M. O. Ramirez, “Second harmonic conical waves for symmetry studies in chi((2)) nonlinear photonic crystals,” Appl. Phys. Express4(8), 082202 (2011).
    [CrossRef]
  41. P. Molina, M. O. Ramirez, B. J. Garcia, and L. E. Bausa, “Directional dependence of the second harmonic response in two-dimensional nonlinear photonic crystals,” Appl. Phys. Lett.96(26), 261111 (2010).
    [CrossRef]

2014 (2)

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two-dimensional nonlinear Photonic Crystal with Strong χ(3) Response in the UV Spectral Region,” Adv. Funct. Mater.24(11), 1509–1518 (2014).
[CrossRef]

T. Kampfe, P. Reichenbach, M. Schroder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B89(3), 035314 (2014).
[CrossRef]

2013 (4)

G. Stone, D. Lee, H. Xu, S. R. Phillpot, and V. Dierolf, “Local probing of the interaction between intrinsic defects and ferroelectric domain walls in lithium niobate,” Appl. Phys. Lett.102(4), 042905 (2013).
[CrossRef]

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous Emission and Nonlinear Response Enhancement by Silver Nanoparticles in a Nd³⁺-Doped Periodically Poled LiNbO₃ Laser Crystal,” Adv. Mater.25(6), 910–915 (2013).
[CrossRef] [PubMed]

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective Plasmon Enhancement of the 1.08 μm Nd3+ Laser Stark Transition by Tailoring Ag Nanoparticles Chains on a PPLN Y-cut,” Nano Lett.13(10), 4931–4936 (2013).
[CrossRef] [PubMed]

L. Mateos, L. E. Bausa, and M. O. Ramirez, “Two dimensional ferroelectric domain patterns in Yb3+optically active LiNbO3 fabricated by direct electron beam writing,” Appl. Phys. Lett.102(4), 042910 (2013).
[CrossRef]

2012 (5)

H. X. Li, S. Y. Mu, P. Xu, M. L. Zhong, C. D. Chen, X. P. Hu, W. N. Cui, and S. N. Zhu, “Multicolor Cerenkov conical beams generation by cascaded- chi((2)) processes in radially poled nonlinear photonic crystals,” Appl. Phys. Lett.100(10), 101101 (2012).
[CrossRef]

M. O. Ramirez, P. Molina, and L. E. Bausa, “Multifunctional solid state lasers based on ferroelectric crystals,” Opt. Mater.34(3), 524–535 (2012).
[CrossRef]

G. Stone and V. Dierolf, “Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate,” Opt. Lett.37(6), 1032–1034 (2012).
[CrossRef] [PubMed]

L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express20(28), 29940–29948 (2012).
[CrossRef] [PubMed]

N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett.100(22), 221103 (2012).
[CrossRef]

2011 (3)

G. Stone, B. Knorr, V. Gopalan, and V. Dierolf, “Frequency shift of Raman modes due to an applied electric field and domain inversion in LiNbO3,” Phys. Rev. B84(13), 134303 (2011).
[CrossRef]

V. Y. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev, and D. K. Kuznetsov, “Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals,” J. Appl. Phys.110(5), 052013 (2011).
[CrossRef]

L. Mateos, P. Molina, L. E. Bausa, and M. O. Ramirez, “Second harmonic conical waves for symmetry studies in chi((2)) nonlinear photonic crystals,” Appl. Phys. Express4(8), 082202 (2011).
[CrossRef]

2010 (4)

P. Molina, M. O. Ramirez, B. J. Garcia, and L. E. Bausa, “Directional dependence of the second harmonic response in two-dimensional nonlinear photonic crystals,” Appl. Phys. Lett.96(26), 261111 (2010).
[CrossRef]

X. Deng and X. Chen, “Domain wall characterization in ferroelectrics by using localized nonlinearities,” Opt. Express18(15), 15597–15602 (2010).
[CrossRef] [PubMed]

J. V. García-Santizo, P. Molina, M. O. Ramírez, K. Lemanski, W. Strek, P. J. Dereń, and L. E. Bausá, “Rare earth doped ring-shaped luminescent micro-composites on patterned ferroelectrics,” Opt. Express18(17), 18269–18277 (2010).
[CrossRef] [PubMed]

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
[CrossRef]

2009 (2)

P. Molina, M. O. Ramirez, J. V. Garcia-Santizo, S. Alvarez-Garcia, R. Pazik, W. Strek, P. J. Deren, and L. E. Bausa, “Micrometric spatial control of rare earth ion emission in LiNbO3: A two-dimensional multicolor array,” Appl. Phys. Lett.95(5), 051103 (2009).
[CrossRef]

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron.45(11), 1465–1472 (2009).
[CrossRef]

2008 (4)

B. M. Assouar, B. Vincent, and H. Moubchir, “Phononic crystals based on LiNbO3 realized using domain inversion by electron-beam irradiation,” IEEE T Ultrason. Ferr.55, 273–278 (2008).

T. Ellenbogen, A. Ganany-Padowicz, and A. Arie, “Nonlinear photonic structures for all-optical deflection,” Opt. Express16(5), 3077–3082 (2008).
[CrossRef] [PubMed]

P. Molina, M. O. Ramirez, J. Garcia Sole, L. E. Bausa, and B. J. Garcia, “Selective rearrangement of Nd3+ centers in LiNbO3 under ferroelectric domain inversion by electron beam writing,” Phys. Rev. B78(1), 014114 (2008).
[CrossRef]

R. Hammoum, M. D. Fontana, P. Bourson, and V. Y. Shur, “Characterization of PPLN-microstructures by means of Raman spectroscopy,” Appl. Phys., A Mater. Sci. Process.91(1), 65–67 (2008).
[CrossRef]

2007 (2)

M. Krishnamurthi, M. O. Ramirez, S. Denev, V. Gopalan, T. M. Lehecka, J. G. Thomas, and Q. X. Jia, “Two dimensional dynamic focusing of laser light by ferroelectric domain based electro-optic lenses,” Appl. Phys. Lett.90(20), 201106 (2007).
[CrossRef]

P. Molina, D. Sarkar, M. O. Ramirez, J. G. Sole, L. E. Bausa, B. J. Garcia, and J. E. M. Santiuste, “Nd3+ ion shift under domain inversion by electron beam writing in LiNbO3,” Appl. Phys. Lett.90(14), 141901 (2007).
[CrossRef]

2004 (2)

Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics304(1), 99–103 (2004).
[CrossRef]

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004).
[CrossRef]

2003 (2)

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett.90(10), 107601 (2003).
[CrossRef] [PubMed]

V. Dierolf, C. Sandmann, S. Kim, V. Gopalan, and K. Polgar, “Ferroelectric domain imaging by defect-luminescence microscopy,” J. Appl. Phys.93(4), 2295–2297 (2003).
[CrossRef]

2002 (2)

M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature419(6909), 818–820 (2002).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1 Pt 1), 493–508 (2002).
[CrossRef] [PubMed]

2001 (2)

E. Montoya, F. Agullo-Rueda, S. Manotas, J. G. Sole, and L. E. Bausa, “Electron-phonon coupling in Yb3+: LiNbO3 laser crystal,” J. Lumin.94-95, 701–705 (2001).
[CrossRef]

J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+ doped aperiodically poled lithium niobate,” Appl. Phys. Lett.78(2), 144–146 (2001).
[CrossRef]

2000 (2)

E. Montoya, J. A. Sanz-Garcia, J. Capmany, L. E. Bausa, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys.87(9), 4056–4062 (2000).
[CrossRef]

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter12(23), 5053–5059 (2000).
[CrossRef]

1998 (2)

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998).
[CrossRef]

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett.73(13), 1814–1816 (1998).
[CrossRef]

1997 (1)

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997).
[CrossRef]

1995 (1)

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett.67(25), 3735–3737 (1995).
[CrossRef]

1968 (1)

W. D. Johnston and I. P. Kaminow, “Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3,” Phys. Rev.168(3), 1045–1054 (1968).
[CrossRef]

Agronin, A.

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett.90(10), 107601 (2003).
[CrossRef] [PubMed]

Agullo-Rueda, F.

E. Montoya, F. Agullo-Rueda, S. Manotas, J. G. Sole, and L. E. Bausa, “Electron-phonon coupling in Yb3+: LiNbO3 laser crystal,” J. Lumin.94-95, 701–705 (2001).
[CrossRef]

Alikin, D. O.

V. Y. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev, and D. K. Kuznetsov, “Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals,” J. Appl. Phys.110(5), 052013 (2011).
[CrossRef]

Alvarez-Garcia, S.

P. Molina, M. O. Ramirez, J. V. Garcia-Santizo, S. Alvarez-Garcia, R. Pazik, W. Strek, P. J. Deren, and L. E. Bausa, “Micrometric spatial control of rare earth ion emission in LiNbO3: A two-dimensional multicolor array,” Appl. Phys. Lett.95(5), 051103 (2009).
[CrossRef]

An, N.

N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett.100(22), 221103 (2012).
[CrossRef]

Arie, A.

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron.45(11), 1465–1472 (2009).
[CrossRef]

T. Ellenbogen, A. Ganany-Padowicz, and A. Arie, “Nonlinear photonic structures for all-optical deflection,” Opt. Express16(5), 3077–3082 (2008).
[CrossRef] [PubMed]

Assouar, B. M.

B. M. Assouar, B. Vincent, and H. Moubchir, “Phononic crystals based on LiNbO3 realized using domain inversion by electron-beam irradiation,” IEEE T Ultrason. Ferr.55, 273–278 (2008).

Bausa, L. E.

L. Mateos, L. E. Bausa, and M. O. Ramirez, “Two dimensional ferroelectric domain patterns in Yb3+optically active LiNbO3 fabricated by direct electron beam writing,” Appl. Phys. Lett.102(4), 042910 (2013).
[CrossRef]

M. O. Ramirez, P. Molina, and L. E. Bausa, “Multifunctional solid state lasers based on ferroelectric crystals,” Opt. Mater.34(3), 524–535 (2012).
[CrossRef]

L. Mateos, P. Molina, L. E. Bausa, and M. O. Ramirez, “Second harmonic conical waves for symmetry studies in chi((2)) nonlinear photonic crystals,” Appl. Phys. Express4(8), 082202 (2011).
[CrossRef]

P. Molina, M. O. Ramirez, B. J. Garcia, and L. E. Bausa, “Directional dependence of the second harmonic response in two-dimensional nonlinear photonic crystals,” Appl. Phys. Lett.96(26), 261111 (2010).
[CrossRef]

P. Molina, M. O. Ramirez, J. V. Garcia-Santizo, S. Alvarez-Garcia, R. Pazik, W. Strek, P. J. Deren, and L. E. Bausa, “Micrometric spatial control of rare earth ion emission in LiNbO3: A two-dimensional multicolor array,” Appl. Phys. Lett.95(5), 051103 (2009).
[CrossRef]

P. Molina, M. O. Ramirez, J. Garcia Sole, L. E. Bausa, and B. J. Garcia, “Selective rearrangement of Nd3+ centers in LiNbO3 under ferroelectric domain inversion by electron beam writing,” Phys. Rev. B78(1), 014114 (2008).
[CrossRef]

P. Molina, D. Sarkar, M. O. Ramirez, J. G. Sole, L. E. Bausa, B. J. Garcia, and J. E. M. Santiuste, “Nd3+ ion shift under domain inversion by electron beam writing in LiNbO3,” Appl. Phys. Lett.90(14), 141901 (2007).
[CrossRef]

E. Montoya, F. Agullo-Rueda, S. Manotas, J. G. Sole, and L. E. Bausa, “Electron-phonon coupling in Yb3+: LiNbO3 laser crystal,” J. Lumin.94-95, 701–705 (2001).
[CrossRef]

E. Montoya, J. A. Sanz-Garcia, J. Capmany, L. E. Bausa, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys.87(9), 4056–4062 (2000).
[CrossRef]

Bausá, L. E.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two-dimensional nonlinear Photonic Crystal with Strong χ(3) Response in the UV Spectral Region,” Adv. Funct. Mater.24(11), 1509–1518 (2014).
[CrossRef]

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous Emission and Nonlinear Response Enhancement by Silver Nanoparticles in a Nd³⁺-Doped Periodically Poled LiNbO₃ Laser Crystal,” Adv. Mater.25(6), 910–915 (2013).
[CrossRef] [PubMed]

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective Plasmon Enhancement of the 1.08 μm Nd3+ Laser Stark Transition by Tailoring Ag Nanoparticles Chains on a PPLN Y-cut,” Nano Lett.13(10), 4931–4936 (2013).
[CrossRef] [PubMed]

L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express20(28), 29940–29948 (2012).
[CrossRef] [PubMed]

J. V. García-Santizo, P. Molina, M. O. Ramírez, K. Lemanski, W. Strek, P. J. Dereń, and L. E. Bausá, “Rare earth doped ring-shaped luminescent micro-composites on patterned ferroelectrics,” Opt. Express18(17), 18269–18277 (2010).
[CrossRef] [PubMed]

Belmonte, M.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett.73(13), 1814–1816 (1998).
[CrossRef]

Boulon, G.

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett.67(25), 3735–3737 (1995).
[CrossRef]

Bourson, P.

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
[CrossRef]

R. Hammoum, M. D. Fontana, P. Bourson, and V. Y. Shur, “Characterization of PPLN-microstructures by means of Raman spectroscopy,” Appl. Phys., A Mater. Sci. Process.91(1), 65–67 (2008).
[CrossRef]

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter12(23), 5053–5059 (2000).
[CrossRef]

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett.73(13), 1814–1816 (1998).
[CrossRef]

Campagnola, P. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1 Pt 1), 493–508 (2002).
[CrossRef] [PubMed]

Capmany, J.

J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+ doped aperiodically poled lithium niobate,” Appl. Phys. Lett.78(2), 144–146 (2001).
[CrossRef]

E. Montoya, J. A. Sanz-Garcia, J. Capmany, L. E. Bausa, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys.87(9), 4056–4062 (2000).
[CrossRef]

Carrasco, I.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two-dimensional nonlinear Photonic Crystal with Strong χ(3) Response in the UV Spectral Region,” Adv. Funct. Mater.24(11), 1509–1518 (2014).
[CrossRef]

Chen, C. D.

H. X. Li, S. Y. Mu, P. Xu, M. L. Zhong, C. D. Chen, X. P. Hu, W. N. Cui, and S. N. Zhu, “Multicolor Cerenkov conical beams generation by cascaded- chi((2)) processes in radially poled nonlinear photonic crystals,” Appl. Phys. Lett.100(10), 101101 (2012).
[CrossRef]

Chen, X.

N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett.100(22), 221103 (2012).
[CrossRef]

X. Deng and X. Chen, “Domain wall characterization in ferroelectrics by using localized nonlinearities,” Opt. Express18(15), 15597–15602 (2010).
[CrossRef] [PubMed]

Cui, W. N.

H. X. Li, S. Y. Mu, P. Xu, M. L. Zhong, C. D. Chen, X. P. Hu, W. N. Cui, and S. N. Zhu, “Multicolor Cerenkov conical beams generation by cascaded- chi((2)) processes in radially poled nonlinear photonic crystals,” Appl. Phys. Lett.100(10), 101101 (2012).
[CrossRef]

de las Heras, C.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two-dimensional nonlinear Photonic Crystal with Strong χ(3) Response in the UV Spectral Region,” Adv. Funct. Mater.24(11), 1509–1518 (2014).
[CrossRef]

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective Plasmon Enhancement of the 1.08 μm Nd3+ Laser Stark Transition by Tailoring Ag Nanoparticles Chains on a PPLN Y-cut,” Nano Lett.13(10), 4931–4936 (2013).
[CrossRef] [PubMed]

Denev, S.

M. Krishnamurthi, M. O. Ramirez, S. Denev, V. Gopalan, T. M. Lehecka, J. G. Thomas, and Q. X. Jia, “Two dimensional dynamic focusing of laser light by ferroelectric domain based electro-optic lenses,” Appl. Phys. Lett.90(20), 201106 (2007).
[CrossRef]

Deng, X.

N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett.100(22), 221103 (2012).
[CrossRef]

X. Deng and X. Chen, “Domain wall characterization in ferroelectrics by using localized nonlinearities,” Opt. Express18(15), 15597–15602 (2010).
[CrossRef] [PubMed]

Deren, P. J.

J. V. García-Santizo, P. Molina, M. O. Ramírez, K. Lemanski, W. Strek, P. J. Dereń, and L. E. Bausá, “Rare earth doped ring-shaped luminescent micro-composites on patterned ferroelectrics,” Opt. Express18(17), 18269–18277 (2010).
[CrossRef] [PubMed]

P. Molina, M. O. Ramirez, J. V. Garcia-Santizo, S. Alvarez-Garcia, R. Pazik, W. Strek, P. J. Deren, and L. E. Bausa, “Micrometric spatial control of rare earth ion emission in LiNbO3: A two-dimensional multicolor array,” Appl. Phys. Lett.95(5), 051103 (2009).
[CrossRef]

Diening, A.

E. Montoya, J. A. Sanz-Garcia, J. Capmany, L. E. Bausa, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys.87(9), 4056–4062 (2000).
[CrossRef]

Dierolf, V.

G. Stone, D. Lee, H. Xu, S. R. Phillpot, and V. Dierolf, “Local probing of the interaction between intrinsic defects and ferroelectric domain walls in lithium niobate,” Appl. Phys. Lett.102(4), 042905 (2013).
[CrossRef]

G. Stone and V. Dierolf, “Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate,” Opt. Lett.37(6), 1032–1034 (2012).
[CrossRef] [PubMed]

G. Stone, B. Knorr, V. Gopalan, and V. Dierolf, “Frequency shift of Raman modes due to an applied electric field and domain inversion in LiNbO3,” Phys. Rev. B84(13), 134303 (2011).
[CrossRef]

V. Dierolf, C. Sandmann, S. Kim, V. Gopalan, and K. Polgar, “Ferroelectric domain imaging by defect-luminescence microscopy,” J. Appl. Phys.93(4), 2295–2297 (2003).
[CrossRef]

Eason, R. W.

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004).
[CrossRef]

Ellenbogen, T.

Eng, L. M.

T. Kampfe, P. Reichenbach, M. Schroder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B89(3), 035314 (2014).
[CrossRef]

Fiebig, M.

M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature419(6909), 818–820 (2002).
[CrossRef] [PubMed]

Fontana, M. D.

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
[CrossRef]

R. Hammoum, M. D. Fontana, P. Bourson, and V. Y. Shur, “Characterization of PPLN-microstructures by means of Raman spectroscopy,” Appl. Phys., A Mater. Sci. Process.91(1), 65–67 (2008).
[CrossRef]

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter12(23), 5053–5059 (2000).
[CrossRef]

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997).
[CrossRef]

Fröhlich, D.

M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature419(6909), 818–820 (2002).
[CrossRef] [PubMed]

Furukawa, Y.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998).
[CrossRef]

Galisteo, J.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two-dimensional nonlinear Photonic Crystal with Strong χ(3) Response in the UV Spectral Region,” Adv. Funct. Mater.24(11), 1509–1518 (2014).
[CrossRef]

L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express20(28), 29940–29948 (2012).
[CrossRef] [PubMed]

Ganany-Padowicz, A.

Garcia, B. J.

P. Molina, M. O. Ramirez, B. J. Garcia, and L. E. Bausa, “Directional dependence of the second harmonic response in two-dimensional nonlinear photonic crystals,” Appl. Phys. Lett.96(26), 261111 (2010).
[CrossRef]

P. Molina, M. O. Ramirez, J. Garcia Sole, L. E. Bausa, and B. J. Garcia, “Selective rearrangement of Nd3+ centers in LiNbO3 under ferroelectric domain inversion by electron beam writing,” Phys. Rev. B78(1), 014114 (2008).
[CrossRef]

P. Molina, D. Sarkar, M. O. Ramirez, J. G. Sole, L. E. Bausa, B. J. Garcia, and J. E. M. Santiuste, “Nd3+ ion shift under domain inversion by electron beam writing in LiNbO3,” Appl. Phys. Lett.90(14), 141901 (2007).
[CrossRef]

Garcia Sole, J.

P. Molina, M. O. Ramirez, J. Garcia Sole, L. E. Bausa, and B. J. Garcia, “Selective rearrangement of Nd3+ centers in LiNbO3 under ferroelectric domain inversion by electron beam writing,” Phys. Rev. B78(1), 014114 (2008).
[CrossRef]

Garcia-Santizo, J. V.

P. Molina, M. O. Ramirez, J. V. Garcia-Santizo, S. Alvarez-Garcia, R. Pazik, W. Strek, P. J. Deren, and L. E. Bausa, “Micrometric spatial control of rare earth ion emission in LiNbO3: A two-dimensional multicolor array,” Appl. Phys. Lett.95(5), 051103 (2009).
[CrossRef]

García-Santizo, J. V.

García-Solé, J.

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett.67(25), 3735–3737 (1995).
[CrossRef]

Goltsev, A. V.

M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature419(6909), 818–820 (2002).
[CrossRef] [PubMed]

Gopalan, V.

G. Stone, B. Knorr, V. Gopalan, and V. Dierolf, “Frequency shift of Raman modes due to an applied electric field and domain inversion in LiNbO3,” Phys. Rev. B84(13), 134303 (2011).
[CrossRef]

M. Krishnamurthi, M. O. Ramirez, S. Denev, V. Gopalan, T. M. Lehecka, J. G. Thomas, and Q. X. Jia, “Two dimensional dynamic focusing of laser light by ferroelectric domain based electro-optic lenses,” Appl. Phys. Lett.90(20), 201106 (2007).
[CrossRef]

V. Dierolf, C. Sandmann, S. Kim, V. Gopalan, and K. Polgar, “Ferroelectric domain imaging by defect-luminescence microscopy,” J. Appl. Phys.93(4), 2295–2297 (2003).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998).
[CrossRef]

Hammoum, R.

R. Hammoum, M. D. Fontana, P. Bourson, and V. Y. Shur, “Characterization of PPLN-microstructures by means of Raman spectroscopy,” Appl. Phys., A Mater. Sci. Process.91(1), 65–67 (2008).
[CrossRef]

Haußmann, A.

T. Kampfe, P. Reichenbach, M. Schroder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B89(3), 035314 (2014).
[CrossRef]

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1 Pt 1), 493–508 (2002).
[CrossRef] [PubMed]

Hu, X. P.

H. X. Li, S. Y. Mu, P. Xu, M. L. Zhong, C. D. Chen, X. P. Hu, W. N. Cui, and S. N. Zhu, “Multicolor Cerenkov conical beams generation by cascaded- chi((2)) processes in radially poled nonlinear photonic crystals,” Appl. Phys. Lett.100(10), 101101 (2012).
[CrossRef]

Huber, G.

E. Montoya, J. A. Sanz-Garcia, J. Capmany, L. E. Bausa, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys.87(9), 4056–4062 (2000).
[CrossRef]

Hvam, J. M.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett.73(13), 1814–1816 (1998).
[CrossRef]

Ievlev, A. V.

V. Y. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev, and D. K. Kuznetsov, “Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals,” J. Appl. Phys.110(5), 052013 (2011).
[CrossRef]

Jaffrezic, H.

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett.67(25), 3735–3737 (1995).
[CrossRef]

Jia, Q. X.

M. Krishnamurthi, M. O. Ramirez, S. Denev, V. Gopalan, T. M. Lehecka, J. G. Thomas, and Q. X. Jia, “Two dimensional dynamic focusing of laser light by ferroelectric domain based electro-optic lenses,” Appl. Phys. Lett.90(20), 201106 (2007).
[CrossRef]

Johnston, W. D.

W. D. Johnston and I. P. Kaminow, “Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3,” Phys. Rev.168(3), 1045–1054 (1968).
[CrossRef]

Kaminow, I. P.

W. D. Johnston and I. P. Kaminow, “Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3,” Phys. Rev.168(3), 1045–1054 (1968).
[CrossRef]

Kampfe, T.

T. Kampfe, P. Reichenbach, M. Schroder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B89(3), 035314 (2014).
[CrossRef]

Karlsson, H.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett.73(13), 1814–1816 (1998).
[CrossRef]

Kellner, T.

E. Montoya, J. A. Sanz-Garcia, J. Capmany, L. E. Bausa, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys.87(9), 4056–4062 (2000).
[CrossRef]

Kim, S.

V. Dierolf, C. Sandmann, S. Kim, V. Gopalan, and K. Polgar, “Ferroelectric domain imaging by defect-luminescence microscopy,” J. Appl. Phys.93(4), 2295–2297 (2003).
[CrossRef]

Kitamura, K.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998).
[CrossRef]

Kivshar, Y. S.

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron.45(11), 1465–1472 (2009).
[CrossRef]

Knorr, B.

G. Stone, B. Knorr, V. Gopalan, and V. Dierolf, “Frequency shift of Raman modes due to an applied electric field and domain inversion in LiNbO3,” Phys. Rev. B84(13), 134303 (2011).
[CrossRef]

Koynov, K.

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron.45(11), 1465–1472 (2009).
[CrossRef]

Krishnamurthi, M.

M. Krishnamurthi, M. O. Ramirez, S. Denev, V. Gopalan, T. M. Lehecka, J. G. Thomas, and Q. X. Jia, “Two dimensional dynamic focusing of laser light by ferroelectric domain based electro-optic lenses,” Appl. Phys. Lett.90(20), 201106 (2007).
[CrossRef]

Krolikowski, W.

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron.45(11), 1465–1472 (2009).
[CrossRef]

Kuznetsov, D. K.

V. Y. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev, and D. K. Kuznetsov, “Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals,” J. Appl. Phys.110(5), 052013 (2011).
[CrossRef]

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
[CrossRef]

Laurell, F.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett.73(13), 1814–1816 (1998).
[CrossRef]

Lee, D.

G. Stone, D. Lee, H. Xu, S. R. Phillpot, and V. Dierolf, “Local probing of the interaction between intrinsic defects and ferroelectric domain walls in lithium niobate,” Appl. Phys. Lett.102(4), 042905 (2013).
[CrossRef]

Lehecka, T. M.

M. Krishnamurthi, M. O. Ramirez, S. Denev, V. Gopalan, T. M. Lehecka, J. G. Thomas, and Q. X. Jia, “Two dimensional dynamic focusing of laser light by ferroelectric domain based electro-optic lenses,” Appl. Phys. Lett.90(20), 201106 (2007).
[CrossRef]

Lemanski, K.

Li, H. X.

H. X. Li, S. Y. Mu, P. Xu, M. L. Zhong, C. D. Chen, X. P. Hu, W. N. Cui, and S. N. Zhu, “Multicolor Cerenkov conical beams generation by cascaded- chi((2)) processes in radially poled nonlinear photonic crystals,” Appl. Phys. Lett.100(10), 101101 (2012).
[CrossRef]

López, C.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two-dimensional nonlinear Photonic Crystal with Strong χ(3) Response in the UV Spectral Region,” Adv. Funct. Mater.24(11), 1509–1518 (2014).
[CrossRef]

L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express20(28), 29940–29948 (2012).
[CrossRef] [PubMed]

Lorenzo, A.

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett.67(25), 3735–3737 (1995).
[CrossRef]

Lottermoser, T.

M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature419(6909), 818–820 (2002).
[CrossRef] [PubMed]

Mailis, S.

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004).
[CrossRef]

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1 Pt 1), 493–508 (2002).
[CrossRef] [PubMed]

Malovichko, G.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997).
[CrossRef]

Manotas, S.

E. Montoya, F. Agullo-Rueda, S. Manotas, J. G. Sole, and L. E. Bausa, “Electron-phonon coupling in Yb3+: LiNbO3 laser crystal,” J. Lumin.94-95, 701–705 (2001).
[CrossRef]

Mateos, L.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two-dimensional nonlinear Photonic Crystal with Strong χ(3) Response in the UV Spectral Region,” Adv. Funct. Mater.24(11), 1509–1518 (2014).
[CrossRef]

L. Mateos, L. E. Bausa, and M. O. Ramirez, “Two dimensional ferroelectric domain patterns in Yb3+optically active LiNbO3 fabricated by direct electron beam writing,” Appl. Phys. Lett.102(4), 042910 (2013).
[CrossRef]

L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express20(28), 29940–29948 (2012).
[CrossRef] [PubMed]

L. Mateos, P. Molina, L. E. Bausa, and M. O. Ramirez, “Second harmonic conical waves for symmetry studies in chi((2)) nonlinear photonic crystals,” Appl. Phys. Express4(8), 082202 (2011).
[CrossRef]

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1 Pt 1), 493–508 (2002).
[CrossRef] [PubMed]

Mingaliev, E. A.

V. Y. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev, and D. K. Kuznetsov, “Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals,” J. Appl. Phys.110(5), 052013 (2011).
[CrossRef]

Mitchell, T. E.

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998).
[CrossRef]

Mohler, W. A.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1 Pt 1), 493–508 (2002).
[CrossRef] [PubMed]

Molina, P.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two-dimensional nonlinear Photonic Crystal with Strong χ(3) Response in the UV Spectral Region,” Adv. Funct. Mater.24(11), 1509–1518 (2014).
[CrossRef]

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective Plasmon Enhancement of the 1.08 μm Nd3+ Laser Stark Transition by Tailoring Ag Nanoparticles Chains on a PPLN Y-cut,” Nano Lett.13(10), 4931–4936 (2013).
[CrossRef] [PubMed]

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous Emission and Nonlinear Response Enhancement by Silver Nanoparticles in a Nd³⁺-Doped Periodically Poled LiNbO₃ Laser Crystal,” Adv. Mater.25(6), 910–915 (2013).
[CrossRef] [PubMed]

M. O. Ramirez, P. Molina, and L. E. Bausa, “Multifunctional solid state lasers based on ferroelectric crystals,” Opt. Mater.34(3), 524–535 (2012).
[CrossRef]

L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express20(28), 29940–29948 (2012).
[CrossRef] [PubMed]

L. Mateos, P. Molina, L. E. Bausa, and M. O. Ramirez, “Second harmonic conical waves for symmetry studies in chi((2)) nonlinear photonic crystals,” Appl. Phys. Express4(8), 082202 (2011).
[CrossRef]

P. Molina, M. O. Ramirez, B. J. Garcia, and L. E. Bausa, “Directional dependence of the second harmonic response in two-dimensional nonlinear photonic crystals,” Appl. Phys. Lett.96(26), 261111 (2010).
[CrossRef]

J. V. García-Santizo, P. Molina, M. O. Ramírez, K. Lemanski, W. Strek, P. J. Dereń, and L. E. Bausá, “Rare earth doped ring-shaped luminescent micro-composites on patterned ferroelectrics,” Opt. Express18(17), 18269–18277 (2010).
[CrossRef] [PubMed]

P. Molina, M. O. Ramirez, J. V. Garcia-Santizo, S. Alvarez-Garcia, R. Pazik, W. Strek, P. J. Deren, and L. E. Bausa, “Micrometric spatial control of rare earth ion emission in LiNbO3: A two-dimensional multicolor array,” Appl. Phys. Lett.95(5), 051103 (2009).
[CrossRef]

P. Molina, M. O. Ramirez, J. Garcia Sole, L. E. Bausa, and B. J. Garcia, “Selective rearrangement of Nd3+ centers in LiNbO3 under ferroelectric domain inversion by electron beam writing,” Phys. Rev. B78(1), 014114 (2008).
[CrossRef]

P. Molina, D. Sarkar, M. O. Ramirez, J. G. Sole, L. E. Bausa, B. J. Garcia, and J. E. M. Santiuste, “Nd3+ ion shift under domain inversion by electron beam writing in LiNbO3,” Appl. Phys. Lett.90(14), 141901 (2007).
[CrossRef]

Molotskii, M.

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett.90(10), 107601 (2003).
[CrossRef] [PubMed]

Montoya, E.

E. Montoya, F. Agullo-Rueda, S. Manotas, J. G. Sole, and L. E. Bausa, “Electron-phonon coupling in Yb3+: LiNbO3 laser crystal,” J. Lumin.94-95, 701–705 (2001).
[CrossRef]

E. Montoya, J. A. Sanz-Garcia, J. Capmany, L. E. Bausa, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys.87(9), 4056–4062 (2000).
[CrossRef]

Moubchir, H.

B. M. Assouar, B. Vincent, and H. Moubchir, “Phononic crystals based on LiNbO3 realized using domain inversion by electron-beam irradiation,” IEEE T Ultrason. Ferr.55, 273–278 (2008).

Mouras, R.

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter12(23), 5053–5059 (2000).
[CrossRef]

Mu, S. Y.

H. X. Li, S. Y. Mu, P. Xu, M. L. Zhong, C. D. Chen, X. P. Hu, W. N. Cui, and S. N. Zhu, “Multicolor Cerenkov conical beams generation by cascaded- chi((2)) processes in radially poled nonlinear photonic crystals,” Appl. Phys. Lett.100(10), 101101 (2012).
[CrossRef]

Nebogatikov, M. S.

V. Y. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev, and D. K. Kuznetsov, “Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals,” J. Appl. Phys.110(5), 052013 (2011).
[CrossRef]

Neshev, D. N.

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron.45(11), 1465–1472 (2009).
[CrossRef]

Pazik, R.

P. Molina, M. O. Ramirez, J. V. Garcia-Santizo, S. Alvarez-Garcia, R. Pazik, W. Strek, P. J. Deren, and L. E. Bausa, “Micrometric spatial control of rare earth ion emission in LiNbO3: A two-dimensional multicolor array,” Appl. Phys. Lett.95(5), 051103 (2009).
[CrossRef]

Pedersen, K.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett.73(13), 1814–1816 (1998).
[CrossRef]

Phillpot, S. R.

G. Stone, D. Lee, H. Xu, S. R. Phillpot, and V. Dierolf, “Local probing of the interaction between intrinsic defects and ferroelectric domain walls in lithium niobate,” Appl. Phys. Lett.102(4), 042905 (2013).
[CrossRef]

Pisarev, R. V.

M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature419(6909), 818–820 (2002).
[CrossRef] [PubMed]

Plaza, J. L.

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous Emission and Nonlinear Response Enhancement by Silver Nanoparticles in a Nd³⁺-Doped Periodically Poled LiNbO₃ Laser Crystal,” Adv. Mater.25(6), 910–915 (2013).
[CrossRef] [PubMed]

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective Plasmon Enhancement of the 1.08 μm Nd3+ Laser Stark Transition by Tailoring Ag Nanoparticles Chains on a PPLN Y-cut,” Nano Lett.13(10), 4931–4936 (2013).
[CrossRef] [PubMed]

Polgar, K.

V. Dierolf, C. Sandmann, S. Kim, V. Gopalan, and K. Polgar, “Ferroelectric domain imaging by defect-luminescence microscopy,” J. Appl. Phys.93(4), 2295–2297 (2003).
[CrossRef]

Postnikov, A. V.

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter12(23), 5053–5059 (2000).
[CrossRef]

Ramirez, M. O.

L. Mateos, L. E. Bausa, and M. O. Ramirez, “Two dimensional ferroelectric domain patterns in Yb3+optically active LiNbO3 fabricated by direct electron beam writing,” Appl. Phys. Lett.102(4), 042910 (2013).
[CrossRef]

M. O. Ramirez, P. Molina, and L. E. Bausa, “Multifunctional solid state lasers based on ferroelectric crystals,” Opt. Mater.34(3), 524–535 (2012).
[CrossRef]

L. Mateos, P. Molina, L. E. Bausa, and M. O. Ramirez, “Second harmonic conical waves for symmetry studies in chi((2)) nonlinear photonic crystals,” Appl. Phys. Express4(8), 082202 (2011).
[CrossRef]

P. Molina, M. O. Ramirez, B. J. Garcia, and L. E. Bausa, “Directional dependence of the second harmonic response in two-dimensional nonlinear photonic crystals,” Appl. Phys. Lett.96(26), 261111 (2010).
[CrossRef]

P. Molina, M. O. Ramirez, J. V. Garcia-Santizo, S. Alvarez-Garcia, R. Pazik, W. Strek, P. J. Deren, and L. E. Bausa, “Micrometric spatial control of rare earth ion emission in LiNbO3: A two-dimensional multicolor array,” Appl. Phys. Lett.95(5), 051103 (2009).
[CrossRef]

P. Molina, M. O. Ramirez, J. Garcia Sole, L. E. Bausa, and B. J. Garcia, “Selective rearrangement of Nd3+ centers in LiNbO3 under ferroelectric domain inversion by electron beam writing,” Phys. Rev. B78(1), 014114 (2008).
[CrossRef]

P. Molina, D. Sarkar, M. O. Ramirez, J. G. Sole, L. E. Bausa, B. J. Garcia, and J. E. M. Santiuste, “Nd3+ ion shift under domain inversion by electron beam writing in LiNbO3,” Appl. Phys. Lett.90(14), 141901 (2007).
[CrossRef]

M. Krishnamurthi, M. O. Ramirez, S. Denev, V. Gopalan, T. M. Lehecka, J. G. Thomas, and Q. X. Jia, “Two dimensional dynamic focusing of laser light by ferroelectric domain based electro-optic lenses,” Appl. Phys. Lett.90(20), 201106 (2007).
[CrossRef]

Ramírez, M. O.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two-dimensional nonlinear Photonic Crystal with Strong χ(3) Response in the UV Spectral Region,” Adv. Funct. Mater.24(11), 1509–1518 (2014).
[CrossRef]

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective Plasmon Enhancement of the 1.08 μm Nd3+ Laser Stark Transition by Tailoring Ag Nanoparticles Chains on a PPLN Y-cut,” Nano Lett.13(10), 4931–4936 (2013).
[CrossRef] [PubMed]

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous Emission and Nonlinear Response Enhancement by Silver Nanoparticles in a Nd³⁺-Doped Periodically Poled LiNbO₃ Laser Crystal,” Adv. Mater.25(6), 910–915 (2013).
[CrossRef] [PubMed]

L. Mateos, P. Molina, J. Galisteo, C. López, L. E. Bausá, and M. O. Ramírez, “Simultaneous generation of second to fifth harmonic conical beams in a two dimensional nonlinear photonic crystal,” Opt. Express20(28), 29940–29948 (2012).
[CrossRef] [PubMed]

J. V. García-Santizo, P. Molina, M. O. Ramírez, K. Lemanski, W. Strek, P. J. Dereń, and L. E. Bausá, “Rare earth doped ring-shaped luminescent micro-composites on patterned ferroelectrics,” Opt. Express18(17), 18269–18277 (2010).
[CrossRef] [PubMed]

Reichenbach, P.

T. Kampfe, P. Reichenbach, M. Schroder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B89(3), 035314 (2014).
[CrossRef]

Ren, H.

N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett.100(22), 221103 (2012).
[CrossRef]

Ridah, A.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997).
[CrossRef]

Rosenman, G.

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett.90(10), 107601 (2003).
[CrossRef] [PubMed]

Rosenwaks, Y.

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett.90(10), 107601 (2003).
[CrossRef] [PubMed]

Roux, B.

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett.67(25), 3735–3737 (1995).
[CrossRef]

Saltiel, S. M.

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron.45(11), 1465–1472 (2009).
[CrossRef]

Sandmann, C.

V. Dierolf, C. Sandmann, S. Kim, V. Gopalan, and K. Polgar, “Ferroelectric domain imaging by defect-luminescence microscopy,” J. Appl. Phys.93(4), 2295–2297 (2003).
[CrossRef]

Santiuste, J. E. M.

P. Molina, D. Sarkar, M. O. Ramirez, J. G. Sole, L. E. Bausa, B. J. Garcia, and J. E. M. Santiuste, “Nd3+ ion shift under domain inversion by electron beam writing in LiNbO3,” Appl. Phys. Lett.90(14), 141901 (2007).
[CrossRef]

Sanz-Garcia, J. A.

E. Montoya, J. A. Sanz-Garcia, J. Capmany, L. E. Bausa, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys.87(9), 4056–4062 (2000).
[CrossRef]

Sarkar, D.

P. Molina, D. Sarkar, M. O. Ramirez, J. G. Sole, L. E. Bausa, B. J. Garcia, and J. E. M. Santiuste, “Nd3+ ion shift under domain inversion by electron beam writing in LiNbO3,” Appl. Phys. Lett.90(14), 141901 (2007).
[CrossRef]

Sarmanova, M. F.

V. Y. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev, and D. K. Kuznetsov, “Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals,” J. Appl. Phys.110(5), 052013 (2011).
[CrossRef]

Schroder, M.

T. Kampfe, P. Reichenbach, M. Schroder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B89(3), 035314 (2014).
[CrossRef]

Scott, J. G.

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004).
[CrossRef]

Sheng, Y.

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron.45(11), 1465–1472 (2009).
[CrossRef]

Shibata, H.

Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics304(1), 99–103 (2004).
[CrossRef]

Shimada, S.

Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics304(1), 99–103 (2004).
[CrossRef]

Shimamura, K.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two-dimensional nonlinear Photonic Crystal with Strong χ(3) Response in the UV Spectral Region,” Adv. Funct. Mater.24(11), 1509–1518 (2014).
[CrossRef]

Shur, V. Y.

V. Y. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev, and D. K. Kuznetsov, “Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals,” J. Appl. Phys.110(5), 052013 (2011).
[CrossRef]

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
[CrossRef]

R. Hammoum, M. D. Fontana, P. Bourson, and V. Y. Shur, “Characterization of PPLN-microstructures by means of Raman spectroscopy,” Appl. Phys., A Mater. Sci. Process.91(1), 65–67 (2008).
[CrossRef]

Shvebelman, M.

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett.90(10), 107601 (2003).
[CrossRef] [PubMed]

Skettrup, T.

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett.73(13), 1814–1816 (1998).
[CrossRef]

Soergel, E.

T. Kampfe, P. Reichenbach, M. Schroder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B89(3), 035314 (2014).
[CrossRef]

Sole, J. G.

P. Molina, D. Sarkar, M. O. Ramirez, J. G. Sole, L. E. Bausa, B. J. Garcia, and J. E. M. Santiuste, “Nd3+ ion shift under domain inversion by electron beam writing in LiNbO3,” Appl. Phys. Lett.90(14), 141901 (2007).
[CrossRef]

E. Montoya, F. Agullo-Rueda, S. Manotas, J. G. Sole, and L. E. Bausa, “Electron-phonon coupling in Yb3+: LiNbO3 laser crystal,” J. Lumin.94-95, 701–705 (2001).
[CrossRef]

Sones, C. L.

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004).
[CrossRef]

Stone, G.

G. Stone, D. Lee, H. Xu, S. R. Phillpot, and V. Dierolf, “Local probing of the interaction between intrinsic defects and ferroelectric domain walls in lithium niobate,” Appl. Phys. Lett.102(4), 042905 (2013).
[CrossRef]

G. Stone and V. Dierolf, “Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate,” Opt. Lett.37(6), 1032–1034 (2012).
[CrossRef] [PubMed]

G. Stone, B. Knorr, V. Gopalan, and V. Dierolf, “Frequency shift of Raman modes due to an applied electric field and domain inversion in LiNbO3,” Phys. Rev. B84(13), 134303 (2011).
[CrossRef]

Strek, W.

J. V. García-Santizo, P. Molina, M. O. Ramírez, K. Lemanski, W. Strek, P. J. Dereń, and L. E. Bausá, “Rare earth doped ring-shaped luminescent micro-composites on patterned ferroelectrics,” Opt. Express18(17), 18269–18277 (2010).
[CrossRef] [PubMed]

P. Molina, M. O. Ramirez, J. V. Garcia-Santizo, S. Alvarez-Garcia, R. Pazik, W. Strek, P. J. Deren, and L. E. Bausa, “Micrometric spatial control of rare earth ion emission in LiNbO3: A two-dimensional multicolor array,” Appl. Phys. Lett.95(5), 051103 (2009).
[CrossRef]

Suzuki, S.

Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics304(1), 99–103 (2004).
[CrossRef]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1 Pt 1), 493–508 (2002).
[CrossRef] [PubMed]

Thomas, J. G.

M. Krishnamurthi, M. O. Ramirez, S. Denev, V. Gopalan, T. M. Lehecka, J. G. Thomas, and Q. X. Jia, “Two dimensional dynamic focusing of laser light by ferroelectric domain based electro-optic lenses,” Appl. Phys. Lett.90(20), 201106 (2007).
[CrossRef]

Uesu, Y.

Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics304(1), 99–103 (2004).
[CrossRef]

Urenski, P.

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett.90(10), 107601 (2003).
[CrossRef] [PubMed]

Villora, E. G.

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two-dimensional nonlinear Photonic Crystal with Strong χ(3) Response in the UV Spectral Region,” Adv. Funct. Mater.24(11), 1509–1518 (2014).
[CrossRef]

Vincent, B.

B. M. Assouar, B. Vincent, and H. Moubchir, “Phononic crystals based on LiNbO3 realized using domain inversion by electron-beam irradiation,” IEEE T Ultrason. Ferr.55, 273–278 (2008).

Voloch-Bloch, N.

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron.45(11), 1465–1472 (2009).
[CrossRef]

Woike, T.

T. Kampfe, P. Reichenbach, M. Schroder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B89(3), 035314 (2014).
[CrossRef]

Xu, H.

G. Stone, D. Lee, H. Xu, S. R. Phillpot, and V. Dierolf, “Local probing of the interaction between intrinsic defects and ferroelectric domain walls in lithium niobate,” Appl. Phys. Lett.102(4), 042905 (2013).
[CrossRef]

Xu, P.

H. X. Li, S. Y. Mu, P. Xu, M. L. Zhong, C. D. Chen, X. P. Hu, W. N. Cui, and S. N. Zhu, “Multicolor Cerenkov conical beams generation by cascaded- chi((2)) processes in radially poled nonlinear photonic crystals,” Appl. Phys. Lett.100(10), 101101 (2012).
[CrossRef]

Yraola, E.

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective Plasmon Enhancement of the 1.08 μm Nd3+ Laser Stark Transition by Tailoring Ag Nanoparticles Chains on a PPLN Y-cut,” Nano Lett.13(10), 4931–4936 (2013).
[CrossRef] [PubMed]

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous Emission and Nonlinear Response Enhancement by Silver Nanoparticles in a Nd³⁺-Doped Periodically Poled LiNbO₃ Laser Crystal,” Adv. Mater.25(6), 910–915 (2013).
[CrossRef] [PubMed]

Zelenovskiy, P. S.

V. Y. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev, and D. K. Kuznetsov, “Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals,” J. Appl. Phys.110(5), 052013 (2011).
[CrossRef]

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
[CrossRef]

Zheng, Y.

N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett.100(22), 221103 (2012).
[CrossRef]

Zhong, M. L.

H. X. Li, S. Y. Mu, P. Xu, M. L. Zhong, C. D. Chen, X. P. Hu, W. N. Cui, and S. N. Zhu, “Multicolor Cerenkov conical beams generation by cascaded- chi((2)) processes in radially poled nonlinear photonic crystals,” Appl. Phys. Lett.100(10), 101101 (2012).
[CrossRef]

Zhu, S. N.

H. X. Li, S. Y. Mu, P. Xu, M. L. Zhong, C. D. Chen, X. P. Hu, W. N. Cui, and S. N. Zhu, “Multicolor Cerenkov conical beams generation by cascaded- chi((2)) processes in radially poled nonlinear photonic crystals,” Appl. Phys. Lett.100(10), 101101 (2012).
[CrossRef]

Adv. Funct. Mater. (1)

L. Mateos, M. O. Ramírez, I. Carrasco, P. Molina, J. Galisteo, E. G. Villora, C. de las Heras, K. Shimamura, C. López, and L. E. Bausá, “BaMgF4: an ultra-transparent two-dimensional nonlinear Photonic Crystal with Strong χ(3) Response in the UV Spectral Region,” Adv. Funct. Mater.24(11), 1509–1518 (2014).
[CrossRef]

Adv. Mater. (1)

E. Yraola, P. Molina, J. L. Plaza, M. O. Ramírez, and L. E. Bausá, “Spontaneous Emission and Nonlinear Response Enhancement by Silver Nanoparticles in a Nd³⁺-Doped Periodically Poled LiNbO₃ Laser Crystal,” Adv. Mater.25(6), 910–915 (2013).
[CrossRef] [PubMed]

Appl. Phys. Express (1)

L. Mateos, P. Molina, L. E. Bausa, and M. O. Ramirez, “Second harmonic conical waves for symmetry studies in chi((2)) nonlinear photonic crystals,” Appl. Phys. Express4(8), 082202 (2011).
[CrossRef]

Appl. Phys. Lett. (12)

P. Molina, M. O. Ramirez, B. J. Garcia, and L. E. Bausa, “Directional dependence of the second harmonic response in two-dimensional nonlinear photonic crystals,” Appl. Phys. Lett.96(26), 261111 (2010).
[CrossRef]

N. An, H. Ren, Y. Zheng, X. Deng, and X. Chen, “Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal,” Appl. Phys. Lett.100(22), 221103 (2012).
[CrossRef]

G. Stone, D. Lee, H. Xu, S. R. Phillpot, and V. Dierolf, “Local probing of the interaction between intrinsic defects and ferroelectric domain walls in lithium niobate,” Appl. Phys. Lett.102(4), 042905 (2013).
[CrossRef]

A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, and J. García-Solé, “Lattice location of rare-earth ions in LiNbO3,” Appl. Phys. Lett.67(25), 3735–3737 (1995).
[CrossRef]

P. Molina, D. Sarkar, M. O. Ramirez, J. G. Sole, L. E. Bausa, B. J. Garcia, and J. E. M. Santiuste, “Nd3+ ion shift under domain inversion by electron beam writing in LiNbO3,” Appl. Phys. Lett.90(14), 141901 (2007).
[CrossRef]

S. I. Bozhevolnyi, J. M. Hvam, K. Pedersen, F. Laurell, H. Karlsson, T. Skettrup, and M. Belmonte, “Second-harmonic imaging of ferroelectric domain walls,” Appl. Phys. Lett.73(13), 1814–1816 (1998).
[CrossRef]

M. Krishnamurthi, M. O. Ramirez, S. Denev, V. Gopalan, T. M. Lehecka, J. G. Thomas, and Q. X. Jia, “Two dimensional dynamic focusing of laser light by ferroelectric domain based electro-optic lenses,” Appl. Phys. Lett.90(20), 201106 (2007).
[CrossRef]

H. X. Li, S. Y. Mu, P. Xu, M. L. Zhong, C. D. Chen, X. P. Hu, W. N. Cui, and S. N. Zhu, “Multicolor Cerenkov conical beams generation by cascaded- chi((2)) processes in radially poled nonlinear photonic crystals,” Appl. Phys. Lett.100(10), 101101 (2012).
[CrossRef]

P. Molina, M. O. Ramirez, J. V. Garcia-Santizo, S. Alvarez-Garcia, R. Pazik, W. Strek, P. J. Deren, and L. E. Bausa, “Micrometric spatial control of rare earth ion emission in LiNbO3: A two-dimensional multicolor array,” Appl. Phys. Lett.95(5), 051103 (2009).
[CrossRef]

J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+ doped aperiodically poled lithium niobate,” Appl. Phys. Lett.78(2), 144–146 (2001).
[CrossRef]

L. Mateos, L. E. Bausa, and M. O. Ramirez, “Two dimensional ferroelectric domain patterns in Yb3+optically active LiNbO3 fabricated by direct electron beam writing,” Appl. Phys. Lett.102(4), 042910 (2013).
[CrossRef]

V. Gopalan, T. E. Mitchell, Y. Furukawa, and K. Kitamura, “The role of nonstoichiometry in 180 degrees domain switching of LiNbO3 crystals,” Appl. Phys. Lett.72(16), 1981–1983 (1998).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (3)

P. S. Zelenovskiy, M. D. Fontana, V. Y. Shur, P. Bourson, and D. K. Kuznetsov, “Raman visualization of micro- and nanoscale domain structures in lithium niobate,” Appl. Phys., A Mater. Sci. Process.99(4), 741–744 (2010).
[CrossRef]

J. G. Scott, S. Mailis, C. L. Sones, and R. W. Eason, “A Raman study of single-crystal congruent lithium niobate following electric-field repoling,” Appl. Phys., A Mater. Sci. Process.79(3), 691–696 (2004).
[CrossRef]

R. Hammoum, M. D. Fontana, P. Bourson, and V. Y. Shur, “Characterization of PPLN-microstructures by means of Raman spectroscopy,” Appl. Phys., A Mater. Sci. Process.91(1), 65–67 (2008).
[CrossRef]

Biophys. J. (1)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1 Pt 1), 493–508 (2002).
[CrossRef] [PubMed]

Ferroelectrics (1)

Y. Uesu, H. Shibata, S. Suzuki, and S. Shimada, “3D images of inverted domain structure in LiNbO3 using SHG interference microscope,” Ferroelectrics304(1), 99–103 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron.45(11), 1465–1472 (2009).
[CrossRef]

IEEE T Ultrason. Ferr. (1)

B. M. Assouar, B. Vincent, and H. Moubchir, “Phononic crystals based on LiNbO3 realized using domain inversion by electron-beam irradiation,” IEEE T Ultrason. Ferr.55, 273–278 (2008).

J. Appl. Phys. (3)

V. Dierolf, C. Sandmann, S. Kim, V. Gopalan, and K. Polgar, “Ferroelectric domain imaging by defect-luminescence microscopy,” J. Appl. Phys.93(4), 2295–2297 (2003).
[CrossRef]

V. Y. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev, and D. K. Kuznetsov, “Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals,” J. Appl. Phys.110(5), 052013 (2011).
[CrossRef]

E. Montoya, J. A. Sanz-Garcia, J. Capmany, L. E. Bausa, A. Diening, T. Kellner, and G. Huber, “Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3,” J. Appl. Phys.87(9), 4056–4062 (2000).
[CrossRef]

J. Lumin. (1)

E. Montoya, F. Agullo-Rueda, S. Manotas, J. G. Sole, and L. E. Bausa, “Electron-phonon coupling in Yb3+: LiNbO3 laser crystal,” J. Lumin.94-95, 701–705 (2001).
[CrossRef]

J. Phys. Condens. Matter (2)

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter9(44), 9687–9693 (1997).
[CrossRef]

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter12(23), 5053–5059 (2000).
[CrossRef]

Nano Lett. (1)

P. Molina, E. Yraola, M. O. Ramírez, J. L. Plaza, C. de las Heras, and L. E. Bausá, “Selective Plasmon Enhancement of the 1.08 μm Nd3+ Laser Stark Transition by Tailoring Ag Nanoparticles Chains on a PPLN Y-cut,” Nano Lett.13(10), 4931–4936 (2013).
[CrossRef] [PubMed]

Nature (1)

M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature419(6909), 818–820 (2002).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

M. O. Ramirez, P. Molina, and L. E. Bausa, “Multifunctional solid state lasers based on ferroelectric crystals,” Opt. Mater.34(3), 524–535 (2012).
[CrossRef]

Phys. Rev. (1)

W. D. Johnston and I. P. Kaminow, “Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3,” Phys. Rev.168(3), 1045–1054 (1968).
[CrossRef]

Phys. Rev. B (3)

G. Stone, B. Knorr, V. Gopalan, and V. Dierolf, “Frequency shift of Raman modes due to an applied electric field and domain inversion in LiNbO3,” Phys. Rev. B84(13), 134303 (2011).
[CrossRef]

T. Kampfe, P. Reichenbach, M. Schroder, A. Haußmann, L. M. Eng, T. Woike, and E. Soergel, “Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation,” Phys. Rev. B89(3), 035314 (2014).
[CrossRef]

P. Molina, M. O. Ramirez, J. Garcia Sole, L. E. Bausa, and B. J. Garcia, “Selective rearrangement of Nd3+ centers in LiNbO3 under ferroelectric domain inversion by electron beam writing,” Phys. Rev. B78(1), 014114 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, and Y. Rosenwaks, “Ferroelectric domain breakdown,” Phys. Rev. Lett.90(10), 107601 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SEM images of large areas of regular alternate ferroelectric domains ordered in a two dimensional geometry (square lattice). The diameter of the inverted domains was (a) 10 μm, (b) 3 μm and (c) 1 μm. The separation between adjacent domains was 30μm, 3μm and 1μm, respectively.

Fig. 2
Fig. 2

SEM images of a square lattice of hexagonal shaped inverted ferroelectric domains after selective chemical etching. (a) Non irradiated + Z face. (b) irradiated –Z face. The period of the nonlinear structure is Λ = 6 μm; the average diameter of the irradiated zones equal to 3μm. The electronic charge density was fixed at 1000 μC/cm2 (c) Square lattice of sub-micrometer inverted domains in Yb3+:LiNbO3 crystal. The period is Λ = 2 μm with average diameter of the inverted domains equal to 700 nm. The corresponding charge density value was 1800 μC/cm2 (d) Detailed view of two aligned sub-micrometer (~500 nm) inverted domains. (e) SEM image of an individual hexagonal shaped submicrometric domain (~200 nm).The orientation of the crystallographic axis is marked in the figure.

Fig. 3
Fig. 3

Unpolarized micro-Raman spectra obtained from a Z-cut Yb3+ doped LiNbO3 when the excitation/collection beam was focused at domain wall (blue line), center of the inverted hexagonal domain (red line) and the original (non inverted) area (black line). The observed Raman modes are labeled on the spectra.

Fig. 4
Fig. 4

(a) Raman spatial maps showing the domain walls after analyzing the intensity of the E(TO)7 and E(TO)9 modes. (b) Raman spatial maps after analyzing the frequency shift of the A(LO)2 and E(TO)1 optical phonons. The corresponding scale bar for the frequency shift is shown below the images. (c) Detailed view of the E(TO)9 Raman mode collected at domain walls and non inverted area. (d) Detailed view of the E(TO)1 Raman mode collected at the hexagonal inverted and original (non inverted) areas.

Fig. 5
Fig. 5

(a) Emission spectrum obtained from a z-cut Yb3+ doped LiNbO3 crystal under excitation at 920 nm. (b) Energy level scheme of Yb3+ ions in LiNbO3. The main optical transitions are highlighted with arrows. Absorption lines (blue arrows), emission lines (red arrows). (c) Fluorescence map of a hexagonal domain obtained after plotting the frequency shift of the 2F5/2(0') →2F7/2 (2) optical transition centered around 1030 nm. (d) Fluorescence map of the same inverted domain associated with the frequency shift of the 2F5/2(0') →2F7/2 (3) optical transition centered around 1060 nm. Dotted lines are guide for the eye.

Fig. 6
Fig. 6

(a) Micrometric spatial map obtained for an individual hexagonal ferroelectric domain when the SHG intensity was analyzed in confocal back reflection geometry. (b) Integrated SHG intensity scanned across the diameter of the inverted domain.

Metrics