Abstract

The rheological properties of polyimide film surfaces have an important influence on contrast reduction during the in-plane switching mode of liquid crystal displays. To clarify these properties, the slight difference of deviation angles of liquid crystal directors from the rubbing direction were measured during prolonged exposure to alternating electric fields. The results indicate that the data can be well described using the Kelvin-Voigt model. The relation between the in-plane shear modulus G and the strain at the polyimide surface was also investigated based on the torque balance between the energy density of the electric field and the elastic energy density of the polyimide surface. It was found that much smaller G than bulk polyimide materials existed on the polyimide surface in liquid crystal display.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67, 3895–3897 (1995).
    [CrossRef]
  2. M. Oh-e, M. Ohta, S. Aratani, and K. Kondo, “Principles and characteristics of electro-optical behavior with in-plane switching mode,” The 15th IDRC (Asia Display ’95), 577–580 (1995).
  3. Z. Tajima, “IPS-TFT-LCDs technology trends,” Asia Display/IMID ’04 Dig., 15–17 (2004).
  4. S. L. Wright, “IBM 9.2-Megapixel flat-panel display: technology and infrastructure,” IBM Research Report, RC22363(W0203-023), March 8 (2002).
  5. T. Ueki, “Requirements for large-sized high-resolution TFT-LCDs,” J. Soc. Inf. Display, 9, 151–154 (2001).
    [CrossRef]
  6. Y. Nagae, “Recent trends in wide-viewing angle color TFT-LCDs,”, Proc. SPIE, 4079, 152–159 (2000).
    [CrossRef]
  7. M. Mizusaki, T. Miyashita, and T. Uchida, “Behavior of ion affecting image sticking on liquid crystal displays under application of direct current voltage,” J. Appl. Phys.108,104903 (2010).
    [CrossRef]
  8. M. Mizusaki, T. Miyashita, and T. Uchida, “Kinetic analysis of image sticking with adsorption and desorption of ions to a surface of an alignment layer,” J. Appl. Phys.112,044510 (2012).
    [CrossRef]
  9. M. Mizusaki, T. Miyashita, and T. Uchida, “The mechanism of image sticking on LCD and its evaluation parameters related to LC and alignment materials,” SID Symp. Dig. Tech. Pap.37, 673–676 (2006).
    [CrossRef]
  10. S. -C. Park, K. -H. Lim, S. -H. Choi, and H. -S. Soh, “Quantitative analysis of image Sticking in LCDs,” SID Symp. Dig. Tech. Pap.38, 1042–1045 (2007).
    [CrossRef]
  11. H. J. Park, L. Lai, S. H. Lin, and K. H. Yang, “Analysis of IPS mura, image-sticking and flicker caused by internal DC effects,” SID Symp. Dig. Tech. Pap.34, 204–207 (2003).
    [CrossRef]
  12. S. Naemura, “Liquid-crystal-material technologies for advanced display applications,” J. Soc. Inf. Display8, 5–9 (2000).
    [CrossRef]
  13. Y. Park, S. Kim, and E. Lee, “A study on reducing image-sticking artifacts in wide-screen TFT-LCD monitors,” J. Soc. Inf. Display, 15, 969–973 (2007).
    [CrossRef]
  14. V. P. Vorflusev, H.-S. Kitzerow, and V. G. Chigrinov, “Azimuthal surface gliding of a nematic liquid crystal,” Appl. Phys. Lett.70, 3359–3361 (1997).
    [CrossRef]
  15. R. Yamaguchi and S. Sato, “Tortional torque effects of twisted nematic bulk on the polymer surface alignment,” Mol. Cryst. and Liq. Cryst.367, 379–386 (2001).
    [CrossRef]
  16. E. A. Oliveira, A.M. Figueiredo Neto, and G. Durand, “Gliding anchoring of lyotropic nematic liquid crystals on amorphous glass surfaces,” Phys. Rev. A, 44, R825–R827 (1991).
    [CrossRef] [PubMed]
  17. Y. Ouchi, M. B. Feller, T. Moses, and Y. R. Shen, “Surface memory effect at the liquid-crystal-polymer interface,” Phys. Rev. Lett.68, 3040–3043 (1992).
    [CrossRef] [PubMed]
  18. P. Vetter, Y. Ohmura, and T. Uchida, “Study of memory alignment of nematic liquid crystals on polyvinyl alcohol coatings,” Jpn. J. App. Phys.32, L1239–L1241 (1993).
    [CrossRef]
  19. R. Barberi, I. Dozov, M. Giocondo, M. Iovane, Ph. Martinot-Lagarde, D. Stoenescu, S. Tonchev, and L. V. Tsonev, “Azimuthal anchoring of nematic on undulated substrate: elasticity versus memory,” Eur. Phys. J.B6,83–91 (1998).
    [CrossRef]
  20. S. Faetti, M. Nobili, and I. Raggi, “Surface reorientation dynamics of nematic liquid crystals,” Eur. Phys. J.B11,445–453 (1999).
    [CrossRef]
  21. I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, Ph. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett., 77, 4124–4126 (2000).
    [CrossRef]
  22. D. N. Stoenescu, I. Dozov, and Ph. Martinot-Lagarde, “Long-time behavior of the azimuthal anchoring strength and easy axis gliding of nematic liquid crystal,” Mol. Cryst. Liq. Cryst., 351, 427–434 (2000).
    [CrossRef]
  23. A. Romanenko, V. Reshetnyak, I. Pinkevich, I. Dozov, and S. Faetti, “Magnetic field induced director reorientation in the nematic cell with time-dependent anchoring due to adsorption/desorption of LC molecules,” Mol. Cryst. Liq. Crystl, 439, 1867–1888, (2005).
  24. Y. Momoi, K. Tamai, K. Furuta, T. -R. Lee, K. -J. Kim, C. -H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Display18, 134–140 (2010).
    [CrossRef]
  25. T. Suzuki, J. Matsushima, Y. Sakaki, M. Sugimoto, H. Tanaka, C. Mizoguchi, S. Onda, K. Mimura, and K. Sumiyoshi, “High contrast ratio in-plane-switching TFT-LCD with ion beam irradiated polyimide film as LC alignment layer,” IDW/ASIA DISPLAY Dig., 57–60 (2005).
  26. J. Stöhr, M.G. Samant, A. Cossy-Favre, J. Diaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic origin of liquid crystal alignment on rubbed polymer surfaces,” Macromolecules31, 1942–1946 (1998).
    [CrossRef]
  27. E. Gutierrez and A. Groisman, “Measurements of elastic moduli of silicone gel substrates with a microfluidic device”, PLoS ONE6,e25534 (2011).
    [CrossRef] [PubMed]
  28. M. Fukuhara and A. Sampei, “Temperature dependence of elastic moduli and internal dilational and shear frictions of polyimide,” J. Polym. Sci., Part B, Polym. Phys., 34, 1579–1582 (1996).
    [CrossRef]
  29. S. H. Cho, G. Kim, T. J. McCarthy, and R. J. Farris, “Orthotropic elastic constants for polyimide film,” Polym. Eng. Sci., 41, 301–307 (2001).
    [CrossRef]
  30. M. Kwak, D. Han, H. Kwon, S. Choi, Y. Choi, D. Koo, K. Kim, and B. Kim, “Studies of the directional property on rubbed alignment films by rubbing condition,” Mol. Cryst. Liq. Cryst.546, 1481–1486 (2011).
    [CrossRef]

2012 (1)

M. Mizusaki, T. Miyashita, and T. Uchida, “Kinetic analysis of image sticking with adsorption and desorption of ions to a surface of an alignment layer,” J. Appl. Phys.112,044510 (2012).
[CrossRef]

2011 (2)

E. Gutierrez and A. Groisman, “Measurements of elastic moduli of silicone gel substrates with a microfluidic device”, PLoS ONE6,e25534 (2011).
[CrossRef] [PubMed]

M. Kwak, D. Han, H. Kwon, S. Choi, Y. Choi, D. Koo, K. Kim, and B. Kim, “Studies of the directional property on rubbed alignment films by rubbing condition,” Mol. Cryst. Liq. Cryst.546, 1481–1486 (2011).
[CrossRef]

2010 (2)

Y. Momoi, K. Tamai, K. Furuta, T. -R. Lee, K. -J. Kim, C. -H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Display18, 134–140 (2010).
[CrossRef]

M. Mizusaki, T. Miyashita, and T. Uchida, “Behavior of ion affecting image sticking on liquid crystal displays under application of direct current voltage,” J. Appl. Phys.108,104903 (2010).
[CrossRef]

2007 (2)

S. -C. Park, K. -H. Lim, S. -H. Choi, and H. -S. Soh, “Quantitative analysis of image Sticking in LCDs,” SID Symp. Dig. Tech. Pap.38, 1042–1045 (2007).
[CrossRef]

Y. Park, S. Kim, and E. Lee, “A study on reducing image-sticking artifacts in wide-screen TFT-LCD monitors,” J. Soc. Inf. Display, 15, 969–973 (2007).
[CrossRef]

2006 (1)

M. Mizusaki, T. Miyashita, and T. Uchida, “The mechanism of image sticking on LCD and its evaluation parameters related to LC and alignment materials,” SID Symp. Dig. Tech. Pap.37, 673–676 (2006).
[CrossRef]

2005 (1)

A. Romanenko, V. Reshetnyak, I. Pinkevich, I. Dozov, and S. Faetti, “Magnetic field induced director reorientation in the nematic cell with time-dependent anchoring due to adsorption/desorption of LC molecules,” Mol. Cryst. Liq. Crystl, 439, 1867–1888, (2005).

2003 (1)

H. J. Park, L. Lai, S. H. Lin, and K. H. Yang, “Analysis of IPS mura, image-sticking and flicker caused by internal DC effects,” SID Symp. Dig. Tech. Pap.34, 204–207 (2003).
[CrossRef]

2001 (3)

T. Ueki, “Requirements for large-sized high-resolution TFT-LCDs,” J. Soc. Inf. Display, 9, 151–154 (2001).
[CrossRef]

R. Yamaguchi and S. Sato, “Tortional torque effects of twisted nematic bulk on the polymer surface alignment,” Mol. Cryst. and Liq. Cryst.367, 379–386 (2001).
[CrossRef]

S. H. Cho, G. Kim, T. J. McCarthy, and R. J. Farris, “Orthotropic elastic constants for polyimide film,” Polym. Eng. Sci., 41, 301–307 (2001).
[CrossRef]

2000 (4)

I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, Ph. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett., 77, 4124–4126 (2000).
[CrossRef]

D. N. Stoenescu, I. Dozov, and Ph. Martinot-Lagarde, “Long-time behavior of the azimuthal anchoring strength and easy axis gliding of nematic liquid crystal,” Mol. Cryst. Liq. Cryst., 351, 427–434 (2000).
[CrossRef]

Y. Nagae, “Recent trends in wide-viewing angle color TFT-LCDs,”, Proc. SPIE, 4079, 152–159 (2000).
[CrossRef]

S. Naemura, “Liquid-crystal-material technologies for advanced display applications,” J. Soc. Inf. Display8, 5–9 (2000).
[CrossRef]

1999 (1)

S. Faetti, M. Nobili, and I. Raggi, “Surface reorientation dynamics of nematic liquid crystals,” Eur. Phys. J.B11,445–453 (1999).
[CrossRef]

1998 (2)

R. Barberi, I. Dozov, M. Giocondo, M. Iovane, Ph. Martinot-Lagarde, D. Stoenescu, S. Tonchev, and L. V. Tsonev, “Azimuthal anchoring of nematic on undulated substrate: elasticity versus memory,” Eur. Phys. J.B6,83–91 (1998).
[CrossRef]

J. Stöhr, M.G. Samant, A. Cossy-Favre, J. Diaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic origin of liquid crystal alignment on rubbed polymer surfaces,” Macromolecules31, 1942–1946 (1998).
[CrossRef]

1997 (1)

V. P. Vorflusev, H.-S. Kitzerow, and V. G. Chigrinov, “Azimuthal surface gliding of a nematic liquid crystal,” Appl. Phys. Lett.70, 3359–3361 (1997).
[CrossRef]

1996 (1)

M. Fukuhara and A. Sampei, “Temperature dependence of elastic moduli and internal dilational and shear frictions of polyimide,” J. Polym. Sci., Part B, Polym. Phys., 34, 1579–1582 (1996).
[CrossRef]

1995 (1)

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67, 3895–3897 (1995).
[CrossRef]

1993 (1)

P. Vetter, Y. Ohmura, and T. Uchida, “Study of memory alignment of nematic liquid crystals on polyvinyl alcohol coatings,” Jpn. J. App. Phys.32, L1239–L1241 (1993).
[CrossRef]

1992 (1)

Y. Ouchi, M. B. Feller, T. Moses, and Y. R. Shen, “Surface memory effect at the liquid-crystal-polymer interface,” Phys. Rev. Lett.68, 3040–3043 (1992).
[CrossRef] [PubMed]

1991 (1)

E. A. Oliveira, A.M. Figueiredo Neto, and G. Durand, “Gliding anchoring of lyotropic nematic liquid crystals on amorphous glass surfaces,” Phys. Rev. A, 44, R825–R827 (1991).
[CrossRef] [PubMed]

Aratani, S.

M. Oh-e, M. Ohta, S. Aratani, and K. Kondo, “Principles and characteristics of electro-optical behavior with in-plane switching mode,” The 15th IDRC (Asia Display ’95), 577–580 (1995).

Barberi, R.

R. Barberi, I. Dozov, M. Giocondo, M. Iovane, Ph. Martinot-Lagarde, D. Stoenescu, S. Tonchev, and L. V. Tsonev, “Azimuthal anchoring of nematic on undulated substrate: elasticity versus memory,” Eur. Phys. J.B6,83–91 (1998).
[CrossRef]

Chigrinov, V. G.

V. P. Vorflusev, H.-S. Kitzerow, and V. G. Chigrinov, “Azimuthal surface gliding of a nematic liquid crystal,” Appl. Phys. Lett.70, 3359–3361 (1997).
[CrossRef]

Cho, S. H.

S. H. Cho, G. Kim, T. J. McCarthy, and R. J. Farris, “Orthotropic elastic constants for polyimide film,” Polym. Eng. Sci., 41, 301–307 (2001).
[CrossRef]

Choi, S.

M. Kwak, D. Han, H. Kwon, S. Choi, Y. Choi, D. Koo, K. Kim, and B. Kim, “Studies of the directional property on rubbed alignment films by rubbing condition,” Mol. Cryst. Liq. Cryst.546, 1481–1486 (2011).
[CrossRef]

Choi, S. -H.

S. -C. Park, K. -H. Lim, S. -H. Choi, and H. -S. Soh, “Quantitative analysis of image Sticking in LCDs,” SID Symp. Dig. Tech. Pap.38, 1042–1045 (2007).
[CrossRef]

Choi, Y.

M. Kwak, D. Han, H. Kwon, S. Choi, Y. Choi, D. Koo, K. Kim, and B. Kim, “Studies of the directional property on rubbed alignment films by rubbing condition,” Mol. Cryst. Liq. Cryst.546, 1481–1486 (2011).
[CrossRef]

Cossy-Favre, A.

J. Stöhr, M.G. Samant, A. Cossy-Favre, J. Diaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic origin of liquid crystal alignment on rubbed polymer surfaces,” Macromolecules31, 1942–1946 (1998).
[CrossRef]

Diaz, J.

J. Stöhr, M.G. Samant, A. Cossy-Favre, J. Diaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic origin of liquid crystal alignment on rubbed polymer surfaces,” Macromolecules31, 1942–1946 (1998).
[CrossRef]

Dozov, I.

A. Romanenko, V. Reshetnyak, I. Pinkevich, I. Dozov, and S. Faetti, “Magnetic field induced director reorientation in the nematic cell with time-dependent anchoring due to adsorption/desorption of LC molecules,” Mol. Cryst. Liq. Crystl, 439, 1867–1888, (2005).

I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, Ph. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett., 77, 4124–4126 (2000).
[CrossRef]

D. N. Stoenescu, I. Dozov, and Ph. Martinot-Lagarde, “Long-time behavior of the azimuthal anchoring strength and easy axis gliding of nematic liquid crystal,” Mol. Cryst. Liq. Cryst., 351, 427–434 (2000).
[CrossRef]

R. Barberi, I. Dozov, M. Giocondo, M. Iovane, Ph. Martinot-Lagarde, D. Stoenescu, S. Tonchev, and L. V. Tsonev, “Azimuthal anchoring of nematic on undulated substrate: elasticity versus memory,” Eur. Phys. J.B6,83–91 (1998).
[CrossRef]

Durand, G.

E. A. Oliveira, A.M. Figueiredo Neto, and G. Durand, “Gliding anchoring of lyotropic nematic liquid crystals on amorphous glass surfaces,” Phys. Rev. A, 44, R825–R827 (1991).
[CrossRef] [PubMed]

Faetti, S.

A. Romanenko, V. Reshetnyak, I. Pinkevich, I. Dozov, and S. Faetti, “Magnetic field induced director reorientation in the nematic cell with time-dependent anchoring due to adsorption/desorption of LC molecules,” Mol. Cryst. Liq. Crystl, 439, 1867–1888, (2005).

S. Faetti, M. Nobili, and I. Raggi, “Surface reorientation dynamics of nematic liquid crystals,” Eur. Phys. J.B11,445–453 (1999).
[CrossRef]

Farris, R. J.

S. H. Cho, G. Kim, T. J. McCarthy, and R. J. Farris, “Orthotropic elastic constants for polyimide film,” Polym. Eng. Sci., 41, 301–307 (2001).
[CrossRef]

Feller, M. B.

Y. Ouchi, M. B. Feller, T. Moses, and Y. R. Shen, “Surface memory effect at the liquid-crystal-polymer interface,” Phys. Rev. Lett.68, 3040–3043 (1992).
[CrossRef] [PubMed]

Figueiredo Neto, A.M.

E. A. Oliveira, A.M. Figueiredo Neto, and G. Durand, “Gliding anchoring of lyotropic nematic liquid crystals on amorphous glass surfaces,” Phys. Rev. A, 44, R825–R827 (1991).
[CrossRef] [PubMed]

Fukuhara, M.

M. Fukuhara and A. Sampei, “Temperature dependence of elastic moduli and internal dilational and shear frictions of polyimide,” J. Polym. Sci., Part B, Polym. Phys., 34, 1579–1582 (1996).
[CrossRef]

Furuta, K.

Y. Momoi, K. Tamai, K. Furuta, T. -R. Lee, K. -J. Kim, C. -H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Display18, 134–140 (2010).
[CrossRef]

Giocondo, M.

R. Barberi, I. Dozov, M. Giocondo, M. Iovane, Ph. Martinot-Lagarde, D. Stoenescu, S. Tonchev, and L. V. Tsonev, “Azimuthal anchoring of nematic on undulated substrate: elasticity versus memory,” Eur. Phys. J.B6,83–91 (1998).
[CrossRef]

Groisman, A.

E. Gutierrez and A. Groisman, “Measurements of elastic moduli of silicone gel substrates with a microfluidic device”, PLoS ONE6,e25534 (2011).
[CrossRef] [PubMed]

Gutierrez, E.

E. Gutierrez and A. Groisman, “Measurements of elastic moduli of silicone gel substrates with a microfluidic device”, PLoS ONE6,e25534 (2011).
[CrossRef] [PubMed]

Han, D.

M. Kwak, D. Han, H. Kwon, S. Choi, Y. Choi, D. Koo, K. Kim, and B. Kim, “Studies of the directional property on rubbed alignment films by rubbing condition,” Mol. Cryst. Liq. Cryst.546, 1481–1486 (2011).
[CrossRef]

Iovane, M.

R. Barberi, I. Dozov, M. Giocondo, M. Iovane, Ph. Martinot-Lagarde, D. Stoenescu, S. Tonchev, and L. V. Tsonev, “Azimuthal anchoring of nematic on undulated substrate: elasticity versus memory,” Eur. Phys. J.B6,83–91 (1998).
[CrossRef]

Kim, B.

M. Kwak, D. Han, H. Kwon, S. Choi, Y. Choi, D. Koo, K. Kim, and B. Kim, “Studies of the directional property on rubbed alignment films by rubbing condition,” Mol. Cryst. Liq. Cryst.546, 1481–1486 (2011).
[CrossRef]

Kim, G.

S. H. Cho, G. Kim, T. J. McCarthy, and R. J. Farris, “Orthotropic elastic constants for polyimide film,” Polym. Eng. Sci., 41, 301–307 (2001).
[CrossRef]

Kim, K.

M. Kwak, D. Han, H. Kwon, S. Choi, Y. Choi, D. Koo, K. Kim, and B. Kim, “Studies of the directional property on rubbed alignment films by rubbing condition,” Mol. Cryst. Liq. Cryst.546, 1481–1486 (2011).
[CrossRef]

Kim, K. -J.

Y. Momoi, K. Tamai, K. Furuta, T. -R. Lee, K. -J. Kim, C. -H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Display18, 134–140 (2010).
[CrossRef]

Kim, S.

Y. Park, S. Kim, and E. Lee, “A study on reducing image-sticking artifacts in wide-screen TFT-LCD monitors,” J. Soc. Inf. Display, 15, 969–973 (2007).
[CrossRef]

Kitzerow, H.-S.

V. P. Vorflusev, H.-S. Kitzerow, and V. G. Chigrinov, “Azimuthal surface gliding of a nematic liquid crystal,” Appl. Phys. Lett.70, 3359–3361 (1997).
[CrossRef]

Koda, T.

Y. Momoi, K. Tamai, K. Furuta, T. -R. Lee, K. -J. Kim, C. -H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Display18, 134–140 (2010).
[CrossRef]

Kondo, K.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67, 3895–3897 (1995).
[CrossRef]

M. Oh-e, M. Ohta, S. Aratani, and K. Kondo, “Principles and characteristics of electro-optical behavior with in-plane switching mode,” The 15th IDRC (Asia Display ’95), 577–580 (1995).

Koo, D.

M. Kwak, D. Han, H. Kwon, S. Choi, Y. Choi, D. Koo, K. Kim, and B. Kim, “Studies of the directional property on rubbed alignment films by rubbing condition,” Mol. Cryst. Liq. Cryst.546, 1481–1486 (2011).
[CrossRef]

Kwak, M.

M. Kwak, D. Han, H. Kwon, S. Choi, Y. Choi, D. Koo, K. Kim, and B. Kim, “Studies of the directional property on rubbed alignment films by rubbing condition,” Mol. Cryst. Liq. Cryst.546, 1481–1486 (2011).
[CrossRef]

Kwon, H.

M. Kwak, D. Han, H. Kwon, S. Choi, Y. Choi, D. Koo, K. Kim, and B. Kim, “Studies of the directional property on rubbed alignment films by rubbing condition,” Mol. Cryst. Liq. Cryst.546, 1481–1486 (2011).
[CrossRef]

Lai, L.

H. J. Park, L. Lai, S. H. Lin, and K. H. Yang, “Analysis of IPS mura, image-sticking and flicker caused by internal DC effects,” SID Symp. Dig. Tech. Pap.34, 204–207 (2003).
[CrossRef]

Lamarque-Forget, S.

I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, Ph. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett., 77, 4124–4126 (2000).
[CrossRef]

Lee, E.

Y. Park, S. Kim, and E. Lee, “A study on reducing image-sticking artifacts in wide-screen TFT-LCD monitors,” J. Soc. Inf. Display, 15, 969–973 (2007).
[CrossRef]

Lee, T. -R.

Y. Momoi, K. Tamai, K. Furuta, T. -R. Lee, K. -J. Kim, C. -H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Display18, 134–140 (2010).
[CrossRef]

Lim, K. -H.

S. -C. Park, K. -H. Lim, S. -H. Choi, and H. -S. Soh, “Quantitative analysis of image Sticking in LCDs,” SID Symp. Dig. Tech. Pap.38, 1042–1045 (2007).
[CrossRef]

Lin, S. H.

H. J. Park, L. Lai, S. H. Lin, and K. H. Yang, “Analysis of IPS mura, image-sticking and flicker caused by internal DC effects,” SID Symp. Dig. Tech. Pap.34, 204–207 (2003).
[CrossRef]

Martinot-Lagarde, Ph.

D. N. Stoenescu, I. Dozov, and Ph. Martinot-Lagarde, “Long-time behavior of the azimuthal anchoring strength and easy axis gliding of nematic liquid crystal,” Mol. Cryst. Liq. Cryst., 351, 427–434 (2000).
[CrossRef]

I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, Ph. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett., 77, 4124–4126 (2000).
[CrossRef]

R. Barberi, I. Dozov, M. Giocondo, M. Iovane, Ph. Martinot-Lagarde, D. Stoenescu, S. Tonchev, and L. V. Tsonev, “Azimuthal anchoring of nematic on undulated substrate: elasticity versus memory,” Eur. Phys. J.B6,83–91 (1998).
[CrossRef]

Matsushima, J.

T. Suzuki, J. Matsushima, Y. Sakaki, M. Sugimoto, H. Tanaka, C. Mizoguchi, S. Onda, K. Mimura, and K. Sumiyoshi, “High contrast ratio in-plane-switching TFT-LCD with ion beam irradiated polyimide film as LC alignment layer,” IDW/ASIA DISPLAY Dig., 57–60 (2005).

McCarthy, T. J.

S. H. Cho, G. Kim, T. J. McCarthy, and R. J. Farris, “Orthotropic elastic constants for polyimide film,” Polym. Eng. Sci., 41, 301–307 (2001).
[CrossRef]

Mimura, K.

T. Suzuki, J. Matsushima, Y. Sakaki, M. Sugimoto, H. Tanaka, C. Mizoguchi, S. Onda, K. Mimura, and K. Sumiyoshi, “High contrast ratio in-plane-switching TFT-LCD with ion beam irradiated polyimide film as LC alignment layer,” IDW/ASIA DISPLAY Dig., 57–60 (2005).

Miyashita, T.

M. Mizusaki, T. Miyashita, and T. Uchida, “Kinetic analysis of image sticking with adsorption and desorption of ions to a surface of an alignment layer,” J. Appl. Phys.112,044510 (2012).
[CrossRef]

M. Mizusaki, T. Miyashita, and T. Uchida, “Behavior of ion affecting image sticking on liquid crystal displays under application of direct current voltage,” J. Appl. Phys.108,104903 (2010).
[CrossRef]

M. Mizusaki, T. Miyashita, and T. Uchida, “The mechanism of image sticking on LCD and its evaluation parameters related to LC and alignment materials,” SID Symp. Dig. Tech. Pap.37, 673–676 (2006).
[CrossRef]

Mizoguchi, C.

T. Suzuki, J. Matsushima, Y. Sakaki, M. Sugimoto, H. Tanaka, C. Mizoguchi, S. Onda, K. Mimura, and K. Sumiyoshi, “High contrast ratio in-plane-switching TFT-LCD with ion beam irradiated polyimide film as LC alignment layer,” IDW/ASIA DISPLAY Dig., 57–60 (2005).

Mizusaki, M.

M. Mizusaki, T. Miyashita, and T. Uchida, “Kinetic analysis of image sticking with adsorption and desorption of ions to a surface of an alignment layer,” J. Appl. Phys.112,044510 (2012).
[CrossRef]

M. Mizusaki, T. Miyashita, and T. Uchida, “Behavior of ion affecting image sticking on liquid crystal displays under application of direct current voltage,” J. Appl. Phys.108,104903 (2010).
[CrossRef]

M. Mizusaki, T. Miyashita, and T. Uchida, “The mechanism of image sticking on LCD and its evaluation parameters related to LC and alignment materials,” SID Symp. Dig. Tech. Pap.37, 673–676 (2006).
[CrossRef]

Momoi, Y.

Y. Momoi, K. Tamai, K. Furuta, T. -R. Lee, K. -J. Kim, C. -H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Display18, 134–140 (2010).
[CrossRef]

J. Stöhr, M.G. Samant, A. Cossy-Favre, J. Diaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic origin of liquid crystal alignment on rubbed polymer surfaces,” Macromolecules31, 1942–1946 (1998).
[CrossRef]

Moses, T.

Y. Ouchi, M. B. Feller, T. Moses, and Y. R. Shen, “Surface memory effect at the liquid-crystal-polymer interface,” Phys. Rev. Lett.68, 3040–3043 (1992).
[CrossRef] [PubMed]

Naemura, S.

S. Naemura, “Liquid-crystal-material technologies for advanced display applications,” J. Soc. Inf. Display8, 5–9 (2000).
[CrossRef]

Nagae, Y.

Y. Nagae, “Recent trends in wide-viewing angle color TFT-LCDs,”, Proc. SPIE, 4079, 152–159 (2000).
[CrossRef]

Nagata, T.

J. Stöhr, M.G. Samant, A. Cossy-Favre, J. Diaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic origin of liquid crystal alignment on rubbed polymer surfaces,” Macromolecules31, 1942–1946 (1998).
[CrossRef]

Nobili, M.

S. Faetti, M. Nobili, and I. Raggi, “Surface reorientation dynamics of nematic liquid crystals,” Eur. Phys. J.B11,445–453 (1999).
[CrossRef]

Odahara, S.

J. Stöhr, M.G. Samant, A. Cossy-Favre, J. Diaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic origin of liquid crystal alignment on rubbed polymer surfaces,” Macromolecules31, 1942–1946 (1998).
[CrossRef]

Oh, C. -H.

Y. Momoi, K. Tamai, K. Furuta, T. -R. Lee, K. -J. Kim, C. -H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Display18, 134–140 (2010).
[CrossRef]

Oh-e, M.

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67, 3895–3897 (1995).
[CrossRef]

M. Oh-e, M. Ohta, S. Aratani, and K. Kondo, “Principles and characteristics of electro-optical behavior with in-plane switching mode,” The 15th IDRC (Asia Display ’95), 577–580 (1995).

Ohmura, Y.

P. Vetter, Y. Ohmura, and T. Uchida, “Study of memory alignment of nematic liquid crystals on polyvinyl alcohol coatings,” Jpn. J. App. Phys.32, L1239–L1241 (1993).
[CrossRef]

Ohta, M.

M. Oh-e, M. Ohta, S. Aratani, and K. Kondo, “Principles and characteristics of electro-optical behavior with in-plane switching mode,” The 15th IDRC (Asia Display ’95), 577–580 (1995).

Oliveira, E. A.

E. A. Oliveira, A.M. Figueiredo Neto, and G. Durand, “Gliding anchoring of lyotropic nematic liquid crystals on amorphous glass surfaces,” Phys. Rev. A, 44, R825–R827 (1991).
[CrossRef] [PubMed]

Onda, S.

T. Suzuki, J. Matsushima, Y. Sakaki, M. Sugimoto, H. Tanaka, C. Mizoguchi, S. Onda, K. Mimura, and K. Sumiyoshi, “High contrast ratio in-plane-switching TFT-LCD with ion beam irradiated polyimide film as LC alignment layer,” IDW/ASIA DISPLAY Dig., 57–60 (2005).

Ouchi, Y.

Y. Ouchi, M. B. Feller, T. Moses, and Y. R. Shen, “Surface memory effect at the liquid-crystal-polymer interface,” Phys. Rev. Lett.68, 3040–3043 (1992).
[CrossRef] [PubMed]

Park, H. J.

H. J. Park, L. Lai, S. H. Lin, and K. H. Yang, “Analysis of IPS mura, image-sticking and flicker caused by internal DC effects,” SID Symp. Dig. Tech. Pap.34, 204–207 (2003).
[CrossRef]

Park, S. -C.

S. -C. Park, K. -H. Lim, S. -H. Choi, and H. -S. Soh, “Quantitative analysis of image Sticking in LCDs,” SID Symp. Dig. Tech. Pap.38, 1042–1045 (2007).
[CrossRef]

Park, Y.

Y. Park, S. Kim, and E. Lee, “A study on reducing image-sticking artifacts in wide-screen TFT-LCD monitors,” J. Soc. Inf. Display, 15, 969–973 (2007).
[CrossRef]

Pinkevich, I.

A. Romanenko, V. Reshetnyak, I. Pinkevich, I. Dozov, and S. Faetti, “Magnetic field induced director reorientation in the nematic cell with time-dependent anchoring due to adsorption/desorption of LC molecules,” Mol. Cryst. Liq. Crystl, 439, 1867–1888, (2005).

Polossat, E.

I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, Ph. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett., 77, 4124–4126 (2000).
[CrossRef]

Raggi, I.

S. Faetti, M. Nobili, and I. Raggi, “Surface reorientation dynamics of nematic liquid crystals,” Eur. Phys. J.B11,445–453 (1999).
[CrossRef]

Reshetnyak, V.

A. Romanenko, V. Reshetnyak, I. Pinkevich, I. Dozov, and S. Faetti, “Magnetic field induced director reorientation in the nematic cell with time-dependent anchoring due to adsorption/desorption of LC molecules,” Mol. Cryst. Liq. Crystl, 439, 1867–1888, (2005).

Romanenko, A.

A. Romanenko, V. Reshetnyak, I. Pinkevich, I. Dozov, and S. Faetti, “Magnetic field induced director reorientation in the nematic cell with time-dependent anchoring due to adsorption/desorption of LC molecules,” Mol. Cryst. Liq. Crystl, 439, 1867–1888, (2005).

Sakaki, Y.

T. Suzuki, J. Matsushima, Y. Sakaki, M. Sugimoto, H. Tanaka, C. Mizoguchi, S. Onda, K. Mimura, and K. Sumiyoshi, “High contrast ratio in-plane-switching TFT-LCD with ion beam irradiated polyimide film as LC alignment layer,” IDW/ASIA DISPLAY Dig., 57–60 (2005).

Samant, M.G.

J. Stöhr, M.G. Samant, A. Cossy-Favre, J. Diaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic origin of liquid crystal alignment on rubbed polymer surfaces,” Macromolecules31, 1942–1946 (1998).
[CrossRef]

Sampei, A.

M. Fukuhara and A. Sampei, “Temperature dependence of elastic moduli and internal dilational and shear frictions of polyimide,” J. Polym. Sci., Part B, Polym. Phys., 34, 1579–1582 (1996).
[CrossRef]

Sato, S.

R. Yamaguchi and S. Sato, “Tortional torque effects of twisted nematic bulk on the polymer surface alignment,” Mol. Cryst. and Liq. Cryst.367, 379–386 (2001).
[CrossRef]

Shen, Y. R.

Y. Ouchi, M. B. Feller, T. Moses, and Y. R. Shen, “Surface memory effect at the liquid-crystal-polymer interface,” Phys. Rev. Lett.68, 3040–3043 (1992).
[CrossRef] [PubMed]

Soh, H. -S.

S. -C. Park, K. -H. Lim, S. -H. Choi, and H. -S. Soh, “Quantitative analysis of image Sticking in LCDs,” SID Symp. Dig. Tech. Pap.38, 1042–1045 (2007).
[CrossRef]

Stoenescu, D.

R. Barberi, I. Dozov, M. Giocondo, M. Iovane, Ph. Martinot-Lagarde, D. Stoenescu, S. Tonchev, and L. V. Tsonev, “Azimuthal anchoring of nematic on undulated substrate: elasticity versus memory,” Eur. Phys. J.B6,83–91 (1998).
[CrossRef]

Stoenescu, D. N.

D. N. Stoenescu, I. Dozov, and Ph. Martinot-Lagarde, “Long-time behavior of the azimuthal anchoring strength and easy axis gliding of nematic liquid crystal,” Mol. Cryst. Liq. Cryst., 351, 427–434 (2000).
[CrossRef]

I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, Ph. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett., 77, 4124–4126 (2000).
[CrossRef]

Stöhr, J.

J. Stöhr, M.G. Samant, A. Cossy-Favre, J. Diaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic origin of liquid crystal alignment on rubbed polymer surfaces,” Macromolecules31, 1942–1946 (1998).
[CrossRef]

Sugimoto, M.

T. Suzuki, J. Matsushima, Y. Sakaki, M. Sugimoto, H. Tanaka, C. Mizoguchi, S. Onda, K. Mimura, and K. Sumiyoshi, “High contrast ratio in-plane-switching TFT-LCD with ion beam irradiated polyimide film as LC alignment layer,” IDW/ASIA DISPLAY Dig., 57–60 (2005).

Sumiyoshi, K.

T. Suzuki, J. Matsushima, Y. Sakaki, M. Sugimoto, H. Tanaka, C. Mizoguchi, S. Onda, K. Mimura, and K. Sumiyoshi, “High contrast ratio in-plane-switching TFT-LCD with ion beam irradiated polyimide film as LC alignment layer,” IDW/ASIA DISPLAY Dig., 57–60 (2005).

Suzuki, T.

T. Suzuki, J. Matsushima, Y. Sakaki, M. Sugimoto, H. Tanaka, C. Mizoguchi, S. Onda, K. Mimura, and K. Sumiyoshi, “High contrast ratio in-plane-switching TFT-LCD with ion beam irradiated polyimide film as LC alignment layer,” IDW/ASIA DISPLAY Dig., 57–60 (2005).

Tajima, Z.

Z. Tajima, “IPS-TFT-LCDs technology trends,” Asia Display/IMID ’04 Dig., 15–17 (2004).

Tamai, K.

Y. Momoi, K. Tamai, K. Furuta, T. -R. Lee, K. -J. Kim, C. -H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Display18, 134–140 (2010).
[CrossRef]

Tanaka, H.

T. Suzuki, J. Matsushima, Y. Sakaki, M. Sugimoto, H. Tanaka, C. Mizoguchi, S. Onda, K. Mimura, and K. Sumiyoshi, “High contrast ratio in-plane-switching TFT-LCD with ion beam irradiated polyimide film as LC alignment layer,” IDW/ASIA DISPLAY Dig., 57–60 (2005).

Tonchev, S.

R. Barberi, I. Dozov, M. Giocondo, M. Iovane, Ph. Martinot-Lagarde, D. Stoenescu, S. Tonchev, and L. V. Tsonev, “Azimuthal anchoring of nematic on undulated substrate: elasticity versus memory,” Eur. Phys. J.B6,83–91 (1998).
[CrossRef]

Tsonev, L. V.

R. Barberi, I. Dozov, M. Giocondo, M. Iovane, Ph. Martinot-Lagarde, D. Stoenescu, S. Tonchev, and L. V. Tsonev, “Azimuthal anchoring of nematic on undulated substrate: elasticity versus memory,” Eur. Phys. J.B6,83–91 (1998).
[CrossRef]

Uchida, T.

M. Mizusaki, T. Miyashita, and T. Uchida, “Kinetic analysis of image sticking with adsorption and desorption of ions to a surface of an alignment layer,” J. Appl. Phys.112,044510 (2012).
[CrossRef]

M. Mizusaki, T. Miyashita, and T. Uchida, “Behavior of ion affecting image sticking on liquid crystal displays under application of direct current voltage,” J. Appl. Phys.108,104903 (2010).
[CrossRef]

M. Mizusaki, T. Miyashita, and T. Uchida, “The mechanism of image sticking on LCD and its evaluation parameters related to LC and alignment materials,” SID Symp. Dig. Tech. Pap.37, 673–676 (2006).
[CrossRef]

P. Vetter, Y. Ohmura, and T. Uchida, “Study of memory alignment of nematic liquid crystals on polyvinyl alcohol coatings,” Jpn. J. App. Phys.32, L1239–L1241 (1993).
[CrossRef]

Ueki, T.

T. Ueki, “Requirements for large-sized high-resolution TFT-LCDs,” J. Soc. Inf. Display, 9, 151–154 (2001).
[CrossRef]

Vetter, P.

P. Vetter, Y. Ohmura, and T. Uchida, “Study of memory alignment of nematic liquid crystals on polyvinyl alcohol coatings,” Jpn. J. App. Phys.32, L1239–L1241 (1993).
[CrossRef]

Vorflusev, V. P.

V. P. Vorflusev, H.-S. Kitzerow, and V. G. Chigrinov, “Azimuthal surface gliding of a nematic liquid crystal,” Appl. Phys. Lett.70, 3359–3361 (1997).
[CrossRef]

Wright, S. L.

S. L. Wright, “IBM 9.2-Megapixel flat-panel display: technology and infrastructure,” IBM Research Report, RC22363(W0203-023), March 8 (2002).

Yamaguchi, R.

R. Yamaguchi and S. Sato, “Tortional torque effects of twisted nematic bulk on the polymer surface alignment,” Mol. Cryst. and Liq. Cryst.367, 379–386 (2001).
[CrossRef]

Yang, K. H.

H. J. Park, L. Lai, S. H. Lin, and K. H. Yang, “Analysis of IPS mura, image-sticking and flicker caused by internal DC effects,” SID Symp. Dig. Tech. Pap.34, 204–207 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

M. Oh-e and K. Kondo, “Electro-optical characteristics and switching behavior of the in-plane switching mode,” Appl. Phys. Lett.67, 3895–3897 (1995).
[CrossRef]

V. P. Vorflusev, H.-S. Kitzerow, and V. G. Chigrinov, “Azimuthal surface gliding of a nematic liquid crystal,” Appl. Phys. Lett.70, 3359–3361 (1997).
[CrossRef]

I. Dozov, D. N. Stoenescu, S. Lamarque-Forget, Ph. Martinot-Lagarde, and E. Polossat, “Planar degenerated anchoring of liquid crystals obtained by surface memory passivation,” Appl. Phys. Lett., 77, 4124–4126 (2000).
[CrossRef]

Eur. Phys. J. (2)

R. Barberi, I. Dozov, M. Giocondo, M. Iovane, Ph. Martinot-Lagarde, D. Stoenescu, S. Tonchev, and L. V. Tsonev, “Azimuthal anchoring of nematic on undulated substrate: elasticity versus memory,” Eur. Phys. J.B6,83–91 (1998).
[CrossRef]

S. Faetti, M. Nobili, and I. Raggi, “Surface reorientation dynamics of nematic liquid crystals,” Eur. Phys. J.B11,445–453 (1999).
[CrossRef]

J. Appl. Phys. (2)

M. Mizusaki, T. Miyashita, and T. Uchida, “Behavior of ion affecting image sticking on liquid crystal displays under application of direct current voltage,” J. Appl. Phys.108,104903 (2010).
[CrossRef]

M. Mizusaki, T. Miyashita, and T. Uchida, “Kinetic analysis of image sticking with adsorption and desorption of ions to a surface of an alignment layer,” J. Appl. Phys.112,044510 (2012).
[CrossRef]

J. Polym. Sci., Part B, Polym. Phys. (1)

M. Fukuhara and A. Sampei, “Temperature dependence of elastic moduli and internal dilational and shear frictions of polyimide,” J. Polym. Sci., Part B, Polym. Phys., 34, 1579–1582 (1996).
[CrossRef]

J. Soc. Inf. Display (1)

T. Ueki, “Requirements for large-sized high-resolution TFT-LCDs,” J. Soc. Inf. Display, 9, 151–154 (2001).
[CrossRef]

J. Soc. Inf. Display (3)

S. Naemura, “Liquid-crystal-material technologies for advanced display applications,” J. Soc. Inf. Display8, 5–9 (2000).
[CrossRef]

Y. Park, S. Kim, and E. Lee, “A study on reducing image-sticking artifacts in wide-screen TFT-LCD monitors,” J. Soc. Inf. Display, 15, 969–973 (2007).
[CrossRef]

Y. Momoi, K. Tamai, K. Furuta, T. -R. Lee, K. -J. Kim, C. -H. Oh, and T. Koda, “Mechanism of image sticking after long-term AC field driving of IPS mode,” J. Soc. Inf. Display18, 134–140 (2010).
[CrossRef]

Jpn. J. App. Phys. (1)

P. Vetter, Y. Ohmura, and T. Uchida, “Study of memory alignment of nematic liquid crystals on polyvinyl alcohol coatings,” Jpn. J. App. Phys.32, L1239–L1241 (1993).
[CrossRef]

Macromolecules (1)

J. Stöhr, M.G. Samant, A. Cossy-Favre, J. Diaz, Y. Momoi, S. Odahara, and T. Nagata, “Microscopic origin of liquid crystal alignment on rubbed polymer surfaces,” Macromolecules31, 1942–1946 (1998).
[CrossRef]

Mol. Cryst. and Liq. Cryst. (1)

R. Yamaguchi and S. Sato, “Tortional torque effects of twisted nematic bulk on the polymer surface alignment,” Mol. Cryst. and Liq. Cryst.367, 379–386 (2001).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

D. N. Stoenescu, I. Dozov, and Ph. Martinot-Lagarde, “Long-time behavior of the azimuthal anchoring strength and easy axis gliding of nematic liquid crystal,” Mol. Cryst. Liq. Cryst., 351, 427–434 (2000).
[CrossRef]

M. Kwak, D. Han, H. Kwon, S. Choi, Y. Choi, D. Koo, K. Kim, and B. Kim, “Studies of the directional property on rubbed alignment films by rubbing condition,” Mol. Cryst. Liq. Cryst.546, 1481–1486 (2011).
[CrossRef]

Mol. Cryst. Liq. Crystl (1)

A. Romanenko, V. Reshetnyak, I. Pinkevich, I. Dozov, and S. Faetti, “Magnetic field induced director reorientation in the nematic cell with time-dependent anchoring due to adsorption/desorption of LC molecules,” Mol. Cryst. Liq. Crystl, 439, 1867–1888, (2005).

Phys. Rev. A (1)

E. A. Oliveira, A.M. Figueiredo Neto, and G. Durand, “Gliding anchoring of lyotropic nematic liquid crystals on amorphous glass surfaces,” Phys. Rev. A, 44, R825–R827 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

Y. Ouchi, M. B. Feller, T. Moses, and Y. R. Shen, “Surface memory effect at the liquid-crystal-polymer interface,” Phys. Rev. Lett.68, 3040–3043 (1992).
[CrossRef] [PubMed]

PLoS ONE (1)

E. Gutierrez and A. Groisman, “Measurements of elastic moduli of silicone gel substrates with a microfluidic device”, PLoS ONE6,e25534 (2011).
[CrossRef] [PubMed]

Polym. Eng. Sci. (1)

S. H. Cho, G. Kim, T. J. McCarthy, and R. J. Farris, “Orthotropic elastic constants for polyimide film,” Polym. Eng. Sci., 41, 301–307 (2001).
[CrossRef]

Proc. SPIE (1)

Y. Nagae, “Recent trends in wide-viewing angle color TFT-LCDs,”, Proc. SPIE, 4079, 152–159 (2000).
[CrossRef]

SID Symp. Dig. Tech. Pap. (3)

M. Mizusaki, T. Miyashita, and T. Uchida, “The mechanism of image sticking on LCD and its evaluation parameters related to LC and alignment materials,” SID Symp. Dig. Tech. Pap.37, 673–676 (2006).
[CrossRef]

S. -C. Park, K. -H. Lim, S. -H. Choi, and H. -S. Soh, “Quantitative analysis of image Sticking in LCDs,” SID Symp. Dig. Tech. Pap.38, 1042–1045 (2007).
[CrossRef]

H. J. Park, L. Lai, S. H. Lin, and K. H. Yang, “Analysis of IPS mura, image-sticking and flicker caused by internal DC effects,” SID Symp. Dig. Tech. Pap.34, 204–207 (2003).
[CrossRef]

Other (4)

M. Oh-e, M. Ohta, S. Aratani, and K. Kondo, “Principles and characteristics of electro-optical behavior with in-plane switching mode,” The 15th IDRC (Asia Display ’95), 577–580 (1995).

Z. Tajima, “IPS-TFT-LCDs technology trends,” Asia Display/IMID ’04 Dig., 15–17 (2004).

S. L. Wright, “IBM 9.2-Megapixel flat-panel display: technology and infrastructure,” IBM Research Report, RC22363(W0203-023), March 8 (2002).

T. Suzuki, J. Matsushima, Y. Sakaki, M. Sugimoto, H. Tanaka, C. Mizoguchi, S. Onda, K. Mimura, and K. Sumiyoshi, “High contrast ratio in-plane-switching TFT-LCD with ion beam irradiated polyimide film as LC alignment layer,” IDW/ASIA DISPLAY Dig., 57–60 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Example of LCD image sticking. (a): Black and white checker pattern displayed. (b): Image sticking observed while displaying a uniform gray image.

Fig. 2
Fig. 2

Measurement method. (a) Initial state, (b) AC driving, and (c) after prolonged AC driving, deviation occurs.

Fig. 3
Fig. 3

Dependence of Δθ on AC driving period for electric field conditions No. 1 (closed circles), No. 2 (open circles), No. 3 (closed squares), No. 4 (open squares), No. 5 (closed triangles) and No. 6 (open triangles) of Table 1. Solid lines are fitting curves given by the KV model.

Fig. 4
Fig. 4

Photograph of electrode regions in a cell subjected to AC electric field strength of 2 V/μm for 700 h taken under crossed-nicols polarizers. Arrows indicate the directions of the polarization axes.

Fig. 5
Fig. 5

Dependence of relaxation time on electric field.

Fig. 6
Fig. 6

Dependence of strain γ(∞) on electric field, determined from test cell measurements and fitting using the KV model.

Tables (2)

Tables Icon

Table 1 Experimental conditions.

Tables Icon

Table 2 Parameters and estimated viscoelastic property. The electric field E was calculated from Table 1. The strain γ(∞) and the relaxation time τ were obtained from data fitting with the KV model.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Δ θ = Δ θ 1 + Δ θ 2 ,
γ ( t ) = γ ( ) [ 1 exp ( t τ ) ] ,
γ ( ) = σ G ,
τ = η G .
γ = c Δ θ ,
c ~ 1 2 2 10 = 0.1 ,
f e = 1 2 E D = 1 2 [ ε + ( ε ε ) cos 2 Θ ] E 2
σ = | f e Θ | = 1 2 ( ε ε ) E 2 sin 2 Θ
Θ = 70 ° .
γ ( ) E ,
σ γ ( ) 2 .
G γ ( ) .

Metrics